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Abstract

Unsupervised image-to-image translation methods aim
to map images from one domain into plausible examples
from another domain while preserving the structure shared
across two domains. In the many-to-many setting, an ad-
ditional guidance example from the target domain is used
to determine the domain-specific factors of variation of the
generated image. In the absence of attribute annotations,
methods have to infer which factors of variation are specific
to each domain from data during training. In this paper,
we show that many state-of-the-art architectures implicitly
treat textures and colors as always being domain-specific,
and thus fail when they are not. We propose a new method
called RIFT that does not rely on such inductive architec-
tural biases and instead infers which attributes are domain-
specific vs shared directly from data. As a result, RIFT
achieves consistently high cross-domain manipulation ac-
curacy across multiple datasets spanning a wide variety of
domain-specific and shared factors of variation.

1. Introduction
The goal of unsupervised image translation is to learn

a mapping between two sets of images (two domains) that
preserves the shared structure present in both domains with-
out pair supervision. When one domain has unique factors
of variation absent in the other domain, we must alter the
problem definition to ensure that a unique well-defined so-
lution exists: for an input pair consisting of a source image
and a target “guide” image, the learned mapping must pro-
duce an image from the target domain, preserving all fac-
tors of the source image that are varied in both domains,
and taking factors of variation specific to the target do-
main from the guide image. For example, in Fig. 1(a-b) the
task is to preserve pose, skin tone, and background of the
male source, and apply the hair color of the female guide,
whereas in Fig. 1(c-d), preserve object color and shape, and
use orientation and size from the guide. This problem is
referred as unsupervised many-to-many translation [15].

Identifying and preserving shared factors from data is of
crucial importance in many applications of image transla-
tion, such as try-on [21], since many real-world attributes
(e.g. lighting, shape, roughness) are too difficult to annotate
manually [32]. Moreover, in many interpretability and fair-
ness applications [26], we do not know which factors are
skewed in advance, and would like to infer that from data.

Unfortunately, recent work [5] on evaluation of many-to-
many translation methods suggests that prior state-of-the-
art methods fail to infer which attributes are domain-specific
and which are domain-invariant from data on certain kinds
of attribute combinations, and rely on heuristics that work
for some dataset pairs, but fail on other. More specifi-
cally, many state-of-the-art methods [8, 15] implicitly as-
sume that all domain-specific variations can be modeled as
“style” mixed-in globally into intermediate features of im-
age decoders via adaptive instance normalization (AdaIN)
[14] originally designed for style transfer. As a result, these
methods change all colors and textures of the source input
to match the guide, even if these colors and textures are var-
ied across both domains and therefore should be preserved.
Indeed, Fig. 2a shows that even on a toy dataset pair from
Fig. 1(c-d), MUNIT and StarGANv2 change the color of the
source object to match color of the guide, even though it is
varied in both domains and should be preserved. In Sec. 5,
we show that these methods also change backgrounds and
skin tones in the female-to-male setup from Fig. 1(a-b) var-
ied in both domains. Methods based on auto-encoders and
reconstruction losses [1, 6, 20] preserve shared information
better, but often fail to apply correct domain-specific fac-
tors. For example, in Fig. 2a, DIDD [6] failed to extract and
apply the correct orientation and size from the guide.

In this paper, we propose Restricted Information Flow
for Translation (RIFT), a novel approach that does not
rely on a fixed inductive bias to perform disentanglement
and achieves consistently high attribute manipulation ac-
curacy across different kinds of shared or domain-specific
attributes. As illustrated in Fig. 2b, our method preserves
shared factors (background and pose) of the input male face
during “brunet male-to-female translation” and encodes
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Figure 1: Problem. An unsupervised many-to-many image translation model must disentangle factors of variation shared across two
domains from those specific to each domain using unpaired source and target images during training. At the same time, the model has to
perform domain translation, preserving factors of the source image shared across two domains and applying target-specific factors from the
“guide” image. We show that existing methods fail on at least one of two datasets shown above, and the proposed method excels on both.
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(b) An overview of RIFT.

