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Abstract
Existing neural architecture search (NAS) methods com-

prise linear connected convolution operations and use am-
ple search space to search task-driven convolution neural
networks (CNN). These CNN models are computationally
expensive and diminish the quality of receptive fields for
tasks like micro-expression recognition (MER) with limited
training samples. Therefore, we propose a refined neural
architecture search strategy to search for a tiny CNN archi-
tecture for MER. In addition, we introduced a refined hy-
brid module (RHM) for inner-level search space and an op-
timal path explore network (OPEN) for outer-level search
space. The RHM focuses on discovering optimal cell struc-
tures by incorporating a multilateral hybrid spatiotempo-
ral operation space. Also, spatiotemporal attention blocks
are embedded to refine the aggregated cell features. The
OPEN search space aims to trace an optimal path between
the cells to generate a tiny spatiotemporal CNN architec-
ture instead of covering all possible tracks. The aggre-
gate mix of RHM and OPEN search space availed the NAS
method to robustly search and design an effective and ef-
ficient framework for MER. Compared with contemporary
works, experiments reveal that the RNAS-MER is capa-
ble of bridging the gap between NAS algorithms and MER
tasks. Furthermore, RNAS-MER achieves new state-of-the-
art performances on challenging MER benchmarks, includ-
ing 0.8511%, 0.7620%, 0.9078% and 0.8235% UAR on
COMPOSITE, SMIC, CASME-II and SAMM datasets re-
spectively.

1. Introduction
Micro-expressions (MEs) are transient spontaneous and

appear briefly on the facial regions but reveal enough vi-
sual cues for recognizing genuine human emotions. MEs
arise in high-stakes situations when a person tries to hide
their real emotions. Therefore, MEs can be instrumental in
various psychological applications [23], e.g., lie detection,

(a) (b)
Figure 1: Recognition accuracy vs. model size (in terms
of the total number of parameters and the total number
of flops) on the CASME-II dataset. We plot the results
of some recently proposed state-of-the-art NAS-based ap-
proaches: AutoDeepLab [14], AutoMER [26], variants of
RNAS-MER, and the proposed RNAS-MER.

psychoanalysis, criminal interrogation, depression analysis,
autism, and even negotiations.

Due to the involuntary nature and subtle intensity varia-
tions in expressive regions, MEs are hard to detect by hu-
mans and by machines. In the literature, both traditional
[18, 6, 37, 17, 5] and CNN-based algorithms [8, 11, 13,
32, 9, 29, 28, 27] have been effective for micro-expression
recognition (MER). However, designing a CNN-based net-
work for MER is a tedious task as it involves trial and er-
ror engineering, which requires a lot of effort and domain
knowledge. Thus, there is a need for an optimum solution
to automatically search and design the best possible CNN
architecture instead of spending time and effort in manual
CNN architecture designing for MER. NAS algorithms [46]
made it possible to develop the best possible CNN archi-
tecture for domain-specific tasks by automating the search
for optimum architecture search. Initially, NAS algorithms
[15, 38] were limited in search of the inner cell structure
(similar to auxiliary blocks in conventional CNN models)
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only. Further, manual stacking of cells is required to de-
velop deep networks for specific tasks.

In addition, these algorithms require human intervention
and create an inconsistency between the cell-level and ar-
chitecture search spaces[41]. Further, Liu et al. [14] intro-
duced a hierarchical two-level search space for inner cell
structure and architecture search for image segmentation to
search for optimal architecture. Inspired by the two-level
search strategies, Verma et al. [26] introduced a NAS-based
solution: AutoMER for MER. However, these NAS algo-
rithms face the problem of heavy computation, which hin-
ders their application in real-world situations. Moreover,
Xu et al. [38] developed a partial connection approach
named PCDARTS to reduce the computational complexity
of cell search-based NAS algorithms [15, 1] for the image
classification task. Still, the PCDARTS has inconsistency
between cell-level and architecture search. Moreover, state-
of-the-art NAS algorithms have constrained search space
with linearly connected convolution layers. Further, limited
operations were defined to restrict the computational cost in
search space. Thus, there is an immense need to develop an
effective and efficient integrated inner and outer level search
space to search best spatiotemporal CNN architecture for
MER applications. These factors motivated us to propose
a refined NAS algorithm: RNAS-MER for MER. The pro-
posed RNAS-MER is designed to achieve an efficient and
effective NAS-based algorithm by considering three main
elements. First, the cell-level search aims to aggregate the
multi-scale and complementary features to define local to
global receptive semantic fields for MER. These seman-
tic fields are estimated using task-specific fourteen hybrid
spatiotemporal operations. In addition to refining the cell-
level search space, we introduced a spatiotemporal attention
block. Secondly, an optimal path explore network (OPEN)
architecture search space is presented to locate an optimal
path rather than searching for all possible pathways between
cells. The optimal path is revealed by shrinking the search
space size by ignoring the redundant paths between the cells
to design a tiny spatiotemporal architecture for MER. Third,
the memory consumption of NAS is observed and handled
by imposing partial connections between hidden nodes and
employing the hybrid operations set only on selected feature
maps. To summarize, our main contributions are as follows:

