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Abstract

We propose a novel method for anomaly detection pri-
marily aiming at autonomous driving. The design of
the method, called DaCUP (Detection of anomalies as
Consistent Unpredictable Patches), is based on two gen-
eral properties of anomalous objects: an anomaly is (i) not
from a class that could be modelled and (ii) it is not simi-
lar (in appearance) to non-anomalous objects in the image.
To this end, we propose a novel embedding bottleneck in an
auto-encoder like architecture that enables modelling of a
diverse, multi-modal known class appearance (e.g. road).
Secondly, we introduce novel image-conditioned distance
features that allow known class identification in a nearest-
neighbour manner on-the-fly, greatly increasing its ability
to distinguish true and false positives. Lastly, an inpaint-
ing module is utilized to model the uniqueness of detected
anomalies and significantly reduce false positives by fil-
tering regions that are similar, thus reconstructable from
their neighbourhood. We demonstrate that filtering of re-
gions based on their similarity to neighbour regions, us-
ing e.g. an inpainting module, is general and can be used
with other methods for reduction of false positives. The
proposed method is evaluated on several publicly avail-
able datasets for road anomaly detection and on a maritime
benchmark for obstacle avoidance. The method achieves
state-of-the-art performance in both tasks with the same
hyper-parameters with no domain specific design.

1. Introduction
The anomaly detection problem, sometimes also referred

to as outlier, out-of-distribution or rare event detection, can
be intuitively understood as the task of identifying a subset
of data that deviates from a statistical model or the gen-
eral data distribution, in a novel, so far unseen, and thus
difficult to predict way. Anomaly detection is an ill-defined
problem; there is no generally accepted definition, and most
approaches are application driven. For example, in indus-
trial object inspections [2], anomalies are defined as local

physical defects or deformities of objects, in medicine [22]
anomalies may refer to subtle abnormalities in brain tissue,
in streaming data analysis [23, 1] the anomalies are ”.... pat-
terns that do not conform to past patterns of behavior for the
stream” [23]. In autonomous driving [36, 7] anomalies are
most commonly defined as objects on the road that are not
from ”known classes” (e.g. cars, pedestrians, ...).

In the paper, we focus on the latter, i.e. anomaly detec-
tion in the context of autonomous driving (but are not lim-
ited to, as demonstrated in Section 4.3). We propose a novel
anomaly detection method that is based on general proper-
ties of anomalous objects: (1) not known, not from a class
that we could model (i.e. a labeled class available during
training) and (2) unique, not similar to non-anomalous ob-
jects in the image. The first property follows the common
perception [36, 7] of what anomaly is while the second in-
directly enforces consistency in anomalous object classifi-
cation (e.g. rocks on the road or lane markings are either all
anomalous or all known, but not both at the same time).

Standard methods for anomaly detection [26, 40, 30, 29,
16] rely on pre-trained representations, typically focusing
on modelling the non-anomalous classes for which training
data are abundant. Naturally, there is a scarcity of diverse
anomalous objects in training data as opposed to all novel,
so far unseen, unexpected objects that can appear in the real-
world. Therefore, training data are usually augmented by
synthesized anomalies from random distributions, e.g. [8]
uses data from the COCO [28] dataset as anomalies, [40]
uses random crops from the same image; [29] uses the col-
lection of objects from non-road classes from the training
dataset. These pre-trained models are thus limited by the
training data with only synthesized anomalies from random
distributions and they lack mechanisms to model the aspect
of anomaly uniqueness and the consistency in classifica-
tion which hinders their performance, especially in terms of
false positives (as shown experimentally in Table 3). One
could even argue that the concept of training for anoma-
lies is self-contradictory, since once something novel is ob-
served in training, it can be modelled and ceases to be an
anomaly.
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We propose a novel method, called DaCUP that ad-
dresses both aspects of the aforementioned definition, i.e.
the method is trained to model the non-anomalous class
(road) in an explicit embedding space with augmented train-
ing data by synthesized anomalies [40] together with mech-
anisms to promote classification consistency and model the
uniqueness of anomalies. To that end, a novel distance-
based similarity and inpainting features conditioned on the
input image are proposed.