Figure 2: (a) All prior methods fail to either preserve shared attributes of the source (shape, object color), or apply target-specific
attributes of the guide (size, orientation), while the proposed method (RIFT) succeeds at both (compared to GT), see Fig. 1(c). (b) To
minimize the cycle-reconstruction loss, RIFT encodes source-specific factors of variation (mustache) into the source-specific embedding,
because source-specific factors (mustache) can not be predicted from an source (male) image translated into the target (female) domain.

male-specific attributes (mustache) in a domain-specific
embedding. Our framework defines domain-specific factors
as those that can not be inferred from the image translated
into another domain. For example, since female images
never contain beards, the model would not be able to infer
whether the source image had a beard without a domain-
specific embedding, and therefore would fail to minimize
the cycle loss. This forces the model to encode domain-
specific factors into the domain-specific embedding. Unfor-
tunately, prior work [4, 9] shows that cycle-consistent mod-
els tend to “hide” information necessary for accurate cycle-
reconstruction in the form of imperceptible low-amplitude
adversarial noise embedded into generated images - a so-
called “self-adversarial attack”. In our case, it manifests
as hiding information about mustaches inside generated fe-
male images. With this in mind, we propose using the
translation honesty loss [4] to penalize the model for hiding

male-specific information (mustache) inside generated fe-
male images. On the other hand, to prevent the model from
encoding information shared across two domains (e.g. pose,
background) into domain-specific embedding, we propose
an embedding capacity loss that penalizes the model for en-
coding extra information into domain-specific embedding.
As a result, information about the mustache is forced out
of the generated female image into the domain-specific em-
bedding, while information about the pose and background
is forced out of the domain-specific embedding into the
translation result - resulting in correct disentanglement of
domain-specific and shared factors. We experimentally ver-
ify that the self-adversarial attack takes place, and that the
honesty loss prevents it. We also provide a bound over the
effective number of bits stored in the domain-specific em-
bedding, and show both theoretically and empirically that,
as expected, disabling the capacity loss results in shared fac-
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tors erroneously encoded into domain-specific embeddings.
To sum up, we propose a new method for unsupervised

many-to-many image translation that does not rely on an
inductive bias towards treating certain kinds of attributes as
domain-specific or shared. We verify that disabling either
component results in all information encoded exclusively
either into the domain-specific embedding or the translated
image in the form of adversarial noise. Our experiments
across three splits of Shapes-3D [18], SynAction [31] and
Celeb-A [19] confirm that the resulting model achieves con-
sistently high attribute manipulation accuracy across a wide
range of shared and domain-specific attributes.

2. Related work

Image-to-image translation. Unsupervised image-to-
image translation methods, such as CycleGAN [34], and
UNIT [22], infer semantically meaningful one-to-one cross-
domain mappings from pairs of semantically related sets of
images (domains) without pair supervision. The problem
becomes ill-posed [5] if factors varied in one of two do-
mains are either not present or not varied in the other.

Many-to-many translation. To account for (and enable
control over) domain-specific factors, many-to-many im-
age translation methods [1, 8, 15, 20, 23] separate domain-
invariant “content” from domain-specific “style”. Follow-
ing Bashkirova et al. [5], we avoid terms “content” and
“style” to distinguish the general many-to-many translation
problem from its subtask - style transfer [11].

Adaptive instance normalization. Many state-of-art
many-to-many translation methods [8, 15], use AdaIN [14],
originally designed for style transfer. Some methods [24]
add spatial dimension to AdaIN to distinguish colors and
textures of different objects, but fundamentally still rely on
re-normalization of decoder features to perform disentan-
glement. While effective at realistic layout-preserving tex-
ture transfer (day-to-night, summer-to-winter), this archi-
tectural choice was shown [5] to limit the range of appli-
cations of these methods to cases in which domain-specific
information lies within textures and colors.

