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Abstract

Multi-label image classification is more applicable “in
the wild” than single-label classification, as natural images
usually contain multiple objects. However, exhaustively
annotating images with every object of interest is costly
and time-consuming. We train multi-label classifiers from
datasets where each image is annotated with a single pos-
itive label only. As the presence of all other classes is un-
known, we propose an Expected Negative loss that builds a
set of expected negative labels in addition to the annotated
positives. This set is determined based on prediction con-
sistency, by averaging predictions over consecutive train-
ing epochs to build robust targets. Moreover, the ‘crop’
data augmentation leads to additional label noise by crop-
ping out the single annotated object. Our novel spatial
consistency loss improves supervision and ensures consis-
tency of the spatial feature maps by maintaining per-class
running-average heatmaps for each training image. We
use MS-COCO, Pascal VOC, NUS-WIDE and CUB-Birds
datasets to demonstrate the gains of the Expected Nega-
tive loss in combination with consistency and spatial con-
sistency losses. We also demonstrate improved multi-label
classification mAP on ImageNet-1K using the ReaL multi-
label validation set.

1. Introduction

In the last decade, computer vision has seen great
progress thanks to the emergence of large-scale data-driven
machine learning. With enough annotated data, machine
perception has reached or exceeded human accuracy in
many difficult tasks, in particular single-label image clas-
sification [43]. Yet obtaining large amounts of annotated
data remains a challenge, especially in more granular object
recognition tasks such as multi-label classification, object
detection or instance segmentation. Exhaustively annotat-
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Figure 1. We train a multi-label classifier from a dataset of single-
label images. In this example, only zebra is annotated. We use
exponential moving averages to build label estimates, leading to
our expected-negative binary cross-entropy loss. In addition, we
introduce a spatial consistency loss label to tackle label noise in-
troduced by the data-augmentation: the zebra is cropped out due to
random data-augmentation, and the single label no longer matches
the image. The loss ensures spatial consistency between (i) the net-
work’s output classification maps (ii) exponential moving averages
(EMAs) of these output maps over successive training epochs.

ing all objects in images on a large scale is time-consuming,
and error-prone. To reduce the annotation cost, some large-
scale datasets such as OpenImages [28] only annotate a sub-
set of the object classes for each image in the dataset. In this
case, the annotation process yields a set of positive labels
guaranteed to be in the image, a set of negative labels guar-
anteed to be absent from the image, and a set of unknown
labels for which no information is provided.

A more extreme setting, which reduces the annotation ef-
fort substantially, is the annotation of a single positive label
per image, with no negative labels. This type of annotation
is sensible for a single-label classification task, where the
single annotation is intended to represent the main object
of interest. Yet, it is clear that most natural images con-
tain more than one object. For example, it has been shown
that the ImageNet dataset for image classification [10] con-
tains images with multiple objects of the annotated cate-
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gories [58], with an average of 1.22 positive labels per im-
age. The usage of a “one-versus-all” cross-entropy loss
in combination with this specific type of label noise can
hurt the performance of the classifier. Regularization, either
implicitly through e.g. stochastic optimization or explicitly
through the use of label smoothing techniques [47, 52], can
improve the accuracy and might help the classifier to learn
a useful mapping in spite of the inherent label noise.

Other work acknowledges that the images of single-label
datasets such as ImageNet can contain more than one ob-
ject in practice [41, 2, 58]. In such setting, a single-labeled
dataset can be thought of as a weakly-labeled multi-label
classification dataset, with a single positive annotation per
image. A common strategy is to consider all unannotated
labels as negatives [9] in combination with a binary cross-
entropy loss, introducing label noise and incorrect supervi-
sion by treating the unannotated positive labels as negatives.