1. We propose a refined hybrid module by incorporating
multi-scale feature learning and spatiotemporal atten-
tion to the search for a robust cell structure for MER
applications. Also, we use the partial connection ap-
proach between hidden nodes of the cell to reduce the
memory footprints for searching.

2. We design a novel optimal path to explore the net-
work, allowing various architecture designs by follow-
ing random model architecture patterns to discover the

best possible shallow and lightweight spatiotemporal
CNN architecture design for MER.

3. The proposed RNAS-MER outperforms contempo-
rary NAS as well as MER methods and demonstrates
new state-of-the-art performance on COMPOSITE,
SMIC, CASME-II, and SAMM datasets. Extensive
experiments also show that our proposed RNAS-MER
approach is computation efficient, and can perform
favourably against existing approaches (see Figure 1).

2. Related Work
The MER approaches can broadly be divided into tra-

ditional machine-learning methods and CNN-based deep
learning methods. Traditional machine-learning methods
utilize descriptors to encode the visual features and forward
them to traditional classifiers. Many descriptors [18, 6, 37,
17, 5] have been particularly successful in the handcrafted
category. In contrast, CNN-based deep learning methods
learn the visual feature and classify MEs. Many CNN-based
models [11, 11, 13, 30, 32, 9, 35, 20, 29, 28, 27] have been
proposed in past years. The CNN-based MER approaches
achieve promising performance. However, designing a ro-
bust CNN architecture requires high-level domain knowl-
edge and expertise. Thus, the use of NAS to automatically
discover the best CNN architecture attracted the attention
of researchers. Initially, reinforcement learning (RL) based
on NAS was proposed for image classification. Zoph and
Le [46] introduced NAS in RNN to search CNN-LSTM ar-
chitectures. The RL-based NAS approach directly search
the whole network architecture [46]. This approach require
expensive computation overheads (e.g., thousands of GPU
days) and hinder its applications in real-world scenarios.
To alleviate the complexity issue, researchers proposed re-
stricted search spaces. NASNet [47] first introduced a cell-
based search space. Specifically, NASNet focuses on the
cell structure instead of the whole CNN architecture. In the
same line, Liu et al. [15] proposed a differential architecture
search (DARTS) to discover the best suitable architecture
in a continuous domain. Various search-based [1, 24, 2]
approaches were designed to make improvements in per-
formance as well as computation complexity for resource-
constrained platforms, such as mobile phones. Further,
Wang et al. [31] proposed a Direct Sparse Optimization
NAS to prune the useless connections from the searched
architecture by imposing sparse regularization. To reduce
the GPU days in searching for optimal architecture, Singh
et al. [22] introduced a NAS-based approach to reduce
the computation complexity by using an augmented search
space and super-kernels. Furthermore, to reduce power con-
sumption and redundancy in exploring the network space,
Xu et al. [38] introduced partially-connected DARTS by
sampling a selected small part of the super-network. How-
ever, the above NAS approaches deal only with the inner
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Figure 2: The proposed RNAS-MER framework. The 1st part (gray box) of the framework represents the optimum path
explore network (OPEN) search. The light gray nodes and connections imply the abandoned nodes and no possible path
for exploration. While 2nd part (yellow box) presents the refine hybrid module (RHM). The 3rd part is depicted in the
architecture evaluation and optimization stage. Network and Cell search generates a CNN architecture, and then evaluation
and optimization take place to compute the outcome. All 1st, 2nd, and 3rd parts of the framework work simultaneously for
each epoch and create a Final CNN architecture with minimum loss. Here, N and b, represent the hidden nodes and partial
connections b = 4.