Autoencoders. In contrast, methods like Augmented Cy-
cleGAN [1], DRIT++ [20] and Domain Intersection and
Domain Difference (DIDD) [6] rely on embedding losses
and therefore are more general. For example, DIDD forces
domain-specific embeddings of opposite domain to be zero,
while DRIT++ uses adversarial training to make the source
and target content embeddings indistinguishable.

Cycle losses. Most many-to-many methods [1, 15] use
cycle-consistency on domain-specific embeddings to ensure
that the information from the guide is not ignored, and cy-
cle loss on reconstructed images [34] to improve seman-
tic consistency. However, cycle-consistency on images has

been shown [4, 9] to force one-to-one unsupervised trans-
lation models to “cheat” by hiding domain-specific infor-
mation in generated translations in the form of impercep-
tible low-amplitude structured noise. Alternative consis-
tency objectives, such as the patchwise contrastive loss [29],
are designed to be invariant to differences across domains,
and therefore can not be used to supervise manipulation of
domain-specific factors in the many-to-many case.

Few-shot [23] and truly unsupervised [3] translation
methods solve a related but different problem. Since these
methods have either very few domain examples or no do-
main labels whatsoever, shared and domain-specific at-
tributes can not be inferred (or even defined) by looking at
data. To resolve this ambiguity, these methods also assume
that the layout distribution is shared, and that the variability
in appearance (e.g. colors and textures) is domain-specific.

Single-domain unsupervised disentanglement methods,
such as InfoGAN [7] and β-VAE [13], tackle a different
problem as well. First, many-to-many translation is not
aimed at in controlled manipulation of individual factors,
but of all domain-specific or all shared factors at once. Sec-
ond, if we applied these methods to the combined source
and target dataset to analyse the distribution of latent codes
across each domain, the structure of this dataset would
conflict with the independence assumption built into these
methods, since distributions of domain specific factors are
not independent from the distribution of domain labels.

Overall, prior methods ensure that the guide input mod-
ulates the translation result in some non-trivial way, but, to
our knowledge, no prior work explicitly address adversarial
embedding of domain-specific information into the trans-
lated image, or quantitatively verifies that domain-specific
factors are correctly applied and shared factors are pre-
served during translation, and this work fills this gap.

3. Restricted Information Flow for Translation
In this section we introduce the many-to-many image

translation problem, and describe how our method solves it.
Our model reconstructs input images from generated trans-
lations and domain-specific embeddings (Fig. 2b), forcing
domain-invariant information out of domain-specific em-
bedding using capacity losses, and forcing domain-specific
information out from the generated translation using hon-
esty losses, ensuring correct disentanglement.

Setup. Following Huang et al. [15], we assume that we have
access to two unpaired image datasets A = {ai} and B =
{bi} that share some semantic structure, but differ visually
(e.g. male and female faces with poses, backgrounds and
skin color varied in both). In addition to that, each domain
has domain-specific factors of variability, e.g. only males
have variation in the amount of facial hair and only females
have variation in the hair color (Fig. 1). Our goal is to find
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Figure 3: Losses used to train RIFT. For illustration, we use 3D-Shapes-A described in Sec. 4 and shown in Fig. 4 and 2a.
When the model is trained, green arrows carry only B-specific factors (floor and wall color), blue arrows carry only A-specific
factors (orientation and size), and red arrows carry factors shared across two domains (object color and shape).

a pair of guided cross-domain mappings FA2B : A,B → B
and FB2A : B,A → A such that for any source inputs
as, bs and guide inputs ag, bg from respective domains, re-
sulting guided cross-domain translations b′ = FA2B(as, bg)
and a′ = FB2A(bs, ag) look like plausible examples of
respective output domains, share domain-invariant factors
with their “source” arguments (as and bs respectively) and
domain-specific attributes with their “guidance” arguments
(bg and ag respectively). For example, the correct guided
female-to-male mapping FB2A applied to female source im-
age bs and a guide male image ag should generate a new
male image a′ with pose, background, and skin tone from
the female input image bs, and facial hair from the guidance
input ag , because poses, backgrounds and skin tone vary in
both, while facial hair is male-specific.