The three main contributions of the paper, one related to
the design of the model architecture for robust modelling
of the known class (e.g. road class), and two tackling the
anomaly uniqueness and consistency of classification, are:

• The DaCUP method that models multi-modal appear-
ance of road surfaces by explicitly learning a fea-
ture embedding space. The multi-modal aware em-
bedding space allows the method to be trained us-
ing multiple diverse datasets (showcased on combining
Cityscapes [11] and BDD100k [46]) to learn diverse
road surface appearances (i.e. know class) which are
then utilized to separate the anomalies from the road.

• A novel image-conditioned distance-to-class score.
The distance score is computed between embeddings
of all image patches and the mean embedding patches
segmented as the known class (e.g. road) in the cur-
rent image. The score, used as an additional feature,
increases the ability to identify anomalies on never
seen surfaces and to decrease false positive detections
(demonstrated on results shown in Table 2).

• A novel use of an inpainting mechanism from inter-
mediate features that reduces anomaly false positives,
implementing the principle that an anomaly cannot
be predicted from its neighbourhood. The algorithm
is applicable to any method that produces per-pixel
anomaly scores. We show its application improves per-
formance of several baseline methods (see Table 3).

2. Related Work
In this section, related work on anomaly detection with

a focus on autonomous driving application is discussed.
State-of-the-art methods can be broadly split into two main
trends: (i) detecting anomalies as an out-of-distribution data
identification in semantic segmentation networks [26, 8, 16,
24], (ii) detecting discrepancies between re-synthesized and
input images [30, 44, 34, 13].

The methods that address the problem of identify-
ing out-of-distribution data usually start with a semantic
segmentation network with a temperature calibrated [17]
softmax output. The method of Liang et al [26] com-
bines a temperature calibrated [17] softmax with adver-
sarial perturbations of the input image. The perturba-

tion of the input image has a stronger effect on the in-
distribution than on out-of-distribution data, therefore the
separation is more pronounced and a simple threshold-
ing strategy is applied to classify the out-of-distribution
data. Similarly, Lee et al [24] added noise perturbation to
the input image and defined a Mahalanobis distance-based
score that identifies the out-of-distribution pixels by com-
paring the pixel features (from different network layers)
with a class-conditional Gaussian distribution of the clos-
est class estimated from the training data. Instead of ad-
versarial input perturbations, Chan et al [8] considers the
out-of-distribution samples as random objects taken from
COCO [28] images and proposes to maximize the softmax
entropy for the out-of-distribution pixels, hence, produc-
ing a uniform distribution over the classes softmax prob-
abilities. The out-of-distribution pixels are classified by
thresholding normalized softmax entropy. The method of
Grcic et al [16] trains semantic segmentation network with
mixed-content images. The input image is overlaid by nor-
malized flow sampled synthetic negative examples creating
out-of-distribution pixels. The network is then trained to
have low classification error on in-distribution pixels and
to raise uniform predictions on the out-of-distribution pix-
els. The out-of-distribution pixels are identified during in-
ference by computing temperature calibrated softmax and
JS divergence with respect to the uniform distribution.

There are multiple recent methods [30, 44, 34, 13] that
exploit the success of generative networks [10, 41, 31] to
synthesize images from semantic segmentation labels. The
method of Lis et al [30] first re-synthesize image using
generative method [41] from the estimated semantic seg-
mentation of the input image. A discrepancy network is
then trained to identify visual and semantic differences be-
tween the VGG [38] features of the synthesize and input
images and semantic segmentation. Similarly, Xia et al [44]
synthesize an image from estimated semantic segmenta-
tion and then train siamese-like architecture to detect dif-
ferences between the synthesized and input images. Oh-
gushi et al [34] combines the perceptual difference [21, 15]
computed from VGG features extracted from the synthe-
sized image and input images with the entropy of seman-
tic segmentation softmax posteriors to produce the final
anomaly score map. Di Biase et al [13] effectively com-
bined previous approaches [30, 34] and start by synthesiz-
ing image based on estimated semantic segmentation fol-
lowed by a perceptual difference using VGG features. The
intermediate results (i.e. input and synthesize image, se-
mantic segmentation, perceptual difference and softmax en-
tropy) are fused together and pass through a decoder that
estimates the final per-pixel anomaly score.