Our method builds a set of expected positive and ex-
pected negative labels, using robust label scores that are es-
timated by tracking exponential moving averages (EMAs)
of the network outputs over training epochs. This way to get
robust estimates is similar to ensembling methods [29]. The
expected positives are then selected as the highest-scoring
labels. Whilst akin to pseudo-labeling [30], we show that
ignoring the expected positives in the binary-cross entropy
loss is essential to achieve good results.

The score estimates naturally lead to the application of a
consistency loss (CL), popular in weakly-supervised learn-
ing with unannotated data [29, 44, 45, 24], which further
increases the supervision for unannotated labels. However,
we observe that the single positive annotated label might
also be a source of label noise when training classifiers in
conjunction with image crops as a data-augmentation tech-
nique. Cropping an image risks removing the object cor-
responding to the ground truth annotation, misguiding the
optimization as illustrated in figure 1.

Thus, we extend the consistency loss in the spatial do-
main, introducing a spatial consistency loss (SCL). By tak-
ing EMAs of the spatial outputs of the network over con-
secutive training epochs, we obtain spatial heatmaps which
localize objects in the image, beyond the single ground truth
label. The SCL uses these spatial running averages as addi-
tional source of self-supervision which further improves the
accuracy of the network.

The contributions of this work are as follows:

• Our expected negative (EN) scheme trains multi-label
classifiers from single positive label annotations, by
building a set of expected unannotated positives and ex-
pected negatives. Expected positives are Expected unan-
notated positives are ignored in the binary cross-entropy
loss, which is essential for good performance;

• We introduce a spatial consistency loss (SCL) that ex-
tends CL in the spatial domain, improving the multi-label

accuracy and acting in synergy with the ubiquitous “re-
size+crop” data augmentation;

• We measure the gains stemming from our contributions
on MS-COCO, Pascal VOC, NUS-WIDE and CUB-Birds
in the single positive setting, as well as on ImageNet-1K
evaluated using multi-label annotations.

2. Related work
Partial annotations. Collecting exhaustive multi-label
classification annotations on a large number of classes and
images can be intractable, which is why many large-scale
datasets resort to partial annotations [34]. For instance,
for each image in OpenImages [28] and LVIS [17], only
a small fraction of the labels are annotated. Collecting a
larger amount of partially labeled data can sometimes lead
to better performance than a smaller set of fully-annotated
data [13]. Partial labels can also occur naturally when train-
ing a model on the combination of several datasets with dis-
joint label spaces [56, 60].

Multi-label learning with missing labels can be framed
as a transductive learning problem, where one aims to ex-
plicitly recover complete annotations that are consistent
with the partial annotations provided [54]. Graph neural
networks [53, 7, 13, 50, 35, 22, 31] or adversarial train-
ing [57] can be used to predict the missing labels from
the annotated ones. Label co-occurrence analysis could be
used to estimate the confidence of labels [3, 23]. A simple
way to handle missing labels is to consider them as nega-
tives [46, 4]. However, this deteriorates performance due
to label noise. [25] shows that high-capacity models might
memorize the noisy labels. Ignoring unannotated classes in
the loss function can alleviate this issue [13], but this is in-
applicable when the annotations only contain positives [9].

Training with a single positive label can be considered
as a combination of single-label learning [39, 12, 21] and
positive-unlabeled learning [11, 1]. Cole et al. [9] compare
several baselines and propose a regularized online label es-
timation (ROLE) method that estimates the missing labels
during training, by jointly optimizing a label estimator and
image classifier. The output of one serves as ground-truth
for the other, with the intuition that both are more likely to
converge to the same solution. Other approaches reweight
samples based on their loss values [59, 42]. Large Loss
Matters [25] marks elements with large loss values as mis-
labeled and ignores or reweights those.

