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Abstract

Several works have shown that deep learning models are
vulnerable to adversarial attacks where seemingly simple
label-preserving changes to the input image lead to incor-
rect predictions. To combat this, gradient based adversar-
ial training is generally employed as a standard defense
mechanism. However, in cases where the loss landscape
is discontinuous with respect to a given perturbation set,
first order methods get stuck in local optima, and fail to
defend against threat. This is often a problem for many
physically realizable perturbation sets such as 2D affine
transformations and 3D scene parameters. To work in such
settings, we introduce a new optimization framework that
alternates between global zeroth order sampling and local
gradient updates to compute strong adversaries that can be
used to harden the model against attack. Further, we de-
sign a powerful optimization algorithm using this frame-
work, called Alternating Evolutionary Sampling and De-
scent (ASD), which combines an evolutionary search strat-
egy (viz. covariance matrix adaptation) with gradient de-
scent. We consider two settings with discontinuous/discrete
and non-convex loss landscapes to evaluate ASD: a) 3D
scene parameters and b) 2D patch attacks, and find that it
achieves state-of-the-art results on adversarial robustness.

1. Introduction

Deep learning models achieve state-of-the-art perfor-
mance on various computer vision tasks, and have revolu-
tionized multiple application areas [16, 3, 23]. However,
several works have shown that these models are vulnerable
to adversarial attacks where subtle modifications to the in-
put image such as pixel perturbations [31], 2D [11] and 3D
scene transformations [42, 2, 26] lead to incorrect predic-
tions. This poses serious security concerns [15] for numer-

* = Equal advising

ous vision systems which find ubiquitous use of deep learn-
ing (such as autonomous navigation [1], augmented/virtual
reality [28], medical image analysis [27] etc.).

To harden deep learning systems against such threats, ad-
versarial training [31] is a commonly used strategy, where
robustness is achieved by augmenting the mini-batch with
adversarial examples. For lp bounded pixel perturba-
tion based attacks, gradient based adversarial training has
been established as the gold standard over the past few
years [31, 41, 38, 14]. The success of first order methods
on this setting can be largely attributed to smooth loss land-
scapes which possess multiple critical points where the lo-
cal and global minima are relatively close [8].

However, these loss surface properties do not hold in
general for all perturbation sets. In particular, more natural,
physically realizable settings such as 2D spatial transfor-
mations and 3D scene parameters often involve discontinu-
ous, non-convex and rugged loss landscapes (Fig. 1a) where
first order methods can easily get stuck in local optima [11].
Moreover, in many scenarios, gradients may be simply un-
available for a sub-set of parameters – for e.g. 2D patch
attacks (see Fig. 1b) where the attack parameters are dis-
crete variables and could be non-differentiable with respect
to the loss function. Therefore, in the absence of conducive
loss landscape properties, such as those in the lp pixel per-
turbation setting, purely gradient based adversarial training
cannot be reliably used to procure robust models [11].

In this work, we introduce a novel optimization frame-
work that addresses the need to design better optimization
methods for working in the discontinuous loss landscape of
naturalistic perturbations. Our framework is motivated by
classic evolutionary-search based optimization algorithms
that find the global optima of functions that are hard to
optimize [9, 12, 13, 19, 36, 40], typically making no as-
sumptions about the underlying loss surface. In a nutshell,
these methods iteratively update a distribution defined on
the feasible set using fitness scores of sampled candidate
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Figure 1: Top: Loss landscape of a deep neural network can be discontinuous and non-convex with respect to certain
parameter sets that generate an image such as 3D scene parameters, 2D affine transformations, adversarial patch location, etc.
Bottom: Sequence of steps in our proposed optimization algorithm (Alternating Evolutionary Sampling and Descent or ASD)
which iteratively modifies the parameters of a probability density and accelerates search by capturing the global properties
of the loss landscape. On the right, we list the utility of ASD in procuring models robust to naturalistic perturbations.

solutions. However, these gradient-free, function sampling
based methods are still impractical in high dimensional set-
tings due to exponential increase in search volume.

How can we accelerate the search process in discontinu-
ous spaces? We hypothesize that while gradients might not
get us to the global optima, the update directions are locally
meaningful. They can be used to update the candidate so-
lutions that are sampled from the search distribution to help
accelerate the optimization in high dimensional settings.