cell structure search. The final architecture is developed
manually by stacking the searched cells. Liu et al. [14]
proposed a fully automatic NAS by incorporating two-level
search spaces for inner cell and outer architecture, respec-
tively. Recently, Verma et al. [26] proposed a two-level
hierarchical search space-based NAS to discover a CNN ar-
chitecture for micro-expression recognition.

In this paper, we analyse the potential of the hierarchical
two-stage search space for exploring the best suitable CNN
architecture. Also, we observe the influence of shallow net-
works and hybrid convolutional layers on MER approaches,
respectively. Thus, we incorporate their properties in NAS
to improve its effectiveness as well as efficiency.

3. Methodology
This section introduces the essential components of the

proposed RNAS-MER (Figure 2) for both inner-level (cell)
and outer-level (architecture) search space in detail.

Initially, we introduce a refined hybrid module (RHM) to
search for and design an attentive feature cell with compact
memory footprints. The compact footprint is embedded
through partial connections in resultant feature maps of the
nodes for selecting the operations from hybrid spatiotempo-
ral operation sets. Similarly, an optimal path exploring net-
work module is introduced to search the robust and tiny ar-
chitectures for MER applications. Furthermore, we derived

continuously differentiable representations of the cell-level
and architecture-level search space.

3.1. The proposed Search Space
3.1.1 Inner-Level Search
The inner level search aims to search for the best suitable
cell structure for a given task. The cell is a direct acyclic
graph with an elementary structure in a search space rep-
resenting a collection of available convolution operations.
The structure of the cell and optimum selection of cell
stacking plays a vital role in selecting more profound or tiny
architecture in NAS. Also, the correlation between the cells
and convolution operation decides the computational need
of the architecture. Inspired by these factors, we propose a
refined hybrid module to explore the best cell structure and
spatiotemporal operations for the MER task.
The Refined Hybrid module : The refined hybrid module
aims to explore an optimal and robust cell structure using
the available spatiotemporal operations between the hidden
nodes in a cell. The RHM consists of a hybrid operator
space (H) with several combinations of convolution oper-
ations for the MER task, as shown in Figure 2 (Opera-
tion Selection). The details of convolution operations are
listed in Table 1. The H aims to aggregate multi-scale and
complimentary hybrid receptive responses to define sub-
tle changes in MEs. Also, it allows a cell to estimate in-
ter and intra-emotion class variations of MEs with the pro-
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1. Add (ν1, ν3) 2. Add (ν3, ν5) 3. Add (ν1, ν5) 4. Max (ν1, ν3)
5. Max (ν3, ν5) 6. Max (ν1, ν5) 7. Avg (ν1, ν3) 8. Avg (ν3, ν5)
9. Avg (ν1, ν5) 10. ν1 11. ν3 12. ν5
13. Skip 14. None νe = (e× e× e) 3D Conv

Table 1: The hybrid operator set. e represents the kernel
size of the 3D convolution operation.

posed task-specific fourteen hybrid spatiotemporal opera-
tions compared to standard eight operations in the existing
NAS approaches [15, 14]. In addition, we observed the in-
ner/cell level search space prone to invade more memory
footprints with the size of convolution operations and the
number of stacking of cells between the nodes. As a re-
sult, the hybrid operator space causes a high GPU memory
consumption problem. To overcome the problem of mem-
ory inefficiency, we adopted the partial channel connection
strategy from the PC-DARTS [38]. Like PC-DARTS, we
employed edge normalization over each connection to mit-
igate the side effects of biasing.

Similarly, the inner level search space’s power is refined
by adding attention to the cell with spatial and channel axes
before fetching it to the following cells. Therefore, we
propose spatiotemporal attention by incorporating channel,
and spatial attention modules [33]. These modules are em-
ployed to aggregate feature responses of all hidden nodes
in a decoupled manner. The spatiotemporal attention block
refines the cell structure across the network by ignoring the
irrelevant or redundant features for MEs.