An approach proposed by Creusot et al [12] trains an
auto-encoding Restricted Boltzmann Machine [39] on im-
age patches of highways to learn a low-dimensional rep-
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resentation of highway appearances instead of synthesizing
the image (or its patches) from semantic segmentation. Dur-
ing the evaluation, the input image is split into small patches
and each patch is passed through the RBM. The absolute
difference between the original and the RBM reconstructed
image patch is used as an indicator of the presence of an
anomaly. Munawar et al [33] also models the road patches
in a auto-encoder manner and takes into account the ap-
pearance of memorized input patches from previous video
frames. The absolute difference between the input and re-
constructed patches is computed to identify anomalies.

In contrast to the previous two methods, Vojir et al [40]
takes a holistic approach and instead of reconstructing small
image patches use an auto-encoder-like network to learn to
reconstruct, in a discriminative way, RGB values of the road
pixels. The error between the input and the reconstructed
images is computed by structural similarity measure [42].
The reconstruction error is merged with the semantic seg-
mentation logits to produce the final per-pixel anomaly
score. The major shortcoming of these auto-encoder meth-
ods is the simplicity of the bottleneck to capture the road
appearance which results in an inability to utilize the train-
ing data efficiently. This is most prominent during train-
ing where the road appearance is multi-modal (e.g. asphalt,
gravel or cobblestones roads). The method proposed in
this paper also utilizes an auto-encoder architecture, how-
ever, among other things we address this flaw by a proposed
novel explicit embedding bottleneck and demonstrate its ef-
ficiency in the experimental section.

Instead of explicitly synthesizing images from semantic
segmentation labels or learning compact representation of
road appearance for image reconstruction, the method pro-
posed by Lis et al [29] use semantic segmentation to esti-
mate the road region and inpaint it in a sliding window fash-
ion using general-purpose inpainting algorithm [47]. A dis-
crepancy network utilizing VGG features is then trained to
compare the input and inpainted images and detect anoma-
lous regions. In contrast, we propose to use the inpainting
in a later stage in targeted areas and pair it with a ”fixed”
similarity metric to identify discrepancies w.r.t. the input
image. The use of a fixed similarity metric in contrast to
trained discrepancy network limits the effect and biases of
the training data that relies on synthetic anomalies that may
or may not generalize for real-world images.

3. Method
This section describes the four main components of the

proposed method: the baseline part [40], the embedding
bottleneck, the distance-based scoring feature and the in-
painting module. The overall structure is shown in Figure 1.

From the baseline, we adopted the idea of a generative-
discriminative reconstruction module together with the
fixed semantic segmentation network. The reconstruction

module can be efficiently trained with only road annotated
data and simple synthetic anomaly augmentation – it has
shown excellent performance on diverse datasets. Further-
more, the use of a fixed semantic segmentation network al-
lows easy integration into a real-world system that utilizes
some form of semantic segmentation in production without
the need of re-training the semantic segmentation that could
potentially degrade its performance.

However, we identified a major shortcoming of this
method – using a small bottleneck to capture the road ap-
pearance is not able to exploit the training data efficiently.
This is most prominent during training where road appear-
ance is multi-modal (e.g. asphalt, gravel or cobblestones
roads), which prevents training on larger, and more diverse
datasets. Among other things, we address this flaw by the
proposed explicit embedding bottleneck.

The proposed network architecture, see Fig. 1, con-
sists of a fixed semantic segmentation network (we adopted
DeepLabV3 [9]), the embedding bottleneck, the reconstruc-
tion module (adopted from [40]), the embedding scoring
feature estimation block, inpainting and coupling modules.
The reconstruction module takes features f ∈ RC,Hf ,Wf

from the semantic segmentation backbone as an input and
is trained to reconstruct the original pixel values of the driv-
able surface from the embedding bottleneck (Section 3.1),
while inducing large reconstruction error elsewhere. For a
detailed explanation of the reconstruction module, the read-
ers are referred to [40].

The coupling module fuses logits l ∈ RK,H,W from
the semantic segmentation, the image reconstruction error
rerr ∈ RH,W , the embedding scoring feature f ds and f dr

(Section 3.2) and the inpainting error Lvgg (Section 3.3) to
produce the per-pixel anomaly score map smap ∈ RH,W .

The rest of the section describes the proposed modules in
detail. Section 3.1 presents the design to handle the multi-
modal appearance of road surfaces. The embedding space
enables the use of novel input image conditioned embed-
ding scoring feature (Sec. 3.2), allowing identification of
”miss-classified” road regions on-the-fly and to alleviate the
issue with previously unseen road appearance. Lastly, a new
inpainting technique is introduced in Section 3.3, address-
ing the issue with consistent classification of anomalies.