Method. While it might be possible to approximate
functions FA2B and FB2A directly, following prior work,
we split each one into two learnable parts: encoders
sA(a), sB(b) that extract domain-specific information from
corresponding guide images, and generators GA2B(a, sb)
andGB2A(b, sa) that combine that domain-specific informa-
tion with a corresponding source image, as illusrated in Fig-
ure 3. Final mappings are compositions of these networks:

FA2B(a, b) = GA2B(a, sB(b)), FB2A(b, a) = GB2A(b, sA(a))

Losses introduced in the remainder of this section ensure
that encoders s∗ extract domain-specific information from
their inputs (and nothing else), and that generators G∗ use
the encoder outputs, (only) domain-invariant factors from
their source inputs, and generate plausible images.

Noisy cycle-consistency loss. To ensure that each factor
of input images is not ignored completely, we use a guided
analog of the cycle consistency loss [34]. This loss ensures
that any image translated into a different domain, and trans-
lated back with its original domain-specific embedding is
reconstructed perfectly. Additionally, before translating im-
ages back into their original domains, we add zero-mean

Gaussian noise (εs, εg) of variance σs and σg to each di-
mension of generated images and domain-specific embed-
dings - the motivation is given in two following paragraphs.

LA
cyc = Ea,b ||acyc − a||1, LB

cyc = Eb,a ||bcyc − b||1 (1)

acyc = GB2A(GA2B(a, sB(b) + εg) + εs, sA(a) + εg) (2)
bcyc = GA2B(GB2A(b, sA(a) + εg) + εs, sB(b) + εg) (3)
a ∼ A, b ∼ B, εs ∼ N (0, σs), εg ∼ N (0, σg) (4)

Translation honesty. Unfortunately, any form of cycle loss
encourages the model to “hide” domain-specific informa-
tion inside the translated image in the form of structured
adversarial noise [9]. To prevent the model from “hid-
ing” the domain-specific information, such as mustache, in-
side a generated female image (instead of putting it into a
male-specific embedding sa), we use two so-called “self-
adversarial defences” proposed by Bashkirova et al. [4].
First, we destroy the structured signal by adding Gaussian
noise εs to intermediate images before cycle reconstruction,
see Eq. (2) above. Moreover, we use an additional guess
loss to train the generator. To compute it, we train a pair of
guess discriminators that predict which of its two inputs is
a cycle-reconstruction and which is the original image. For
example, if the male-to-female generator GA2B is consis-
tently adversarially embedding mustaches into all generated
female images, then the cycle-reconstructed female bcyc will
also have traces of an embedded mustache, because it was
generated using that male-to-female generator GA2B, and
will be otherwise identical to the input b. In this case, the
guess discriminatorDgs

B , trained specifically to detect differ-
ences between input images and their cycle-reconstructions,
will detect this hidden signal and penalize the model:

LA
guess = [Dgs

A(a, acyc)]
2 + [1−Dgs

A(acyc, a)]2 (5)

LB
guess = [Dgs

B(b, bcyc)]
2 + [1−Dgs

B(bcyc, b)]
2 (6)

Domain-specific channel capacity. Unfortunately, nei-

ther of two losses described above can prevent the model
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from learning to embed the entire guide image ag into the
domain-specific embeddings sa and reconstructing it from
that embedding, ignoring its first argument, i.e. always pro-
duce the guide input exactly. In order to prevent this from
happening, we add Gaussian noise εg to predicted domain-
specific embeddings before cycle reconstruction (see Eq. 2
above) and penalize norms of these embeddings:

LA
norm = Ea ||sA(a)||22, LB

norm = Eb ||sB(b)||22 (7)

Theorem 1 in supplementary shows that this procedure con-
strains the effective capacity of domain-specific embed-
dings. Intuitively, the mutual information between the in-
put guide image ag and the predicted translation a′ corre-
sponds to the maximal amount of information that an ob-
server could learn about translations a′ by observing guides
ag . Formally, we can show that if we add Gaussian noise of
amplitude σg and penalize the norms of embeddings sA(ag)
as described above, this mutual information is bounded by:

MI(ag; a′) ≤ dim(sA(a)) · log2

(
1 + LA

norm/σ
2
g

)
, (8)

a′ = GB2A(bs, sA(ag) + εg), εg ∼ N (0, σg) (9)

meaning that minimizing LA
norm loss effectively limits the

amount of information from the guide image ag that GA2B
can access to generate a′, i.e. the effective capacity of the
domain-specific embedding. Note that disabling either the
noise (σg = 0) or the capacity loss (Lnorm → ∞) theo-
retically results in effectively infinite capacity, so we need
both. Intuitively, this bound describes the expected number
of “reliably distinguishable” embeddings that we can pack
into a ball of radius

√
LA

norm assuming that each embedding
is perturbed randomly by Gaussian noise with amplitude σg .

Realism losses. Remaining losses are analogous to the orig-
inal GAN and identity losses from CycleGAN [22] ensuring
that generated images lie within respective domains:

LA
GAN = [DA(a)]2 + [1−DA(GB2A(b, sA(a) + εas))]

2

LB
GAN = [DB(b)]2 +

[
1−DB(GA2B(a, sB(b) + εbs))

]2
LA

idt = Ea ||GB2A(a, sA(a) + εg)− a||1,
LB

idt = Eb ||GA2B(b, sB(b) + εg)− b||1

Discriminator losses We also train discriminators DA, DB

and guess discriminators Dgs
A , D

gs
B by minimizing corre-

sponding adversarial LS-GAN [25] losses.

4. Experiments
We would like to measure how well each model can gen-

eralize across a diverse set of shared and domain-specific
attributes. In this section, we discuss datasets we used and
generated to achieve this goal, as well as baselines and met-
rics we used to compare our method to prior work.

A

B

C

shared: object color, shape
source: floor, wall color
target:  size, orientation

shared: wall color, size
source: object color, orient.
target:  shape, floor color

shared: floor color, orient.
source: wall color, shape
target:  size, object color

Figure 4: Shapes-3D-ABC: splits, shared and specific factors.

Data. Popular image translation datasets (e.g. summer-to-
winter [22], GTA5-to-BDD, AFHQ [17]) lack attribute an-
notations, precluding quantitative evaluation, and focus ex-
clusively on layout-preserving texture/palette transfer. To
evaluate methods’ ability to disentangle and transfer other
kinds of attributes, following the protocol proposed by
Bashkirova et al. [5], we re-purposed existing disentangle-
ment datasets to evaluate the ability of our method to model
different attributes as shared and domain-specific. We used
3D-Shapes [18], SynAction [31] and CelebA [19]. Unfor-
tunately, among the three, only 3D-Shapes [18] is balanced
enough and contains enough labeled attributes to make it
possible to generate and evaluate all methods across several
attribute splits of comparable sizes. For example, if we were
to build a split of SynAction with domain-specific pose, the
domain with fixed pose would contain only 90 images.

3D-Shapes-ABC. The original 3D-Shapes [18] dataset con-
tains 40k synthetic images labeled with six attributes: floor,
wall and object colors, object shape and object size, and
orientation (viewpoint). There are ten possible values for
each color attribute, four possible values for the shape (cy-
liner, capsule, box, sphere), fifteen values for orientation,
and eight values for size. We used three subsets of 3D-
Shapes with different attribute splits visualized in Figure 4.
Three resulting domain pairs contained 4.8k/4k, 12k/3.2k,
and 12k/6k images respectively.

SynAction. We used the same [5] split of SynAction [31]
- with background varied in one domain (nine possible val-
ues), identity/clothing varied in the other (ten possible val-
ues), and pose varied in both (real-valued vector). The re-
sulting dataset contains 5k images in one domain and 4.6k
images in the other. We note that the attribute split of this
dataset matches the inductive bias of AdaIN methods, since
the layout (pose) is shared and textures (background, cloth-
ing) are domain-specific in both domains. We noticed that
the original “fixed bg” domain [5] actually has some varia-
tion in the background, and fixed them before training both
our method and all baselines (see supplementary Sec. 7.2).