Semi-supervised learning. Semi-supervised learning
uses a set of unlabeled data samples in addition to the
fully-labeled samples, and is a special case of partial
annotation [16]. One way to incorporate unlabeled samples
in the training process is by encouraging consistency of
predictions on these samples over different epochs or
augmentations [44, 24]. Ladder networks [40] encourage
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consistency between a standard branch and the denoised
predictions of a corrupted branch. [29] proposes the
Π-model, enforcing consistency between two perturbed
versions of the same sample. In addition, they propose self-
ensembling to build a consensus prediction by averaging
outputs among different training epochs. Our consistency
losses in sections 3.4 and 3.5 applies similar ideas directly
on the training set, rather than on a held-out dataset of
unlabeled images.

Other methods use pseudo-labeling to leverage unanno-
tated images. [30] uses the highest-scoring class as the true
label for unlabeled data. FixMatch combines pseudo-labels
and consistency regularization [45]. However, pseudo-
labels are prone to concept drift and confirmation bias,
where early mislabeled samples lead to accumulating er-
rors. Curriculum labeling [5] mitigates this using a refined
training strategy. Noisy student [55] demonstrated state-of-
the-art results on ImageNet [27] using self-training and dis-
tillation on a large set of unlabeled images, by iterative re-
labeling data and using increasingly larger student models.
By contrast, we choose to ignore the labels that we identify
as possible positives (section 3.3) rather than incorporating
them in the positive annotations, avoiding concept drift.

Data augmentation and instance discrimination. Our
CL and SCL losses enforce consistency of the network
across subsequent training epochs, which favors invariance
of the network outputs to the data augmentation. This
can be connected to recent trends of self-supervised learn-
ing for instance discrimination, ensuring that the embed-
dings of data-augmented versions of an instance are closer
in embedding space than the embeddings of different in-
stances [48, 36, 18, 20, 6]. In the fully annotated multi-
label image classification setting, [15] encourages consis-
tency of the spatial activations of the network among two
data augmentations of an image, akin to a spatial extension
of the Π-model [29]. In the semi-supervised single-label
setting, our SCL of section 3.5 uses a similar idea of en-
couraging consistency of the spatial class outputs, but uses
a temporal ensemble over the different training epochs to
do so, rather than directly comparing the outputs of data-
augmented copies during a single training iteration.

3. Method
3.1. Problem statement

We state the problem of multi-label classification with
partially annotated labels similarly to [9]. Our goal is to
learn a mapping from an image xn to the indicator vector
yn ∈ {0, 1}L of the classes contained in the image, L be-
ing the number of classes. We use a dataset (xn, zn)

N
n=1,

where each input image xn has a partial annotation zn ∈
{0, 1, ∅}L. The positive labels encoded by 1 are contained

in the image; the negative labels 0 are absent from the im-
age; missing labels encoded by ∅ can be either present or
absent. In the single positive setting, there is a single posi-
tive label i for each image such that zni = 1; all other labels
j ̸= i are supposed unknown (znj = ∅).

Given an image xn, a neural network classifier predicts
L label probabilities fn ∈ [0, 1]L. At training time, the net-
work parameters are optimized to minimize the empirical
risk on the training set, measured with a loss function L.
A common multi-label classification loss is the binary cross
entropy (BCE) loss

LBCE(fn) = − 1

L

L∑
i=1

[zni = 1] log(fni) +

[zni = 0] log(1− fni) (1)

with [·] ∈ {0, 1} the Iverson bracket equal to 1 iff. the con-
dition holds. With incomplete annotations, missing labels
(where zni=∅) are ignored in eq. (1) and thus not penal-
ized. Although natural, this modeling is not suited for train-
ing with only positive annotated labels, such as the single
positive setting that we consider. In such a setting, nothing
prevents the network from predicting all L classes regard-
less of the input, as there is no penalty for false positives.