3.1. Embedding Bottleneck

To address the data utilization problem of learning multi-
modal road appearance in the bottleneck, we propose to in-
ject a small embedding network that takes the backbone fea-
tures and transform them into a embedding vectors. For
each spatial location fx,y ∈ RC , an embedding vector
ex,y ∈ RD is computed. To that end, an atrous spatial
pyramid pooling (ASPP) [9] extracts contextual features for
location (x, y). The ASPP block is modified to output the
concatenation of the features extracted with different dila-
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Figure 1. Method overview and its six main blocks. The input image is processed by the semantic segmentation network [9] with fixed
weights. The intermediate image representation f is processed by the embedding bottleneck and also used for the skip connection to the
reconstruction module [40]. The reconstructed image is compared to the input image using the SSIM to produce the reconstruction error
rerr. The reconstruction error is used in the inpainting module to obtain the inpainting mask (by thresholding) and the VGG features of
the inpainted and input images are compared to obtain the perceptual loss map Lvgg. Moreover, the reconstruction error and the semantic
segmentation are utilize in the distance-based features block to extract the road region masks M dr and M ds. These masks enable to compute
the mean road embeddings and the distance-based scoring features f dr and f ds. The aforementioned intermediate results are concatenated
in the coupling module where the final anomaly score map smap is estimated.

tion (i.e. by removing the last 1 × 1 conv. layer + Batch
Normalization + ReLU). By this use of the ASPP, back-
bone features f with higher resolution can be utilized with-
out losing the additional contextual information from larger
receptive fields in later stages. Note that the baseline [40]
uses the DeepLab v3 [8] architecture for the segmentation
network with the ResNet-101 [19] backbone with features
extracted before the last downsampling, i.e. at 1/16 input
image scale instead of 1/32. The ASPP block is followed
by three FC layers with ReLU activations to obtain the final
D-dimensional embedding ex,y .

The major difference, in addition to the modification of
the bottleneck, is the explicit loss set on the embeddings. A
max-margin triplet loss [37] is used to enforce the margin
m distance between embeddings of anchor sample (ea) and
negative (en – else) sample while minimizing distance to
positive (ep – road) samples as follows:

Ltri =
1

|T |
∑

(a,p,n)∈T

max (||ea − ep|| − ||ea − en||+m, 0)

+λd
(en − ea)

||en − ea||
· (ep − ea)

||ep − ea||
,

(1)
where T is the set of triplets and |T | its size. The last
term (the dot product of two normalized vectors) is the di-
rectional regularization [32] with λd as the weighting fac-
tor. Depending on the size of the input image, there can

be an excessive number of triplets, e.g. if the all mining
strategy [14] is used. For this reason, a stochastic sam-
pling procedure is used to randomly choose a limited num-
ber of anchor samples (this number can be adjusted based
on the available GPU memory, in all our experiments we
set it to 1024). To select the positive and negative sam-
ples, the ground-truth labels need to be resized to the res-
olution of the features f . Instead of simple resizing using
nearest-neighbour interpolation, a majority vote strategy is
employed to address the corner cases of areas where mul-
tiple labels meet. The triplets for the training are formed
using the semi-hard negative mining [37] strategy to select
the negative samples and the easy positive sampling strat-
egy (ESP) [25] for positive samples. These two sampling
strategies and the regularization [32] help with a training
convergence and, in the case of the ESP, to prevent a class
collapse and allow to represent multi-modal distribution of
the road class embeddings.

3.2. Distance-based Scoring Feature

The embedding bottleneck is further exploited for the
purpose of extracting on-line appearance distance-like
scores. This additional feature addresses the problem of in-
creased false positive classifications induced by unknown
(i.e. not seen during training) road appearances by comput-
ing road similarity score w.r.t. the observed image utiliz-
ing the structured embedding space. The design is based
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on a hypothesis that a mean representation of the observed
road in the embedding space (even though computed from a
noisy and incomplete list of all correct road embeddings in
the observed image) would yield a small distance to all cor-
rect road embeddings, and therefore, would be able to iden-
tify them. To utilize this assumption, a new feature channel
fd ∈ RHf ,Wf is introduced. It is computed location-wise,
where for each spatial location (y, x) is computed as:

fd
x,y =||ē− ex,y||

ē =
1∑

i,j Mi,j

∑
(i,j) s.t. Mi,j=1

ei,j ,
(2)

where ē is the mean embedding computed from embeddings
with estimated road label indicated by 1 in the mask M .