Leveraging this observation, we introduce a new opti-
mization framework (Sec. 3) that switches between global
zeroth order sampling and local gradient updates to com-
pute adversarial examples in discontinuous loss landscapes.
Concretely, the framework consists of a sequence of three
steps, a) sampling a probability density defined in the per-
turbation space, b) first-order sample updates and c) modi-
fication of the density function’s parameters using updated
samples (see Fig. 1b). Further, we perform adversarial train-
ing using this framework to procure robust models.

Under this framework, we design a powerful optimiza-
tion algorithm for robust model training – Alternating Evo-
lutionary Sampling and Descent (or ASD) which combines
an evolutionary search strategy viz. covariance matrix adap-
tation (or CMA [4]) with projected gradient descent (PGD)
(Sec. 4) and outperforms existing baselines (empirical eval-

uation in Sec. 6) on physically realizable perturbation sets
such as a) 3D scene parameters viz. pose, lighting and ma-
terials b) patch attacks i.e. adversarial images crafted by
overlaying a textured patch. For evaluating robustness to
3D scene parameter changes, we found an absence of a stan-
dard setting in the literature – most datasets are focused on
evaluating attack methods [2, 42]. Therefore we collect a
simple dataset of 3D traffic sign models to serve as a bench-
mark for evaluating both our model and methods developed
in future. We provide more background on this in Sec. 2
and describe specific details of our new setting in Sec. 6.1.
To summarize, our contributions are as follows:

• A novel framework for computing adversarial exam-
ples in discontinuous loss landscapes.

• A new benchmark dataset for evaluating robustness
with respect to 3D scene parameters.

• A specific instantiation of the framework (ASD) that
combines evolutionary search with PGD, achieving
state-of-the art robustness results on 3D scene param-
eters as well as 2D patch attack settings.

2. Background/Related work
In this section, we briefly introduce various forms of

adversarial attacks, defense mechanisms, and datasets cur-
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rently used to evaluate robust models. Additionally, we also
provide some background on existing optimization methods
for working in discontinuous loss landscapes.

2.1. lp bounded adversarial attacks

A standard method for computing pixel-space adversar-
ial examples for an image, x with class label, y is by pro-
jected gradient descent on the negative loss function [31],

x(k+1) = Πx+S(x
(k) + α(∇xL(x(k), y)) (1)

Here α is the learning rate, y is the class label, and S ⊆
Rd is the set of allowable perturbations. L refers to a loss
function applied to predictions from a classifier, H. Πx+S
is a projection onto the feasible set (an l∞ ball in this case).

2.2. Physically realizable adversarial attacks

The lp bounded adversarial attacks do not contain
changes that one would expect in the real world, making
them less important from a practical standpoint. In recent
years, the community has therefore researched more natu-
ral/physically realizable class of perturbations which occur
in natural settings such as robotics, autonomous driving, etc.
Robustness to such classes of perturbations forms the pri-
mary focus of our work – we discuss some of them below.
2D Spatial Attacks. In general, these refer to perturbations
such as 2D spatial translations and rotations. Past work [11]
has shown that standard first order techniques such as pro-
jected gradient descent [31] cannot be used to reliably find
strong adversaries in this setting owing to the loss land-
scape being highly non-convex and discontinuous. Given
the low dimensional parameter space, attacks can be crafted
by selecting the best adversary among 10 randomly sam-
pled transformations from the feasible set. However, this
simple random search strategy is not guaranteed to work
well in higher dimensional spaces such as 3D scene param-
eters owing to the curse-of-dimensionality [5]. Moreover,
these 2D transformations do not sufficiently capture the full
set of camera changes that might occur in the real world.
3D scene parameters. To match real-world conditions
more closely, a number of methods have recently been pro-
posed to craft adversarial attacks by perturbing 3D scene
parameters such as camera position [2, 44], mesh geometry
and light position [42]. However, most experimental se-
tups consider unconstrained ranges for each parameter, and
use unrealistic synthetic objects which results in largely un-
natural adversarial examples [2]. Therefore, these settings
are unsuitable for training and evaluation of robust mod-
els. In this work, we consider a simplified scenario of 3D
traffic signs whose geometry is closer to the real world in
comparison to generic object classes. Further, we constrain
the scene parameters to match natural conditions of an au-
tonomous vehicle, and employ a differentiable renderer [35]
to simulate the real world image generation process. Since