3.2. Assume-negative loss (AN)

One simple strategy to handle single-positive labels is to
assume that all unknown labels are negatives. This leads to
the assume-negative (AN) loss function [9]

LAN(fn) = − 1

L

L∑
i=1

[zni = 1] log(fni) +

[zni ∈ {0, ∅}] log(1− fni) . (2)

In this case, unobserved labels (where zni = ∅) are con-
sidered as negatives. This is justifiable since the number
of objects present in an image is typically small, leading
to only a few false negatives in the supervision, weighed
against many true negatives supervised correctly. However,
the false negatives of the AN loss can have a large impact
on the accuracy. Our interpretation is that the network is pe-
nalized strongly by the binary cross-entropy loss when pre-
dicting high scores for missing positive labels. Therefore,
the missing positive labels in AN lead to a large incorrect
supervision that can dominate the contribution to the loss
from the true negatives.

3.3. Expected-negative loss (EN)

We design a strategy to ignore the large incorrect con-
tributions of noisy labels in the Assume Negative loss, by
tracking a set of samples that we expect to be negatives for
each class. To this effect, we build robust score estimates for
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each unannotated label, and consider high-scoring labels as
expected positives and other labels as expected negatives.
We use a hyperparameter K which sets the number of ex-
pected positive labels per image. For a training set of size
N , the expected number of ground truth positives with class
i is given by

pi = KN ·
∑N

n=1 [zni = 1]

N
= K

N∑
n=1

[zni = 1] , (3)

assuming that the class distribution of annotated labels∑N
n=1 [zni = 1]/N is similar to the unknown true distribu-

tion
∑N

n=1 yni/N .
The score estimates, which are used to determine the

pi most likely unannotated positive labels, are obtained by
keeping running-average estimates per label, similarly to
consistency losses [29, 44, 45, 24]. Over consecutive train-
ing epochs, the network sees different data-augmented ver-
sions of an image; keeping running averages of the model
outputs on these different augmentations leads to more ro-
bust label estimates. At training epoch t, the estimated
scores stn are updated with the network outputs f tn as an
EMA

stn = µ st−1
n + (1− µ)f tn (4)

with µ the momentum. The scores s0n are initialized to 1 for
the positive label, i.e. s0ni = 1 if zni = 1, and 0 otherwise.

At the beginning of each epoch t, we identify the top-pi
instances for each class i among the running-average score
estimates (stni)n=1...N as likely to correspond to positive
ground-truth labels. We set ẑtni ∈ {0, 1}, where 1 is an in-
dicator for expected positive labels and 0 for expected neg-
ative labels. In the first training epoch, we initialize ẑ0ni = 1
if zni = 1 and 0 otherwise.

We show in Sec. 4.2 that simply considering expected
positives as positives leads to unsatisfactory results, possi-
bly due to label drift of those pseudo-labels, where early
mislabeled samples lead to accumulating errors [5]. Our
expected negative (EN) only applies a binary-cross entropy
loss on annotated positives and the set of expected nega-
tives, ignoring the expected positive labels in the loss. This
leads to the following loss function:

LEN(fn) = − 1

L

L∑
i=1

[zni=1] log(fni)+[ẑtni=0] log(1−fni) .

(5)
Contrary to the AN loss, LEN does not assume all unanno-
tated labels to be negatives, but only the ones that are not
part of the expected positive samples.

3.4. Consistency loss (CL)

As the Expected Negative loss builds robust targets for
unannotated samples, we experiment with using these tar-
gets as additional supervision. This leads to a consistency

loss, which is commonly used in semi-supervised methods
with unannotated samples [29, 44, 45, 24].

The consistency loss (CL) is given by the ℓ1-distance be-
tween the predicted stn and the running averages f tn:

LCL(f
t
n) = ∥f tn − st−1

n ∥1 . (6)

3.5. Spatial consistency loss (SCL)

Even though the running averages stn provide robust la-
bel scores, they lead to an additional source of label noise
when training multi-label classifiers, as objects might be
cropped out the frame when using the prevalent ‘crop’
augmentation during training. For this reason, we extend
the running averages in the spatial dimension, using score
heatmaps to track the average scores per spatial position of
the image. This spatial consistency loss (SCL) ensures con-
sistency over multiple predictions, even when the image is
being cropped randomly.