In the current implementation, two feature channels –
f ds and f dr – are used, computed according to Eq. 2. The
masks, required for computation of the features, are ob-
tained from i) the semantic segmentation logits l to esti-
mate the mask M ds and the f ds and ii) from the thresholded
reconstruction error rerr to estimate the mask M dr and the
f dr. Note that other source of the mask can be introduced
to increase robustness to the failure modes of the respec-
tive sources of the road labellings. The effectiveness of this
feature is evaluated in the ablation study (Section 4.1).

3.3. Inpainting Module

To address the issue of consistent anomaly classification,
we propose to use an inpainting technique. It is motivated
by the observation that anomalies are not similar to anything
in the image (except themself, e.g. fallen rocks on the road)
and therefore the inpainting should not be able to recreate
the anomaly from its neighbourhood. The inpainting mod-
ule, in our case, serves two tasks: (i) identifying false posi-
tives (a prominent example is the lane markings where part
of them are classified as anomalies due to shadows or other
appearance degradations) and (ii) refinement of the anomaly
segmentation boundary.

For the inpainting technique, the DeepFillv2 [47]
method was adopted. This holistic method allows for in-
painting of areas defined by a free-form mask (e.g. random
areas in the image), which is well suited for our applica-
tion where the inpainting mask comes from the intermediate
results obtained from thresholding the reconstruction error
rerr by learnable threshold and applying a 7 × 7 morpho-
logical dilation. The error metric between the input image
I and the inpainted version Ī is a perceptual loss [21, 15],
which computes the mean Manhattan distance between fea-
tures extracted from the VGG [38] network at different con-
volutional layers. We intentionally use fixed VGG features
to compute the perceptual loss, instead of e.g. training spe-
cial discrepancy network [30, 29], to limit the source of
overfitting and reliance on quality of training data, since

Input Image JSR-Net ODIN Image Resynth. SynBoost Entropy Max. DaCUP

Figure 2. Qualitative results on the SMIYC benchmark. Best
viewed in color and zoomed-in. The DaCUP shows excellent per-
formance on various surfaces with the ability to avoid false posi-
tives induced by road surface texture. The main weakness is the
performance for small and distant objects. Ground-truth anoma-
lies are marked red with a green border (left column). Qualitative
results for all datasets are included in supplementary materials.

the anomalies in the training data are obtained synthetically
through augmentation and their quality and variance is low.
The inpainting perceptual difference map Lvgg is a weighted
average of the channel-wise mean distance with sigmoid
non-linearity σ(·) to normalize the error to (0,1) range:

Lvgg = σ

(
n∑

i=1

Ubl

(
wi

Ci

Ci∑
c=1

∥ϕ(i)(I)− ϕ(i)(Ī)∥1

))
,

where Ci is the number of channels of the i-th layer and
function Ubl(·) is bilinear interpolation to resize the dis-
tance maps to common size (i.e. the size of the input image).
Weights wvgg = (w0, w0, . . . , wn), for each used convolu-
tional layer the VGG network, are learned during training.

The inpainting perceptual loss is concatenated in the
coupling module with the other features, namely, with log-
its l from the semantic segmentation network, and with re-
construction error rerr from the reconstruction module and
the two distance-based embedding score feature, f ds and
f dr. Similarly to [40], the coupling module fuses the feature
channels and produces the final binary classification road
vs. anomaly.