traffic sign recognition has clear practical applications in
tasks like autonomous driving, this is a well motivated set-
ting for evaluating adversarial robustness. Note that the loss
landscape with respect to 3D scene parameters is often dis-
continuous and non-convex1 – the main goal of our work
is to design an adversarial optimization framework that can
operate in such rugged landscapes to procure robust models.
Patch Attacks. As opposed to the lp setting, where pixels
of the entire image are manipulated in a visually impercep-
tible manner (i.e within lp bounds), patch attacks [6, 22,
25, 30] craft adversarial images by inpainting a rectangular
patch of texture onto an image. Note that, the patch need
not be within a predefined lp bound, thus making it per-
ceptibly different from the benign image. However, these
attacks are physically realizable, as the optimized patched
can be printed and potentially overlayed on a real 3D object
to fool a recognition system. Note that it’s relatively simple
to use gradients to search for the optimal patch content that
fools the network. However, finding the optimal patch lo-
cation is hard given that 2D pixel locations are discrete and
hence not differentiable w.r.t the loss. To alleviate this prior
work [34] has used a method to jointly optimize both the
patch content and location by employing a numerical gra-
dient on the patch location in each step of the optimization
process. However, this strategy is prone to get stuck in lo-
cal optima given that the search space is inherently discrete.
Our proposed optimization framework, on the other hand,
finds better solutions by considering global statistics of the
loss landscape to avoid falling in local optima.
Methods for optimization in discontinuous spaces. In
many scenarios, gradient information may be either unavail-
able (e.g. patch location discussed above) or simply can-
not be used to find global optima (discontinuous loss land-
scapes). Zeroth order optimization techniques are gener-
ally used to work in such settings. The simplest method
is random search which of course does not work well in
high dimensional settings. Evolutionary strategies [9, 36]
compute better optima with a significantly lower compu-
tational footprint. Among these, covariance matrix adap-
tation (CMA-ES) [17] is widely regarded as the standard
method for working in rugged, non-linear, non-convex and
discontinuous spaces [18]. Put simply, the method uses
evolutionary-search to iteratively adapt the covariance ma-
trix of a distribution defined in the space of parameters that
we desire to optimzie. We find that an instantiation of our
optimization framework that uses CMA-ES in the sampling
step yields state-of-the-art results (see Sec. 6).
Datasets. While there are well established benchmark-
ing datasets for patch attacks [25, 6], little work has been

1This is primarily due to the fact that a small change in the parame-
ter space (i.e. camera rotation/translation) leads to a large change in pixel
space. e.g. out of plane object rotations exposing some part of the back-
ground leads to a sharp change in image-pixels
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done to curate datasets for evaluating robustness w.r.t 3D
scene parameters. We note that prior work in adversar-
ial machine learning has investigated 3D datasets such as
Shapenet [42, 2], KITTI [21] and PASCAL3D+ [42]. How-
ever, these are mostly limited to evaluating attacks and do
not deal with robustness benchmarking. Therefore, in this
work, we collect a simple dataset of 3D traffic signs to cre-
ate a new benchmark for evaluating adversarial robustness
to 3D scene parameters (see Sec. 6.1).

3. Framework for optimization

Setup. Given a parameter set, p that generates an image,
Gen(p), our goal is to find a perturbation, δp that maxi-
mizes the loss function (L(Gen(p + δp))); where the loss
landscape w.r.t p can be arbitrarily discontinuous and non-
convex2. Here, yp refers to the class label, and the genera-
tion function Gen can be specific to the chosen parameter
set. For e.g. it can be a differentiable renderer if p de-
fines a set of 3D scene parameters or it could be a simple
in-painting transformation in case of a patch attack where p
would denote the patch content and patch location.
Background. Our framework is inspired by classic black
box methods which use evolutionary search for optimiza-
tion in discontinuous and non-convex spaces [9, 36, 4].
These methods work well in relatively low dimensional set-
tings, but by virtue of being gradient-free, they rely on func-
tion sampling to perform optimization – this does not scale
well with increase in dimensionality. A more general sce-
nario is when the parameter set consists of a sub-set of pa-
rameters for which gradients are reliable (e.g. patch con-
tent) and a mutually exclusive subset for which gradients
are either unavailable (e.g. patch location) or are unreli-
able given the discontinuous loss landscape (e.g. 3D scene
parameters). It is desirable to jointly optimize the full set
of parameters, and use gradient-based updates when they
are useful – standard black box gradient-free optimization
methods do not account for this generic case. Therefore, we
propose a novel optimization framework to address it.
Motivation. We begin with the observation that while gra-
dients might not suffice to find the global optima for dis-
continuous loss landscapes, the update directions do make
sense locally. Therefore, in the evolutionary search process,
we simply perform local gradient updates to sampled can-
didate solutions to accelerate convergence. We describe the
framework more formally in Alg. 1 and discuss it below.
Optimization Steps. Our framework broadly comprises of
the following. First, we define a density D in the space
of allowable perturbations (i.e. S = [−ϵ, ϵ]) to keep track
of our estimate of the loss landscape’s underlying structure.
We then iteratively update the parameters of the distribution
over the course of the optimization process. Each iteration