We consider a typical classifier network architecture with
a convolutional backbone, an average pooling operation
over the features and a fully connected classification layer.
To obtain spatially localized class-specific predictions, we
modify the network architecture by (i) interpreting the fully
connected layer as a 1×1 convolution, and (ii) applying it
before the pooling operation rather than after.

Assuming square input images for the sake of exposi-
tion, this modification produces spatial score maps Fn ∈
[0, 1]G×G×L, with G×G the spatial dimensions of the fea-
ture map. Applying the fully-connected layer to every spa-
tial location of the feature map increases the computations
at training time. However, due to the distributive property,
the order of the average pooling and the 1×1 convolution
layers can be reversed without affecting the network out-
puts, as explained in appendix J. Consequently, our modifi-
cation causes no computational penalty during inference.

For each image n, we keep score heatmaps Ht
n ∈

[0, 1]W×W×L which contain running averages of the out-
put score maps Ft

n at epoch t. The heatmap size W is a
multiple of G, allowing to store details in the heatmaps at
a finer resolution than the score maps; in practice, we use
W = 2G. When feeding the input xn to the network, we
record the spatial transformation T t

n used in the data aug-
mentation, such as cropping and flipping. Given this trans-
formation, only the visible part of the heatmaps Ht

n is up-
dated with an EMA: the score maps Ft

n are resized with
bilinear interpolation to fit the cropped region, and flipped
if needed. Heatmap regions that are cropped out of the input
are not updated. Similar to the CL method, the heatmaps are
initialized to 1 for the annotated ground truth and 0 for the
other classes.

The spatial consistency loss (SCL) is the ℓ1-distance be-
tween the score heatmap and the network output. The in-
put augmentation transformation T t

n is first applied on the
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running-average heatmap. The result is then rescaled to
match the dimensions of Ft

n. The SCL is given by

LSCL(F
t
n) = ∥Ft

n − resize(T t
n(H

t−1
n ))∥1 . (7)

In our experiments, we use the EN loss in combination
with the CL or SCL, with a weighting parameter γ:

L = LEN + γL(S)CL . (8)

4. Experiments
4.1. Results and comparison

Dataset, setup and metrics. We use MS-COCO
2014 [33] , Pascal VOC 2012 [14], NUS-WIDE [8] and
Caltech-UCSD Birds-200-2011 (CUB) [49] as benchmarks
for multi-label classification. In order to test our con-
tributions, we use the code shared by [9] to simulate a
single-positive annotated setting, and reproduce their train,
validation and test samples. The validation and test splits
are fully annotated, and the training samples have a single
label by randomly picking a single ground-truth positive
label per image. Details are in appendix K.

We report the mean average precision (mAP) on the test
split, using the epoch corresponding to the best validation
mAP. The ResNet-50 [19] model from torchvision [38] is
trained at a resolution of 448×448, as in [9]. We use ran-
dom crop augmentations (area scale 0.25 to 1) and random
horizontal flip; details and ablation on the scale are provided
in appendix A. We use the Adam optimizer [26] and batch
size of 8. With ImageNet-1k pretraining [43], the final lin-
ear layer is trained for 5 epochs with learning rate 10−3,
followed by 25 epochs of finetuning of the whole network
with a learning rate of 10−5 and cosine annealing. When
trained from scratch, the model is trained for 100 epochs
with learning rate 10−4 and cosine annealing.

We compare with related work ROLE [9] and Large
Loss Matters (LL) [25]. Additionally, we retrain the fol-
lowing baselines with our training setup: Assume Nega-
tive (AN), AN with label smoothing (LS) where the optimal
label smoothing parameter selected among {0.1, 0.2}, and
Weak Assume Negative (WAN) [9] which down-weights
negatives in the loss. We use the codebase shared by [9] to
report the performance of ROLE with our setup. Compari-
son with [59] is in appendix B as it uses a different data split,
which also includes partial labeling experiments where 40%
or 75% of the positives are labeled instead of only a single
positive.