We observed that it is beneficial to inject augmentation
to the inpainting mask for the coupling module to learn to
recognize inpainting of road and other classes which may
not be anomalies since it not always results in low percep-
tual loss and depends on the image context. For that reason,
a random free form mask [47] is added to the estimated in-
painting mask during training.
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3.4. Training Details

The training starts with a warm-up procedure; for the
first five epochs only the triplet loss Lfinal = Ltri (Eq. 1) is
used. For epochs six to ten, we switch to Lfinal = Ltri +LR.
The auxiliary reconstruction loss, LR, and computed as:

LR =
1

2|Mr|
∑
x,y

max
[
0, 1− SSIM

(
ux,y

Î
, vx,yI

)
− ξ
]
Mx,y

r

+
1

2|Ma|
∑
x,y

max
[
0,SSIM

(
ux,y

Î
, vx,yI

)
− ξ
]
Mx,y

a

where M is a ground-truth binary mask for the road and
not-road (anomalies) pixels respectively and |M | denotes
the number of non-zero elements of the mask. The slack
variable, ξ, was set to 0.001 as in [40]. The SSIM is the
structural similarity index measure [43]. For a pixel at loca-
tion (x, y) of a single channel image, SSIM is computed as:

SSIM(ux,y

Î
, vx,yI ) =

(2µuµv + c1)(2σuv + c2)

(µ2
u + µ2

v + c1)(σ2
u + σ2

v + c2)
(3)

where ux,y

Î
, vx,yI are local patches of reconstructed image Î

and input image I centered at (x, y). The µ, σ are the mean
and variance of pixel values in these patches. The constants
c1, c2 are used to normalize SSIM to the (0, 1) range and are
set to the default values 0.012 and 0.032. Eq. 3 is evaluated
for each image channel (R,G,B) separately and averaged to
produce the final reconstruction error rerr.

After ten epochs, the final loss Lfinal = λxentLxent +
λtriLtri + λRLR is used. The weights are set to λxent =
0.6, λtri = 0.2, λR = 0.2. The Lxent is the negative log
likelihood loss applied to the binary classification output of
the coupling module as:

Lxent = − 1

N

N∑
n=1

(1− cn) log(1− ĉn) + cn log(ĉn)

where N is number of pixels, the cn and ĉn are the ground-
truth and estimated labels for the nth pixel respectively.

The triplet loss regularization weight λd is set to 0.2 per
recommendation in [32]. The initial learning rate was set to
0.001 and polynomial learning rate decay with power of 0.9
is used. For optimization, a stochastic gradient descent with
momentum (0.9) and weight decay (5e-4) is used.

The perceptual loss is computed using three intermediate
layers of the VGG network – conv1 2, conv2 2 and conv3 3,
and the initial weights wvgg are set equally to 0.33.

4. Experiments
This section presents two main experiments: (i) an abla-

tion study and (ii) a comparison to the state-of-the-art meth-
ods. The ablation study consists of three experiments. The

Training Data
LaFRAROFS Obstacle Track+

AP ↑ FPR95 ↓ AP ↑ FPR95 ↓

baseline CityScapes 83.7 4.4 56.2 26.3
w/ emb. space CityScapes 88.1 (4.4) 3.2 (1.2) 48.4 (7.8) 5.9 (20.4)

baseline S(CityScapes,BDD100k) 85.4 4.5 61.3 10.0
w/ emb. space S(CityScapes,BDD100k) 87.6 (2.2) 3.3 (1.2) 63.0 (1.7) 3.9 (6.1)

baseline CityScapes,BDD100k 83.5 4.8 52.2 22.9
w/ emb. space CityScapes,BDD100k 91.2 (7.7) 2.9 (1.9) 78.5 (26.3) 2.7 (20.2)

Table 1. Embedding bottleneck (§3.1) - dependence on training
with data varying in size and road appearance diversity. S(·) in-
dicates sub-sampling of the datasets to the size of CityScapes and
to have roughly equal number of images from each dataset. The
proposed embedding bottleneck lead to improvements in all cases,
being especially effective for complex data that required to model
diverse road appearance; note the decrease in false positives.

first evaluates the benefit of the explicit embedding space.
The second ablation study shows the contributions of the
individual proposed components (note that not all compo-
nents are orthogonal and can be used independently, e.g. the
embedding channels require the explicit embedding space).
Lastly, the benefit of the inpainting module is evaluated.

All versions of the proposed method were trained with
the same parameters and training data, unless stated other-
wise. We follow the standard evaluation protocol, i.e. the
evaluation is limited to the road region and the two stan-
dard performance measures are adopted from [36, 3, 29].
Namely, the False Positive Rate at 95% of True Positive
Rate (FPR95) and average precision (AP, i.e. area under the
Precision-Recall curve).