CelebA-FM. We used the male-vs-female split proposed
by Bashkirova et al. [5] with 25k images in each domain,
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and evaluated disentanglement of six most visually promi-
nent attributes: pose, skin and background color (shared at-
tributes, real-valued vectors), male-specific presence of fa-
cial hair (binary), female-specific hair color (three possible
values), and domain-defining gender.

Baselines. We compare the proposed method against sev-
eral state-of-art AdaIN methods, namely MUNIT [15], Star-
GANv2 [8], MUNITX [5], and autoencoder-based meth-
ods, namely Domain Intersection and Domain Difference
(DIDD) [6], Augmented CycleGAN [1] and DRIT++ [20].
We did not evaluate other AdaIN-based methods, such as
EGSC-IT [24], since have all share the disentanglement
strategy. We did not evaluate truly unsupervised methods
[3] and other methods that explicitly preserve the layout and
transfer the appearance [33] because they approach a differ-
ent problem, as discussed in Sec. 2 and Sec. 7.3. For ref-
erence, we provide a random baseline (RAND) that corre-
sponds to returning a random image from the target domain.

Metrics. In order to evaluate the performance of our
method, we measured how well the domain-specific at-
tributes were manipulated and domain-invariant attributes
were preserved. Following Bashkirova et al. [5] we trained
an attribute classifier f(x), and for each attribute k, we mea-
sured the its manipulation accuracy - the probability of cor-
rectly modifying an attribute across input-guide pairs for
which the value of the attribute must change:

ACCA
k = p(fk(FA2B(a, b)) = y∗k | fk(a) 6= fk(b))

where the “correct” attribute value equals y∗k = fk(a) for
shared attributes, and y∗k = fk(b) otherwise. For real-
valued multi-variate attributes (pose keypoints, background
RGB, skin RGB, etc.) we measured the probability of gen-
erating an image with the attribute closer to the correct at-
tribute vector y∗k then to y′k from the opposite domain:

ACCA
k = p(‖fk(FA2B(a, b))−y∗k‖ ≤ ‖fk(FA2B(a, b))−y′k‖)

where y∗k = fk(a) and y′k = fk(b) for shared attributes,
and vice-versa otherwise. The manipulation accuracy in the
opposite direction ACCB

k was estimated analogously. For
Shapes-3D we can report aggregated domain-specific and
domain-invariant manipulation accuracies ACCS

k (s) and
ACCC

k (s) averaged (see Sec. 7.4) across splits in which
the given attribute k was shared/common (C) or domain-
specific (S), and the relative discrepancy between them:

RD = 100 ·
∑

k |ACCS
k − ACCC

k |∑
k(ACCS

k + ACCC
k )
. (10)

In this work, we interested in improving not the realism of
generated images, but the disentanglement quality. Never-
theless, in supplementary Sec. 7.5 we report FID and LPIPS
of compared methods, and show that our method is on par
with them. More detailed description of the evaluation pro-
tocol and the architecture are given in the supp. Sec. 7.6.

Method 3DS SA CA AVG RD

StarGANv2 45 82 51 59 97
MUNIT 58 37 53 49 56
MUNITX 33 52 55 47 74
DRIT++ 18 24 55 32 20
AugCycleGAN 12 37 40 29 20
DIDD 44 67 64 58 35
RIFT (ours) 88 78 60 75 6

RAND 12 24 49 27 9

Table 1: Average (AVG↑) manipulation accuracy (ACC) and
relative discrepancy (RD↓) across 3D-Shapes-ABC (3DS), Syn-
Action (SA), and CelebA-FM (CA). Notation: best, 2nd best.

5. Results

In this section, we first compare our method to prior
work both qualitatively and quantitatively. Then we show
what happens if we remove key losses discussed Section 3.
And finally, we discuss implicit assumptions made by our
method, and propose several key challenges that future
methods will need to address to further improve manipu-
lation accuracy across three datasets we used in this paper.