2notation: vectors indicated in bold

Algorithm 1: Our optimization framework (Sec. 3)

require: Parameter set p, a loss function, L(p),
range of allowable perturbations, S, niters.
objective: Find the optimal perturbation δp that
maximizes L(p+ δp)

init: Lbest = −inf , δpbest = None
/* Define a multivariate probability density, D in

the range of allowable perturbations, S */
——————————————
for iter in niters do

A: Sample
/* Sample a set of perturbations,
P ={δpi ∼ D|i = 1 : ns} */

——————————————
B: Sample updates using gradient
/* Update each δp ∈ P using gradients,
∇δpL(p+ δp) (if available) */

——————————————
C: Sample scoring
/* Assign an attack score/weight, wi to each
δpi’s using the loss, L as a scoring function.
W = {L(p+ δpi) |i = 1 : ns} */

——————————————
D: Probability density update
/* Update the parameters of the density,
D usingW and P*/

——————————————
E: Track best sample
/* Best pertubation in this iter */
δpiter

best = argmax
δpi

W

/* Best loss in this iter */
Liter
best = L(p+ δpiter

best)

/* Update overall best */
if Liter

best > Lbest then
Lbest = Liter

best

δpbest = δpiter
best

involves sampling a set of candidate solutions (Step A); fol-
lowed by a gradient based update to the subset of parameters
for which gradients are available (Step B), and a rank/score
assignment to each sample using the loss function (Step C).
These weighted samples are then used to update the param-
eters of the density with samples that have higher rank influ-
encing the update more significantly (Step D). The process
is repeated for a predefined number of steps, niter, and the
final solution is the best sample over the course of the full
optimization process (i.e. δpbest in Step E of Alg. 1).
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4. Alternating Evolutionary Sampling and De-
scent (ASD) – proposed attack method

Having setup our framework, we now ask: what is the
best optimization algorithm that we can design using this
framework? There are multiple options that we can choose
from for each step – i.e. the distribution, sampling mecha-
nism, gradient update procedure, etc. However, we propose
a specific instantiation called ASD, which combines evo-
lutionary search with PGD and is tuned to operate in the
discontinuous space of adversarial perturbations. The un-
derlying reasons for our design choices and the algorithm
specifics are outlined below.

In the literature, we find covaraince matrix adaptation
(i.e. CMA-ES) to be a strong algorithm that achieves good
performance in discontinuous and non-convex loss land-
scapes. Studies have shown its dominant performance over
other methods on multiple evaluation benchmarks [18].
Therefore, we use a similar strategy as CMA for defining
the probability density (Step A) and updating it’s param-
eters (Step C, D) in Alg. 1. For Step B, since we are
concerned specifically with adversarial robustness settings,
we employ projected gradient descent (or PGD) which is
the gold standard technique for gradient-based adversarial
training. We describe these steps more concretely below. 3

Let p be the initial parameter set which we want to per-
turb with an optimal δp to maximizeL(p+δp). We first de-
fine a multivariate normal density i.e. D = N (µ(0),Σ(0)).
Here, µ is a vector defining the mean of the density and Σ
is the covariance matrix which we initialize to be identity
before starting the optimization. Next, using this density
we sample a set of candidate solutions (i = 1 : ns) for a
generation g (i.e Step A in Alg. 1),

δpi
(g) ∼ N (µ(g−1),C(g−1)) (2)