3.1.2 Outer-Level search

An optimal path exploring network (OPEN) structured
search space is proposed to design MER’s final spatiotem-
poral CNN architecture. The OPEN aims to discover a
robust and optimal path rather than search for all possible
pathways between the cells in [14]. The optimal path is lo-
cated by shrinking the network search space by reducing
the number of layers and paths between cells. The pro-
posed search space structure also benefited from discover-
ing a shallow and light-weighted architecture, which is well
proven in the literature [13, 29] for MER. The proposed
search space is designed to explore only six cells with a
maximum of 16 and a minimum of 2 downsampling factors,
as shown in the 1st part of Figure 2. Furthermore, inspired
by the literature [29, 27], we exploit the stride convolution
operation instead of the pooling operation to reduce the res-
olution factor for reduction cells.

3.2. Differentiable Representation

Continuous relaxation is described as the discrete archi-
tecture for continuous representation. We employ the con-
tinuous relaxation over both inner- and outer-level search
spaces to derive a fully differentiable search space so that
the stochastic gradient descent method could be applicable
to discover the best promising spatiotemporal architectures

for MER.

3.2.1 Inner-Level Search

In inner-level search, we assign three parameters w, α, and
η to search for the best task-driven cell. Specifically, param-
eter w is used to compute the feature weights. The param-
eter α is used to select the operation between connections.
For example, there is a connection from i to j, and we define
a channel sampling mask Mi→j{0, 1}, where 0 and 1 imply
the masked and selected channels. The αh

i→j is assigned to
each hybrid operator h ∈ H over selected channels. In con-
trast, the masked channels bypass the hybrid operations and
are concatenated directly to the output channels. To com-
pute the architecture weight of a particular operation, we
employ the softmax over all possible operations:

Awi→j

(
I li ;Mi→j

)
=

∑
h∈H

exp
(
αh
i→j

)
∑

h′∈H exp
(
αh′

i→j

)•
h (Mi→j) ∗ I li || (1−Mi→j) ∗ I li (1)

where, I li represents the feature maps (initially all input
frames of a video) of hidden layer i → j in a l cell. The
• and || represents the multiplication concatenation opera-
tions, respectively. The Eq 1 contains two parts: (Mi→j)∗I li
and (1−Mi→j)∗I li , which denote the selected and masked
channels, respectively. The parameter η is responsible for
computing the weight of each edge i → j to normalize the
edges in the architecture like in PC DARTS [38]. The out-
put of I is computed by using Eq. 2.

I lj =
∑
i<j

exp (ηi→j)∑
i′<j exp

(
ηi′→j

) •Awi→j

(
I lj ;Mi→j

)
(2)

As discussed in Section 3.1.1, the final outcome of the cell is
computed by employing the spatiotemporal attention mod-
ule [33] on the aggregated feature responses of all hidden
nodes (N ) using Eq.3:

I li = ST{
N∑

k=1

I li{k}} (3)

where, ST refer to the spatiotemporal attention and is com-
puted using Eq. 4:

ST (F ) = σ (MLPn0,n1 (AP{F}) +MLPn0,n1 (MP{F}))
+σ

(
C7×7 (AP{F};MP{F})

)
(4)

where MLPn0,n1 , AP , and MP represents the multi-layer
perceptron with n0 and n1 weights similar to [33], average
pooling, and max pooling, respectively. While C7×7 refers
to the convolution operation with 7× 7 kernel size. Finally,
the cell level can be upgraded through Eq. 5

I li = Cell
(
I l−1
i,s , I l−2

i,s ;α, η
)

(5)
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3.2.2 Outer-Level Search

The outer-level OPEN search space is designed to dis-
cover light-weighted compact spatiotemporal architecture
for MER. As defined in Eq. 1 and 2, the resolution within
the cell (inner-level) should be same to enable the summa-
tion. While the OPEN search space allows for exploration
of the different resolution paths as shown in the 1st part
of the Figure 2. The proposed OPEN search space holds
four different network states NS with four resolution sizes
{2, 4, 8, 16}. To discover the best architecture, we assigned
a parameter β to each connection between network states
(represented by the arrow in Figure 2). The architecture
search is explored using Eq. 7.