SCL/CL implementation details. Given 448×448 in-
puts, the network outputs 14×14 score maps. Score
heatmaps are stored with size 28×28 in 8-bit unsigned in-
teger format. After linear pretraining, we use CL and SCL
in combination with EN according to eq. (8). The EMA

momentum is set to µ=0.8. Loss weight γ is searched in
{0.1, 1}, and we test the best model based on validation re-
sults. No other experiment-specific hyperparameter search-
ing is done, in contrast to related work [9, 25]. We set
the expected number of positives K based on validation set
annotations (see appendix K): 2.9 for MS-COCO, 1.5 for
VOC, 1.9 for NUS-WIDE and 31.5 for CUB.

Results. Table 1 compares our method to other baselines
and related work [9, 25]. The results show that the Ex-
pected Negative (EN) loss outperforms assume-negative
(AN), by avoiding penalization of unannotated positive la-
bels. As EN uses the EMA scores to determine ignored
labels, it is simple to combine with a consistency loss (CL).
The SCL further improves the results thanks to localized
self-supervision, significantly outperforming related work
Large Loss Matters [25] on all datasets except VOC, and
ROLE [9] on all datasets except NUS-WIDE (although
scoring lower when reproduced with our setup).

4.2. Analysis and ablation

Ablation experiments are performed on MS-COCO with
ImageNet pretraining, with the same setup as in section 4.1;
we report the best results on the validation split.

Spatial heatmaps. Some qualitative examples of spatial
heatmaps are with in fig. 2. We show heatmaps for the pos-
itive annotated class, as well as selected heatmaps for unan-
notated classes. The heatmaps exhibit localization of many
objects in the image absent from the single-label ground
truth. Figure 3 shows the progress during training. Fig-
ure 4 compares heatmaps with and without LSCL (setting
γ=0), and shows that SCL localizes objects more precisely,
avoiding false predictions for negative classes. Appendix H
presents another example and appendix I contains uncurated
heatmaps, showing the observations holds in general.

Bias towards single-positive predictions. Figure 5a shows
the distributions of the top-1 scores, per method, over all
validation images. An extended version with top-4 scores
is in supplementary material (appendix F). In contrast to
the fully annotated baseline, the single-positive dataset in
combination with AN loss leads to low-scoring predictions.
The EN + SCL loss (eq. (8)) reduces the number of false
negative labels and leads to a distribution more akin to the
fully annotated case.

In table 2, we compare strategies to avoid bias towards
single-positive predictions. The EN loss in eq. (5) ignores
expected positive samples. In contrast, the expected posi-
tive loss LEP uses those as additional positives in the super-
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Method Supervision No pretraining IN1K pretraining

VOC12 MS-COCO VOC12 MS-COCO NUS CUB

fully-annotated oracle (BCE) all pos + all neg 53.1 66.1 90.0 79.4 53.7 33.2

R
el

at
ed

w
or

k AN + label smoothing [9]† 1 pos / img - - 86.5 69.2 44.9 17.9
ROLE (reported in [9])† 1 pos / img - - 88.2 69.0 51.0 16.8

LL-R (reported in [25])† 1 pos / img - - 89.4 71.9 49.1 21.5
LL-Ct (reported in [25])† 1 pos / img - - 89.3 71.6 49.6 21.8
LL-Cp (reported in [25])† 1 pos / img - - 89.3 71.0 49.4 21.4

B
as

el
in

es Assume negative (AN) 1 pos / img 46.5 49.1 86.0 69.0 45.5 21.1
AN + label smoothing 1 pos / img 46.0 46.1 87.6 70.3 46.7 16.0
WAN [9] (our training schedule) 1 pos / img 44.4 45.1 86.4 69.3 45.6 21.3
ROLE [9] (our training schedule) 1 pos / img 45.0 51.9 87.8 69.9 47.8 20.3