Next, we improve these samples using gradients from the
network (i.e only updating parameters that we can differen-
tiated with respect to the loss function). This constitutes
Step B in Alg. 1. In practice we repeat the following step
for a set of npgd steps, using a learning rate αpgd as a gradi-
ent multiplier,

δpi
(g) ←

∏
S
(δpi

(g) + αpgd · ∇δpL(Gen(p+ δpi
(g))))

(3)
We then assign a score, wi to each updated sample using

the loss as the scoring function. We use a variant of CMA
where only the top k samples in each generation are retained

3Note that, the outline above is a simplified version of the full CMA-
ES algorithm [17], which involves additional mechanisms for updating the
learning rate αcma on the fly, and other tricks for selecting the optimal
sub-sample of a population for the parameter updates. For a complete
description of the algorithm we refer the reader to [17].

for updation of the density’s parameters – in the eqn. below,
χ denotes the k’th highest loss inW (Step C).

wi =

{
L(p+ δp

(g)
i ) L(p+ δpi

(g)) >= χ

0 otherwise

Finally, the density parameters, which in this case are the
mean and covariance are updated using the following equa-
tions (Step D). Note that we normalize the sample scores
before updating the parameters viz. ŵi = wi/(

∑ns

i=1 wi).

Σ(g) =

ns∑
i=1

ŵi(δpi
(g) − µ(g−1))(δpi

(g) − µ(g−1))T

µ(g) = µ(g−1) + αcma ·
ns∑
i=1

wi(δpi
(g) − µ(g−1))

(4)

To train robust models we optimize for strong adversarial
examples using this framework, and use them for adversar-
ial training.

5. Attack method variants
We describe different threat models constructed using

the framework defined in Alg. 1 below.
RS (Random Search) + PGD: In case of 2D pixel per-
turbation based attacks, this method has shown impressive
results [31]. Therefore, to investigate whether it can be ex-
tended to more complex scenarios, we consider a variant
where we use PGD in Step B. But, as opposed to the pixel
perturbation setting, we find the best solution over many
random starts to account for the discontinuous loss land-
scape – i.e D = U(−ϵ,+ϵ) is a uniform, immutable dis-
tribution in the range of allowable perturbations. Also, we
set niter = 1, and do a multi-step PGD update (i.e. for
npgd steps) according to Eqn. 3 in Step B. Performance of
RS+PGD in comparison to ASD will tell us whether the evo-
lutionary search mechanism and density updates are helpful
in finding better adversaries.
Random search (RS): This is our simplest baseline where
we discard both the gradient based sample update and the
improvement to the probability density. Similar to the previ-
ous setting we consider D to be uniform and use niter = 1.
We simply omit step B (i.e. npgd = 0).
CMA: This is essentially a variant of ASD where gradient
based updates to the sampled perturbations are omitted, re-
ducing the framework to the original CMA-ES algorithm
defined in [17]. Relative performance to this baseline will
tell us whether the additional gradient update that we pro-
pose is adding any benefit.
Grid search (GS): Without sufficient samples, random
search does not ensure good coverage all regions of the
search-space. Therefore, we also consider a grid-search
variant where we use a uniformly placed grid of values in
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Figure 2: Left: An illustration of 3D scene parameters viz. camera and light. The classifier takes in as input a rendered image
of the 3D traffic sign captured by a camera at an initial distance dc from the traffic sign. Additionally, the scene is illuminated
by a directional light source. The relative rotations of the camera and light can be uniquely described using a combination of
three angles: azimuth (θ), elevation (ϕ) and tilt/in-plane rotation (ψ). Right: Rendered images.

the feasible set (i.e. [−ϵ,+ϵ]) which guarantees coverage
of all regions of the search-space.
GS + PGD: To further improve search-space coverage over
GS, in this variant, we update each grid sample with gradi-
ents (i.e. using Eqn. 3 in Step B).

6. Experiments

In this section, we define the various settings we use for
evaluating, followed by a description of the results.