I li,s = βl
s
2→s

[
Cell

(
I l−1
i, s2→s, I

l−2
i,s→s;α, η

)]
+

βl
s→s

[
Cell

(
I l−1
i,s→s, I

l−2
i,s→s;α, η

)]
(6)

The normalization parameter β should meet the conditions
as follows:

βl
s→ s

2
+ βl

s→s = 1 ∀l, s (7)

βl
s→ s

2
≥ 0 βl

s→s ≥ 0 ∀l, s (8)

To optimize the parameters: α and β, we adopted the
bi-level optimization method using gradient descent [15].
Furthermore, the evaluation and optimization for search-
ing and training are performed by following Algorithm 1.
While decoding of the optimum path in OPEN architecture
search space is performed by the Algorithm 2.

4. Experimental Results and Analysis
This section discusses the dataset and evaluation strate-

gies. Further, a comparative study of the proposed RNAS-
MER and state-of-the-art approaches is presented. We carry
out the ablation study and computational analysis in the fol-
lowing subsection. Moreover, the implementation settings
of the architecture search and training are detailed in the
supplementary document.

4.1. Datasets

Recent research in the micro-expression community is
influenced by the MEGC-19 challenge [21] and uses SMIC
[12], CASME-II [39], and SAMM [4] databases and their
composite version as evaluation standards for MER [13,
40]. Therefore, to make a fair comparison with state-of-the-
art approaches, we adopt the same evaluation standard for
the composite dataset. Specifically, the CASME-II dataset
contains five MEs classes, i.e., happiness, surprise, disgust,
repression, and others. The SMIC dataset comprises three
MEs classes, i. e., negative, positive, and surprise. The
SAMM dataset includes seven MEs classes, happiness, sur-
prise, disgust, repression, anger, fear, and contempt. To

Algorithm 1 Evaluation and Optimization Algorithm
Data→ Training Dataset
Outcome→ RNAS-MER with optimized α, η, andβ.
1. Search Stage:
Create a search space, including OPEN (outer-level)
and RHM (inner-level) search structure for MER task.
Devide the dataset into two parts Train A and Train B.
while not coverage do

w ← w −∇ (w)LossTrain A (K) ;
α, η, β ← α, η, β −∇ (α, η, β)LossTrain B (K)
K = (w,α, η, β)

end while
α parameter is responsible for hybrid operation selec-
tion and applied only on selected channels; Divide the
channels into two parts, 1

b are used as selected channels
and remaining are considered as masked channels.
η parameter is responsible for edge normalization over
hidden nodes connections in inner-cell space.
β parameter is responsible for optimum path selection
in OPEN outer-level space.
2. Decode Stage:
Decode the spatiotemporal CNN architecture for MER
based on optimized α, η, β parameters.
3. Training Stage:
Arrange the dataset in according to subject IDs.
for all c ∈ Subject IDs do

while not coverage do
w ← w −∇ (w)LossTrain (w)
Train← Subject IDs -c

end while
end for
Generate outcome as spatiotemporal CNN model for
MER from RNAS-MER with trained weight w param-
eters for all subjects.

establish the compatibility between all three datasets, we
have merged the classes and annotated them with new MEs
classes as positive (happy), negative (disgust, sad, fear), and
surprise, like the MEGC-19 challenge. All experiments are
conducted over a leave-one-subject-out validation strategy.
Moreover, all datasets comprise a varied number of image
sequences. Thus, to come up with a uniform composition
of all samples in a dataset, we adopted a temporal interpo-
lation model (TIM) [45] to normalize the video sequences
into equal lengths. Moreover, to aid more visibility of MEs’
involuntary changes, we utilized the magnified videos [19]
in our experiments.