Quantitative results. Tables 1 and 2 show that across three
splits of 3D-Shapes-ABC our method achieves the highest
average manipulation accuracy and the lowest relative dis-
crepancy between accuracies of modeling same attributes as
shared and specific. On SynAction, that matches the induc-
tive bias of AdaIN-based methods, our method performs on-
par with the AdaIN-based StarGANv2 and outperforms all
non-AdaIN methods. On CelebA-FM, our method performs
on par with DIDD up to a small margin and outperforms
other methods. Overall, RIFT achieves best or second-best
(with a small margin) performance in each of three dataset,
whereas both runner-ups (DIDD and StarGANv2) perform
poorly on at least one of three dataset (DIDD on SynAction,
StarGANv2 on CelebA, both on 3D-Shapes). RIFT also
achieves best average accuracy (AVG) across three datasets,
and lowest relative discrepancy (RD) on 3D-Shapes.

Qualitative results. Figures 5, 7 and 2a show that, in the
absolute majority of cases, the proposed method success-
fully preserves domain-invariant and uses domain-specific
information from respective domains on 3D-Shapes and
SynAction, and does so much better than all other baselines,
which agrees with the quantitative evaluation above. Fig-
ure 8 shows that, on CelebA, our method preserves poses
and backgrounds, and applies hair color better then other
baselines. We provide a more detailed side-by-side quali-
tative comparison of generated images across all baselines
and all datasets in the supplementary. In suppl. Fig 10 we
also show how RIFT can change domain-specific factors of
images while keeping them within their original domain.
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Method
3D-Shapes-ABC SynAct CelebA-FM

FC WC OC SZ SH ORI PS IDT BG HC FH GD ORI BG SC

C S C S C S C S C S C S C S S S S S C C C

StarGANv2 0 99 0 99 0 78 5 56 4 99 0 96 96 52 99 76 15 97 87 11 22
MUNIT 5 94 0 99 0 97 59 31 96 58 99 61 75 28 7 45 7 90 89 43 44
MUNITX 1 50 2 55 8 28 12 16 95 21 99 7 93 26 37 64 17 75 83 50 43
DRIT++ 7 12 9 19 10 10 27 14 7 15 42 51 52 6 13 23 9 96 89 67 44
AugCycleGAN 10 8 10 9 11 7 17 13 30 13 7 7 90 8 12 16 30 98 12 42 40
DIDD 38 81 29 22 72 18 41 20 87 43 48 34 89 12 99 22 50 91 78 89 56
RIFT (ours) 100 100 100 100 100 100 5 60 98 100 97 96 89 47 99 22 35 99 65 83 57

RAND 10 10 10 10 10 10 12 19 24 19 6 6 50 11 11 12 31 99 50 50 50

Table 2: Manipulation accuracy for shared/common (C) or domain-specific (S) attributes aggregated across Shapes-3D-ABC: floor
color (FC), wall color (WC), object color (OC), size (SZ), shape (SH), room orientation (ORI); SynAction: pose (PS), identity/clothing
(IDT), background (BG); CelebA-FM: hair color (HC), facial hair (FH), gender (GD), face orientation (ORI), bg (BG) and skin (SC) color.

Figure 5: Guided translations by RIFT on 3D-Shapes-A.
Our model successfully preserves shared attributes (object
color and shape) of the source image and applies domain-
specific attributes from the guide image (rotation and size
on the left, floor and wall color on the right). Comparison
to prior work can be found in Fig. 2a and in supplementary.
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Figure 6: Ablations. Effects of disabling capacity and hon-
esty losses on guided translations (top) and guided cycle-
reconstructions (bottom) on Shapes-3D-A. Inputs images
from domains A and B, A2B and B2A guided translations.