6.1. Evaluation settings and metrics

To recap: the main goal of our work is to train models
robust to naturalistic perturbations. Here, we describe two
such settings and the metrics we use to evaluate robustness.
3D scene parameters. We use a traffic sign 3D mesh model
pack (56 different traffic signs from an open source web-
site4) to create 3D scenes consisting of a single traffic sign
per scene. See Fig. 2a for a view of the setup. We use
Blender [10] – a 3D modeling software to simulate various
scene changes such as lighting effects (both color and di-
rection), camera viewpoint, traffic sign material, etc. (See
Fig. 2b). Our dataset is formally defined as,

X = {Render(pj , t) : pj ∼ P, t ∈ T , 1 ≤ j ≤ N} (5)

Here, pj refers to 3D scene parameter that is randomly
sampled from a range of values (P) defined for the dataset,
and T is the set of all traffic signs. We use pytorch3D [35]
to render the traffic signs and Blender to set up the scene.
Patch attacks. This setting involves crafting adversarial
images by inpainting a patch of texture onto an image (See
Sec. 2 for some background). Note that the content of the
patch is differentiable with respect to the loss, however, the
patch location isn’t. This introduces discreteness in the
loss landscape that makes it hard to use purely gradient

4turbosquid.com

based search for joint optimization of patch content loca-
tion [34]. However, as discussed above, our framework is
well equipped to work in such settings.

Following standard practice for patch attacks [34, 29, 7],
we use CIFAR-10 as the training and evaluation dataset.
Metrics. We use the robust test accuracy (RTA) metric for
evaluation, which measures the accuracy on test-set adver-
sarial samples generated using a given attack method (e.g.
ASD, CMA, Grid Search, etc.)

6.2. Robustness to 3D scene parameter changes

Scenarios. We consider two scenarios for training and eval-
uation – a) |p| = 7, a low dimensional setting where the
parameter set comprises of camera pose and light position,
and b) |p| = 17, a high dimensional setting consisting of
light color (ambient, specular and diffuse components – see
phong reflection model [32]) and traffic sign material (shini-
ness) in addition to the parameters chosen in a). Addition-
ally, we constrain the camera angles to match real world
conditions and simulate the illumination of the sun by using
a simple directional light source with the Hue component of
the color (parameterized in HSV color space [37]) tuned to
be in the yellow-green spectrum – more details and illustra-
tions in supplementary.
Data creation. For both scenarios a.) and b.) described
above, we render a dataset of 200 images per traffic sign us-
ing PyTorch3D, and set aside one scene configuration per
traffic sign for creating the test set. The remaining data
is split into a train set (90%), and a validation set (10%).
Please refer to the supp. for the set of allowed scene config-
urations for each setting.
Network architecture and training details. The architec-
ture of the classifier H, comprises of the first 6 layers of
VGG16 [39], followed by a 3x3 convolution and two fully
connected layers of dimensions 256 and 128 with ReLU ac-
tivations. We train with an Adam optimizer using a learn-
ing rate 1e− 3 and batch size 128, and set the perturbation
strength, ϵ to 20% of the total range for each parameter. For
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RS [11] RS+PGD CMA ASD GS GS+PGD

|p| Attack Method RTA ↓
7 0.60 0.51 0.53 0.46 0.35 0.27

17 0.38 0.23 0.32 0.20 - -

Hyperparameters

#fevals 225 16.3k 15.3k
ns 225 45 9 7 47 37

npgd 0 4 0 3 0 6
niter 1 1 25 8 1 1

(a) RTA of various attacks on an undefended model.

RTA ↑

Model |p| = 7 |p| = 17

#fevals GS + PGD #fevals ASD RS + PGD
TRADES [43] 0.28 0.21 0.25

LL [33] 0.30 0.22 0.26
RS [11]

15.3k

0.73

50k

0.31 0.52
Data aug. 0.45 0.20 0.35

CMA 0.89 0.38 0.64
RS+PGD 0.80 0.55 0.73

ASD 0.89 0.63 0.73

(b) Adversarial training using different attack models.

Table 1: Results on the 3D scene parameter setting. Left: @ 225 #fevals our proposed method, ASD is the best performing
threat model on both low (|p| = 7) and high dim. (|p| = 7) settings. Here, we also evaluate GS+PGD @ 15.3k fevals to
compute the upper bound on attack efficacy. Note that while GS+PGD serves as a good evaluation strategy during testing, the
high #feval count makes it infeasible during training. Right: Adversarial training using ASD outperforms other methods.

the variants which use gradients as part of the optimization
procedure, we set αpgd = ϵ/npgd (See Eqn. 3). Note that
we use pytorch3D’s differentiable renderer to compute the
gradient of the loss w.r.t 3D scene parameters.
Evaluating various attacks on an undefended model. To
validate whether our proposed threat model (i.e. ASD) is
stronger than other baselines we first evaluate attack effi-
cacy on an undefended model (i.e. a model that hasn’t been
hardened with adversarial training).