O
ur

s Expected Negative (EN) 1 pos / img 47.5 53.4 88.1 71.8 49.1 22.3
EN + consistency loss (CL) 1 pos / img 49.1 55.0 88.3 71.9 49.0 22.1
EN + spatial consistency (SCL) 1 pos / img 51.4 54.0 88.8 73.2 50.3 22.5

Table 1. Mean average precision (mAP) obtained on the test set of Pascal VOC 2012 [14] and MS-COCO 2014 [33], NUS-WIDE [8] and
CUB [49]. ImageNet-1K [43] pretraining warms up the linear layer for 5 epochs. Results indicated with † are reported by related work.
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Figure 2. Heatmaps produced by ResNet-50 on MS-COCO in the last training epoch, with ImageNet pretraining (best viewed in color).

vision:

LEP(fn) = − 1

L

L∑
i=1

[zni = 1 ∨ ẑtni = 1] log(fni)

+ [ẑtni = 0] log(1− fni) .

We find LEP to perform poorly; we believe incorrect
expected-positives disturb the training progress by introduc-
ing concept drift. We also compare the EN loss with the ex-
pected positive regression loss LEPR of [9], which regresses

the sum of the predicted probabilities towards the estimated
number of positives K. Generally, LEN in combination with
LCL or LSCL performs best among competing methods.

EMA momentum parameter. Figure 5b compares the val-
idation mAP for values of µ. With µ=1.0, heatmaps are not
updated by the predictions. On the validation set, the value
we use in our experiments µ = 0.8 corresponds to an opti-
mum between updating the heatmaps and building accurate
object localizations.
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Figure 3. Progress of running-average heatmaps during training for
an annotated positive class, unannotated positive class and nega-
tive class (best viewed in color).

Method Loss mAP

assume negative (AN) LAN 69.4
expected negative (EN) LEN 72.3

assume negative + CL LAN + LCL 70.1
expected negatives + CL LEN + LCL 72.4
expected positives and neg. + CL LEP + LCL 65.8
expected positive regression [9] + CL LEPR [9] + LCL 71.7

assume negative + SCL LAN + LSCL 70.2
expected negatives + SCL LEN + LSCL 73.7
expected positives and neg. + SCL LEP + LSCL 64.6
expected positive regression [9] + SCL LEPR [9] + LSCL 72.3

Table 2. Methods to avoid single-pos. bias (MS-COCO val split).

Hyperparameter K. Figure 5c explores different values for
the hyperparameter K. The optimal value is K=2.5. In our
experiments, we simply use 2.9 as determined on the vali-
dation set statistics. Figure 5d compares values of K when
restricting the evaluation to images containing 1, 2, . . . , 7
true positive labels. We see that K tunes the tendency of
the classifier to predict more or less positives.

The supplementary material further includes a study of
the ℓ1, ℓ2, ℓJSD distance functions and weights γ in ap-
pendix E, the crop augmentation in appendix C and the im-
provement of SCL for small object sizes in appendix D.

4.3. Multi-label classification on ImageNet-1K

We apply our method to train a multi-label classifier on
ImageNet-1K [10], for which multi-label ground truth is not
available. This single-label dataset has 1.2 million train-

ing and 50K validation images. As in section 4.1, we use
a ResNet-50 network pretrained on ImageNet. We com-
pare the accuracies obtained when finetuning with AN loss
(eq. (2)), and EN loss combined with CL or SCL (eq. (8)).
We use an Adam optimizer [26] with weight decay 10−4.
The linear classification layer is trained for 5 epochs with
learning rate 10−4 before finetuning the whole network for
25 epochs with cosine learning rate decay. We use the
standard crop and flip augmentations from [19]. We use
224×224 inputs, leading to score maps of size 7×7 and
heatmaps of size 14×14 in the SCL. To limit the memory
usage, we only keep heatmaps for the 10 top-scoring classes
after the warmup stage in the SCL (details in appendix G).