4.2. Experimental Results Comparison

The performance of the existing MER methods, NAS-
based methods, and proposed RNAS-MER is evaluated in
terms of recognition accuracy, unweighted average recall
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Methods Pub-Yr COMPOSITE SMIC CASME-II SAMM
Acc UAR UF1 UAR UF1 UAR UF1 UAR UF1

Dual IncOF [44] FG-19 N/A 0.7278 0.7322 0.6726 0.6645 0.8560 0.8621 0.5663 0.5868
STSTNetOF [13] FG-19 0.7692 0.7605 0.7353 0.7013 0.6801 0.8686 0.8382 0.6810 0.6588
NMEROF [16] FG-19 N/A 0.7824 0.7885 0.7530 0.7461 0.8209 0.8293 0.7152 0.7754
CapsuleNet [25] FG-19 N/A 0.6506 0.6520 0.5877 0.5820 0.7018 0.7068 0.5989 0.6209
MTMNetMaM [34] ACMMM-20 N/A 0.8570 0.8640 0.8610 0.8640 0.8720 0.8700 0.8190 0.8250
ICE-GAN [40] Arxiv-20 N/A 0.8410 0.8450 0.7910 0.7900 0.8680 0.8760 0.8230 0.8450
CLFMLF [3] IEEE-Acc-20 N/A 0.7200 0.750 0.7100 0.7100 0.7700 0.7200 0.5100 0.6500
RCN-FOF [36] IEEE-TIP-20 N/A 0.7052 0.7164 0.5980 0.5991 0.8087 0.8563 0.6771 0.6976
FROF [43] PR-21 N/A 0.7832 0.7838 0.7083 0.7011 0.8873 0.8915 0.7155 0.7372
Two-stage MEROF [42] Neu. Comp-21 N/A 0.7986 0.8068 0.7598 0.7356 0.8763 0.8818 0.7280 0.7475
Graph-CNN [10] CVPR-W-21 N/A 0.7933 0.7914 0.7215 0.7192 0.8710 0.8798 0.7890 0.7751

AutoDeepLab* (3D) [14] CVPR-19 0.8083 0.7372 0.6993 0.6433 0.5920 0.7240 0.7157 0.7609 0.7192
AutoMER* (3D) [26] TNNLS-21 0.7991 0.7210 0.6858 0.7225 0.6725 0.7583 0.7334 0.7077 0.6508
RNAS-MER Proposed 0.9029 0.8511 0.8302 0.7620 0.7443 0.9078 0.8985 0.8235 0.7880

Here, the suffix * refers to the re-evaluated results for existing methods. OF, MaM, and LF represents the optical flow, macro
to micro feature adaption, and landmark feature maps (extra features utilize by the MER approaches).

Table 2: Performance comparison of existing deep learning as well as NAS based MER approaches and proposed RNAS-
MER on leave-one-subject-out (LOSO) validation setup.

Algorithm 2 Decoding OPEN Architecture Structure
Data→ path weights parameters.
Outcome→ The optimum path with maximum proba-
bility.
Omax (o1, ...ol, ...oL) , L = 6.
Initialize the starting node with the P s=2

L=0 probability.
Initialize the 4 paths {O2, O4, O8, O16}.
while l¡L do

for s in {2, 4, 8, 16} do
P s
l ← max{P

s
2

l−1β
s
2→s

l , P
sβs

l →s
l−1 };

Update the current path Os

end for
end while
Generate the max probability for optimum path
Omax ← Os.

(UAR), and unweighted F1-score (UF1). The UAR and
UF1 score are used to validate the performance of the pro-
posed ME-NAS concerning the imbalanced expression dis-
tribution. The quantitative results are tabulated in Table
2. From Table 2 it is clear that, the proposed RNAS-
MER achieves 0.1139%, 0.1301% and 0.1309%, 0.1444%
more UAR and UF1 as compared to AutoDeepLab and Au-
toMER over the COMPOSITE dataset, respectively. Simi-
larly, for SMIC, the proposed RNAS-MER gains 0.1187%,
0.0395% and 0.1523%, 0.0718%, an improvement over Au-
toDeepLab and AutoMER in terms of UAR and UF1-Score,
respectively. Whereas, the RNAS-MER outperformed
the existing AutoDeepLab and AutoMER by 0.1921%,
0.1495% and 0.1828%, 0.1651%, UAR and UF1, respec-

Methods Par. Norm. PC D Op H Op ST Att.