On the low dim. (i.e. |p| = 7) we find GS+PGD to be
stronger than GS for a similar number of function evalua-
tions (#fevals). This clearly suggests that gradients are
locally meaningful in parts of the search space. 5

While GS+PGD is our strongest test time attack, it is too
expensive to use in training. Therefore, we find the best
attack method at a more feasible #fevals count for adv.
training, by comparing different attack methods (Sec. 3)
with a budget of 225 #fevals (results in Table. 1a).

Our proposed attack method (i.e ASD) outperforms the
other attacks on both the |p| = 7 and |p| = 17 scenarios.
Additionally, we find that pure CMA performs marginally
worse than RS+PGD suggesting that gradients might be
useful in this setting. Nevertheless, the evolutionary sam-
pling process does add value given that CMA performs bet-
ter that simple random search (RS).

We also find the undefended model to be more vulner-
able to attack in the high dim. setting (even though it has
high benign test-set accuracy 95%). For e.g., given the
same number of #fevals, ASD has a much higher threat
efficacy on the high dim. setting (0.20 RTA vs 0.46 RTA)
– this is to be expected since the added degrees of freedom
make it easier for an attack method to find adversaries.

Please refer to the supplementary for comparisons to
some alternative black box optimization methods.

5Note: grid-search is infeasible in the high dim. (i.e. |p| = 17) setting,
so we omit those results here

Adversarial Training. Having established ASD as the best
attack, we aim to analyze it’s effectiveness in procuring ro-
bust models (via adversarial training), by comparing it to
other variants we evaluated in Table. 1a.

We initialize with a model trained on our traffic sign
dataset (benign test accuracy of 95%), and train till con-
vergence with adversaries generated using a particular at-
tack method (e.g. ASD/CMA, etc.). For each attack, we
use the hyperparameters considered for evaluating RTA in
Table. 1a. As standard practice, we verify that benign test
accuracy is unaffected (93%) at convergence.

Additionally, we also include a data augmentation (Data
aug.) baseline where instead of adversarial images we sim-
ply train with images rendered on-the-fly using scene pa-
rameters randomly sampled within the dataset’s limits –
akin to having infinite data in the real world. Performance
on this baseline will help us know whether robustness can
be achieved just by training on a large amount of data.

On the low dim. setting, we find that both CMA and
ASD perform on par (0.89 RTA) and better than the rest of
the models – even though we found ASD to be a stronger
threat model (Table. 1a). The second best model here is
RS+PGD (0.80 RTA) which performs better than simple
random search (0.73 RTA). Note that, we use GS+PGD as
our attack model during test time.

However, on the high dim. setting (i.e. |p| = 17) ASD
gets an RTA of 0.63, outperforming CMA (RTA 0.38) – sug-
gesting that a purely evolutionary sampling based attack
does not function as well in high dim. settings due to ex-
ponential increase in search volume [5]. Interestingly, even
RS+PGD (RTA 0.55), which doesn’t do any evolutionary
sampling outperforms CMA suggesting the benefit of us-
ing gradients. Nevertheless, we do find in both settings that
CMA outperforms random search (RS) – which speaks to
the benefit of evolutionary-search on this setting. 6

6Here we use ASD as a test-time attack, given 17 dim. GS is infeasible
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LO [34] CMA RS+PGD ASD

RTA ↓ 0.38 0.52 0.28 0.22

Hyperparameters

#fevals 50
ns 5 8 5 7
npgd 1 0 10 10
niter 10 6 1 3

(a) RTA on an undefended model.

Model ASD RTA ↑
LO [34] 0.30
CMA 0.05
PGD 0.56
ASD 0.60

(b) Adversarial train-
ing.

Table 2: Patch attack results on CIFAR-10. Attack methods
here jointly optimize both patch content and patch location.
ASD achieves SOTA attack efficacy (Left) and is the best
optimization method for robust training (Right).

Also, it is interesting to note that simple Data aug. is
quite vulnerable to attack and has a very poor RTA of 0.45
which further deteriorates in the high dim. setting (RTA
0.20). This suggest that simply training on more data sam-
ples does not lead to robustness – even if one were to hypo-
thetically collect infinite amount of data to train a classifi-
cation system, it would still be seriously vulnerable.