Ablations. During B2A translation on Shapes-3D-A
the model trained with all losses correctly uses object
color/shape from the source image and floor/wall color from
the guide (Fig. 5). If we remove the penalty on the capacity
of domain-specific embeddings (Lnorm), the model ignores
the source input (Fig. 6a-top): it encodes all attributes into
domain-specific embeddings, and cycle-reconstructs inputs
a and b perfectly from these embeddings (Fig. 6a-bottom),
completely ignoring the source input: b = FA2B(a, b) =
bcyc. Removing honesty losses (Lguess), on the other hand,
results in a model that ignores the guide input altogether
(Fig. 6b-top). The model “hides” domain-specific infor-
mation inside generated translations instead of the domain-
specific embeddings, and makes domain-specific embed-
dings equal zero, resulting in zero capacity loss Lnorm = 0,
and zero cycle reconstruction loss Lcyc = 0. For exam-
ple (Fig. 6b-bottom), the size and orientation of b is hidden
inside FB2A(b, a) in the form of imperceptible adversarial
noise and is used to reconstruct bcyc perfectly. If mapping
FA2B actually used size and orientation of b to generate bcyc,
it would have also applied that same size and orientation
when generating FA2B(a, b), but it did not - so we conclude
that both FA2B and FB2A ignore domain-specific embed-
dings and embed information inside generated translations
- see more ablation visualizations in suppl. Fig. 12. In the
supplementary Sec. 7.8 we also show that the model trained
with all proposed losses does not hide information inside
generated images: we trained a separate classification net-
work to predict attributes of the inputs that should have been
lost during translation from translated images. The resulting
classifier was able to accurately predict hidden information
from images generated without honesty losses, and was un-
able to predict them above chance from images generated
by a model trained with honesty loss (suppl. Tab. 5). This
confirms that shared attributes of the guide and domain-
specific attributes of the source were indeed correctly ig-
nored by the generator trained with proposed losses.
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Figure 7: Qualitative comparison to prior work on SynAction. Our model correctly preserves shared attributes (pose) of
the source image and applies domain-specific attributes of the guide domain (clothing/identity colors on the left, background
texture on the right) - compare to Ground Truth (GT). Errors made by top performing methods are highlighted in red.

Figure 8: Qualitative comparison to prior work on CelebA-
FM. Methods should preserve the pose and the background of
the source, and apply only the hair color of the female guide
during male2fem translation (top) and only the facial hair of the
male guide during fem2male translation (bottom). Only RIFT and
DIDD preserved background colors and applied correct target-
specific hair colors and mustaches.

Challenges. We suggest two major causes of remaining
errors that existing methods fail to handle at the moment,
and future researchers will need to address to make further
progress in this task possible. First, some attributes “affect”
very different number of pixels in training images, and as
a consequence contribute very differently to reconstruction
losses, making the job of balancing different loss compo-
nents much harder. For example, the floor color in 3D-
Shapes “affects” roughly half of all image pixels, whereas
size affects only one tenth of all pixels - resulting in drasti-

cally different effective weights across all losses, especially
if both are either domain-specific or shared at the same time.
Second, unevenly distributed shared attributes in real world
in-the-wild datasets (such as CelebA) pose an even more se-
rious challenge, rendering the many-to-many problem task
not well defined. For example, if both male and female
domains had hair color variation, but males were mostly
brunet with only 3% of blondes, but females were equally
likely to be blondes and brunettes - should the model pre-
serve blonde hair when translating females to males and
sacrifice the “realism” of the generated male domain, or
should it treat hair-color as a domain-specific attribute de-
spite variations present in both? This poses an open ques-
tion. We also discuss the ethical aspects of unsupervised
image translation in supplementary Section 7.9.

6. Conclusion
In this paper we propose RIFT - a new unsupervised

many-to-many image-to-image translation method that de-
termines which factors of variation are shared and which
are domain-specific from data, and achieves consistently
high attribute manipulation accuracy across a wide range of
datasets with different kinds of domain-specific and shared
attributes, and low discrepancy between these accuracies.
We provide ablations confirming that the self-adversarial
embedding takes place in the many-to-many setting, that
the honesty loss prevents it from happening. We also show
that the capacity loss restricts the effective capacity of the
domain-specific embedding in agreement with the provided
theoretical bound. Finally, we identify core challenges that
need to be resolved to enable further development of unsu-
pervised many-to-many image-to-image translation.
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