RNAS-MER 1 α, β ✗ ✓ ✗ ✗
RNAS-MER 2 α, β, η ✓ ✓ ✗ ✓
RNAS-MER 3 α, β, η ✓ ✗ ✓ ✗
RNAS-MER 4 α, β ✗ ✗ ✓ ✓
RNAS-MER α, β, η ✓ ✗ ✓ ✓

Here, PC, D Op, H Op, and ST Att. stands for partial connections,
darts operations, hybrid operations, and spatiotemporal attention
block, respectively.
Table 3: Experimental settings for ablation models and the
proposed RNAS-MER.

tively, for CASME-II. Furthermore, for SAMM the pro-
posed method achieves 0.0626%, 0.1158% and 0.0688%,
0.1372%, improvement in UAR and UF1, respectively, as
compared to AutoDeepLab and AutoMER. Moreover, the
final search space and cell structure for CASME-II gener-
ated by AutoDeepLab, AutoMER, and the proposed RNAS-
MER are shown in Fig. 3. From the above discussion, it is
evident that the proposed RNAS-MER achieved impressive
performance compared to state-of-the-art MER and NAS
methods for almost all datasets. The results show that the
state-of-the-art MER approach [34] is achieving better re-
sults than the proposed RNAS-MER for COMPOSITE and
SMIC datasets. We observe that Xia et al. [34] used ex-
tra features of macro-expressions to aid the guidance for
MEs, which allows the network to learn sufficient features
and improve the performance of the MER. However, [34]
requires auxiliary macro-expression data samples and also
follows the two-stage network, which is not recommendable
in real-time applications.
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Methods Type COMPOSITE SMIC CASME-II SAMM
Acc UAR UF1 UAR UF1 UAR UF1 UAR UF1

RNAS-MER 1 Ablation 0.8760 0.7817 0.7619 0.5941 0.5393 0.9015 0.8887 0.7923 0.7564
RNAS-MER 2 Ablation 0.8371 0.7645 0.7217 0.6916 0.6492 0.6202 0.5806 0.7596 0.7157
RNAS-MER 3 Ablation 0.7987 0.7555 0.7204 0.6407 0.5929 0.8353 0.8255 0.6407 0.5929
RNAS-MER 4 Ablation 0.8392 0.7762 0.7472 0.6493 0.5847 0.8797 0.8754 0.7819 0.7514
RNAS-MER Proposed 0.9029 0.8511 0.8302 0.7620 0.7443 0.9078 0.8985 0.8235 0.7880

Table 4: Performance comparison of ablation study and proposed RNAS-MER on LOSO validation setup.
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Figure 3: The final network path and cell structures discovered by the state-of-the-art: AutoDeepLab (a,b), AutoMER (c,d),
and proposed RNAS (e,f), respectively, over the CASME-II dataset.

4.3. Ablation Study
In this section, we analyse the impact of each component

of the RNAS-MER by conducting four supplementary ex-
periments. The detailed experimental details of the ablation
study are presented in Table 3.
Impact of Partial Connection and Hybrid Operation set:
To validate the impact of partial connections and proposed
Hybrid operation set, we have conducted an experiment

with DARTS [15] (cell search space) and proposed OPEN
outer-level search space in study 1 (RNAS-MER 1). The
experimental results for RNAS-MER 1 are tabulated in Ta-
ble 4 over four datasets: COMPOSITE, SMIC, CASME-II,
and SAMM. From the results, it is evident that the exist-
ing search space and operations of [15] degrade the perfor-
mance in MER as compared to the proposed RNAS-MER.
Moreover, RNAS-MER 1 is computationally very expen-
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Methods Type #Parameters #Memory

LEARNet [29] 2D-CNN 1.8M N/A
AffectNet [27] 2D-CNN 2.2M 8.30MB
ICE-GAN [40] 2D-CNN 6.7M N/A
DualInc [7] 2D-CNN 6.48M N/A
FR [43] 2D-CNN 10.24M N/A
AutoDeepLab [14] 3D-CNN 7.07M 57.00MB
AutoMER [26] 3D-CNN 11.51M 92.40MB

RNAS-MER 1 3D-CNN 9.17M 73.70MB
RNAS-MER 2 3D-CNN 4.16M 33.50MB
RNAS-MER 3 3D-CNN 1.46M 11.90MB
RNAS-MER 4 3D-CNN 2.38M 19.20MB
RNAS-MER 3D-CNN 1.91M 15.60MB

Table 5: Computational Complexity Analysis of state-of-
the-art MER approaches and proposed RNAS-MER with its
four variants.