We also evaluate against TRADES [43] – a robust train-
ing method that is marginally better than PGD, and Local
Linearization [33] – a gradient free defense method. As
these methods are not guaranteed to work in discontinuous
loss landscapes, ASD significantly outperforms them.

6.3. Robustness to patch attacks

To demonstrate ASD’s potential general utility in other
discontinuous search settings beyond the 3D scene param-
eter framework presented above, we consider evaluation on
a second setting – patch attacks.
Attack method specifics. We compare ASD against
RS+PGD, CMA and location optimized patches (LO) – a
prior method that jointly optimizes patch content and loca-
tion [34]. For ASD, we only search for the patch location
using CMA, and use PGD for patch content optimization.
Concretely, for a given population of size ns, containing
patch locations, {(xi, yi), i = 1 : ns}, we first optimize for
the patch content, C ∈ RH2

by fixing the patch at (x0, y0).
We use the loss at the end of the patch content optimiza-
tion as the sample score for (x0, y0). Further, to compute
the scores for the other locations, we simply move the opti-
mized patch, C, to the other locations specified in the pop-
ulation. In this manner, the total number of function evalu-
ations can be computed as (npgd + ns − 1) × niter7. For
CMA we optimize both the patch location ∈ R2, and con-
tent ∈ RH2

together using a H2 + 2 dim. space for the
evolutionary search process.
ASD is a SOTA patch attack model. We first evalu-
ate ASD’s effectiveness in attacking an undefended classi-
fier trained on CIFAR-10. We find that ASD (RTA 0.22)

7(6 + 10− 1)× 3 = 48 #fevals in Table. 2a, ASD column

has superior performance in comparison to other methods
(Table. 2a), with RS+PGD performing second best (RTA
0.28). Here, CMA performs significantly worse, given that
it doesn’t leverage useful gradient information to optimize
for patch content. On the other hand, LO (RTA 0.38) per-
forms better than CMA but not as good as RS+PGD.8. Note
that, we use a patch size of 4x4 since an 8x8 patch can triv-
ially attack an undefended model with an RTA of∼0.0 [34].
Adversarial training and architecture details. Follow-
ing a similar experimental procedure for adversarial train-
ing as LO, we train on the 50k training images of CIFAR-
10, and evaluate on a held out test set of 1k images. We use
a ResNet-20 [20] architecture, and train with the Adam [24]
optimizer using a learning rate of 1e − 4. To maintain per-
formance on clean samples, we construct mini batches with
50% benign images and 50% adversarial images. For all
attack models we cap the #fevals budget at 25, and use a
patch size of 8 × 8. Additionally, for those methods which
use gradients, we train with npgd = 5, and αpgd = 0.1.
ASD yields the most robust defense to patch attacks.
We perform adversarial patch training using different attack
methods (Table. 2b) and compute RTA using our most pow-
erful attack, i.e ASD, that uses a population size of ns = 14,
generation length niter = 13, and a strong multi-step PGD
with npgd = 100 and αpgd = 0.05.

ASD outperforms all other methods, achieving SOTA per-
formance. Interestingly, we discover that adversarial patch
training using CMA performs very poorly (0.05 RTA) and
cannot reliably find strong adversaries to harden the model.
This suggests that using gradient information while opti-
mizing for patch content is critical. However, as our method
leverages both gradient information and evolutionary sam-
pling, it proves to be the most effective.

7. Conclusion
In this work, we introduced a novel attack method (ASD)

that combines evolutionary sampling with first order meth-
ods for effective optimization in discontinuous and non-
convex loss landscapes. To demonstrate its power, we suc-
cessfully used ASD in adversarial training pipelines to pro-
cure models that are robust to physically realizable attacks
such as adversarial patches and 3D scene parameter pertur-
bations. Further, we introduced a new benchmark to test
robustness to 3D scene parameter changes which we be-
lieve will help advance future research in this direction. An-
other exciting avenue is the study of the applications of this
optimization framework in problems involving parameter
search in discrete loss landscapes – such as neural archi-
tecture search, meta learning hyperparameters, etc.

8Note that PGD with random starts being superior to LO (for the same
#fevals) was also the finding reported in the author’s paper [34]. We use
the code provided by the authors for the evaluation in our paper (Table. 2),
and our results reconfirm this finding.
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