We report the top-1 validation accuracy on the ImageNet
validation set. We also use the relabeled multi-label anno-
tations of ReaL [2], containing annotations for 46837 val-
idation images, with K=1.22 positive labels per image on
average. On the ReaL set, we report the top-1 accuracy [2]

top-1ReaL =
1

N

N∑
n=1

[argmax (fn) ∈ {i | yni = 1}] , (9)

as well as the mean average precision (mAP), and subsets
of images having k = {1, 2, 3, 4+} labels. We report all
metrics at the end of the finetuning.

The results are detailed in table 3. Finetuning with AN
already improves the single-label top-1 accuracy of the net-
work, as observed by previous work [52] and gives a sig-
nificant boost in multi-label mAP metric. We observe fur-
ther improvement in the multi-label metrics when adding
CL and SCL losses. We note that these methods bring the
most improvements over AN when looking at the mAP over
images with k = 1 or k = 2 labels, which constitute 96% of
the validation set. This is to be expected given the value of
the hyperparameter K = 1.2 for this dataset, which favors
images with 1 or 2 labels over images with more labels.

4.4. Limitations of the method

Spatial heatmaps stored in 8-bit unsigned integer for-
mat use NLW 2 bytes of memory, which is around 8GB
for MS-COCO (N=112K, L=81, W=28). For larger
datasets, memory constraints can be alleviated by keeping
top-k heatmaps after pretraining as we do in section 4.3, or
by offloading the heatmaps to disk with asynchronous I/O.

Like [9] our experiments use an oracle value of the num-
ber of expected positives per image K set using statistics
from annotated samples. This value is dependent on the
data collection procedure of the dataset: for instance, Im-
ageNet mostly contains images with one object, whereas
MS-COCO images contain many objects. Therefore, some
calibration of this value is to be expected depending on the
dataset and of the properties desired from the classifier.
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Figure 4. Comparison of heatmaps generated in the final training epoch with and without spatial consistency loss.
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Figure 5. Ablations on MS-COCO validation set with ImageNet-pretrained ResNet-50.

top-1
IN-val

top-1
ReaL

mAP ReaL

k = all k = 1 k = 2 k = 3 k ≥ 4

Num. samples 50,000 46,837 46,837 39,394 5,408 1,319 716

ResNet-50 76.1 83.0 66.3 70.6 53.0 36.1 22.5
ResNet-50 + AN 76.9 83.1 81.4 88.0 60.0 36.8 21.8
ResNet-50 + EN with CL 77.1 83.4 81.7 88.4 60.5 36.6 21.7
ResNet-50 + EN with SCL 77.1 83.9 82.3 88.5 61.9 38.1 22.5

Table 3. We finetune ResNet-50 with AN, consistency loss (CL) or spatial consistency loss (SCL). We report top-1 validation accuracy on
ImageNet-val (single-label) and on ReaL (multi-label); as well as mean average precision (mAP) on ReaL. mAP is reported on all images
(k = all), or on subsets of images with k = 1, 2, 3, 4+ annotated labels.

5. Conclusion

We studied the problem of training a multi-label classi-
fier using only a single-positive label per image, improv-
ing the accuracy using spatial consistency losses. In addi-
tion, we showed that standard training strategies result in a
bias towards negative predictions and proposed a method to
build a set of expected-positive labels, which are not penal-
ized in the training loss.

While we have focused our efforts on the ubiquitous
single-positive labeled setting, our work can be naturally
extended to other partial annotation settings. Besides image
crops, other data-augmentations such as affine transforma-

tions or masking could be similarly leveraged to enforce
consistency of the neural network’s feature maps across
training epochs. Finally, we note that an extension of our
approach may also be beneficial in other data modalities
making use of data augmentations similar to random crop-
ping or masking, such as word deletion in text classification
[51], or frequency masking with audio data [37].
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