sive (requires 9.17Million parameters) as compared to the
proposed RNAS-MER (requires 1.91Million parameters).
Impact of Hybrid operation set: To further investigate the
effect of the Hybrid operation set in the proposed RNAS-
MER, the Hybrid operations are replaced with existing op-
erations [15] with proposed OPEN outer-level search space
in study 2 (RNAS-MER 2). The quantitative results are tab-
ulated in Table 4. From the results, it is clear that the pro-
posed Hybrid operations play an important role in designing
a robust architecture for MER.
Impact of spatiotemporal block: To validate the efficiency
of spatiotemporal block in cell structure, we conducted
the experiment without spatiotemporal block in study-3
(RNAS-MER 3). The performance of RNAS-MER 3 is
tabulated in Table 4. From the table, it is clear that the pro-
posed RNAS-MER outperform the RNAS-MER 3. Thus,
we can conclude that the proposed spatiotemporal attention
block can refine the aggregated features of the hidden nodes
in the cell and enhances the performance of the proposed
RNAS-MER.
Impact of edge normalization:To validate the effectiveness
of the edge normalization with parameter η in the inner/cell
search space of RNAS-MER, we evaluate the performance
of the RNAS-MER without edge normalization in study-4
(RNAS-MER 4). The impact of RNAS-MER 4 in MER is
tabulated in Table 4. From the table, it is evident that edge
normalization plays an important role in handling the bias-
ing and enhance the performance.

4.4. Computation Complexity
The computation complexity of the proposed RNAS-

MER, RNAS variants and state-of-the-art approaches is
compared in terms of the number of parameters, number
of flops, and memory needed for trained MER models. The

total number of parameters, number of (floating point op-
erations) flops, and memory engaged in each network are
represented in Table 5 and Figure 1. From the results,
it is clear that the proposed RNAS-MER requires a much
smaller number of parameters and less memory compared
to other state-of-the-art MER approaches as well as NAS-
based approaches like AutoDeepLab and AutoMER. The
RNAS-MER trained model requires only 1.91 million (M)
parameters and 15.60 megabytes (MB) memory footprints,
while AutoDeepLab and AutoMER NAS approaches need
7.07 M, 11.51 M, and 57.0 MB, 92.40 MB parameters and
memory space, respectively. Moreover, from Figure. 1, we
can see that the proposed RNAS-MER attain the highest
performance with the lowest computation cost and a num-
ber of flops. Thus, based on the results, we can conclude
that the proposed RNAS-MER can discover and design ef-
fective and efficient spatiotemporal MER architecture.

5. Conclusion
In this paper, we proposed RNAS-MER: refined neural

architecture search strategy to search a tiny CNN architec-
ture for MER. The RNAS-MER is designed by following
a hierarchical two-level search by including inner-level and
outer-level search spaces. For the inner level, we proposed
a refined hybrid module. The RHM aims to discover op-
timal cell structures by incorporating a multilateral hybrid
spatiotemporal operation space. Also, we proposed a spa-
tiotemporal attention block to refine the aggregated cell fea-
tures. For outer-level search space, we introduced an opti-
mal path explore network (OPEN). The OPEN search space
aims to trace an optimal path between the cells to gener-
ate a tiny spatiotemporal CNN architecture. Moreover, the
proposed RHM and OPEN jointly promote searching the
shallow CNN architecture required for reliable training with
fewer data samples in MER. The performance of RNAS-
MER is evaluated using four benchmark datasets: COM-
POSITE, SMIC, CASME-II, and SAMM in terms of recog-
nition accuracy, unweighted average recall, and unweighted
F1-score, respectively. The extensive four ablation stud-
ies are executed to study the contribution of each compo-
nent of the proposed RNAS-MER. The experimental results
and the computational complexity analysis validate the ef-
fectiveness of RNAS-MER as compared to state-of-the-art
MER methods. Moreover, we analyse that the inner/cell
level search space prone to invade more memory footprints
with the size of convolution operations and the number of
stacking of cells between the nodes. As a result, the hybrid
operator space with 14 convolution operations needs a high
GPU memory consumption for inner/cell level searching.
In addition, the proposed RNAS-MER is designed specifi-
cally for MER application. In the future, we will focus on
designing a NAS-based algorithm for other computer vision
applications with less computational time.
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