Despite fixing the random seeds in all experiments, the
training procedure is non-deterministic due to the imple-
mentation of the cudnn library. We train the model with-
out the inpainting module, i.e. baseline + emb.space +
emb.channels, four times to provide a notion about the per-
formance fluctuation and results significance when compar-
ing different versions of the method. The choice to leave
out the inpainting module was purely practical (faster train-
ing given our limited resources). We report the results
for DaCUP method (without the inpainting module) as the
mean performance values with standard deviation and we
assume that the other method versions will exhibit similar
performance uncertainty.

Datasets. The evaluation was carried out on all com-
monly available real-data anomaly detection datasets. We
created two meta-datasets, specifically: Lost-and-Found
(LaF) [36], Road Anomaly (RA) [30], Road Obstacles
(RO) [29] and Fishyscapes (FS) [3] collectively denoted
as LaFRAROFS . The second meta-datasets contains data
from benchmark [7], including its validation data to utilize
all available images, i.e. RO plus new (222) and validation
(30) images as described in [7], and we denote it as Ob-
stacle Track+. We annotated the Obstacle Track+ dataset
to facilitate the evaluation in the ablation study. Tables 3
and 4 show that the results are correlated with the official

5496



baseline embedding
space

embedding
channels inpainting

LaFRAROFS Obstacle Track+

AP ↑ FPR95 ↓ AP ↑ FPR95 ↓

✓ 85.4 4.5 61.3 10.0
✓ ✓ 87.6 3.3 63.0 3.9
✓ ✓ ✓ 90.9±0.9 2.4±0.3 80.5±2.5 2.7±0.7

✓ ✓ ✓ ✓ 91.2 2.4 86.1 1.5

Table 2. Ablation study of the methods building blocks. The third
row also shows the standard deviation in performance for multiple
training runs to established a significance of result differences.

ones. We intentionally did not use the LostAndFound No-
Known track from [7] since it is formed exclusively from the
data in LaFRAROFS. The performance on the meta-datasets
is characterized by performance averaged over the respec-
tive sub-datasets. These averaged metrics (AP and FPR95)
were used in [40] and the results we report are consistent
and directly comparable to this prior work (in case of the
LaFRAROFS). Result for individual sub-datasets are avail-
able in the supplementary materials.

For comparison with the state-of-the-art methods,
we used the official SegmentMeIfYouCan benchmark
(SMIYC) [7]. The performance results are obtained by sub-
mitting the per-image estimated anomaly scores through the
benchmark website. The results for LaFRAROFS were ob-
tained by evaluating the baseline methods available in the
SMIYC benchmark toolkit (with available pre-trained mod-
els). Qualitative results on selected images are shown in
Figure 2. The qualitative results demonstrate clearly the
main strength and weakness of the proposed method, i.e. ex-
cellent performance on various surfaces with the ability to
recognize false positives induced by road surface texture
and unsatisfactory performance for small distance objects.

4.1. Ablation Study

Explicit Embedding Space. In this experiment, three types
of training data are used to demonstrate the effectiveness
of the explicit embedding space proposed in Section 3.1.
The first two datasets test the ability to model multi-modal
road appearance. For that purpose, we used CityScapes [11]
and a combined dataset of CityScapes and BDD100k [46]
that is subsampled (unless stated otherwise) to have a simi-
lar number of training examples as CityScapes alone and a
similar number of images from CityScapes and BDD100k.
The training images from the respective datasets were cho-
sen at random and fixed for all experiments. The subsam-
pled dataset is denoted as S(CityScapes,BDD100k). Lastly,
we assess the ability to model road appearance in unbal-
anced scenarios using the full combination of CityScapes
and BDD100k datasets (note: BDD100k has approximately
four times more datapoints than Cityscapes). The results
are summarized in Table 1, showing the benefit of the pro-
posed embedding bottleneck, especially in effectiveness of
data utilization and ability to model diverse road appear-
ances (i.e. low false positive).

LaFRAROFS Obstacle Track+

AP ↑ FPR95 ↓ AP ↑ FPR95 ↓

Maximum Softmax [20] 29.7 28.9 11.8 21.2
+ inpainted 52.3 (22.6) 26.7 (2.2) 41.3 (29.5) 19.8 (1.4)

Mahalanobis [24] 44.7 32.6 31.6 17.9
+ inpainted 55.2 (10.5) 17.0 (15.6) 45.8 (14.2) 9.2 (8.7)

JSRNet [40] 83.7 4.4 56.2 26.3
+ inpainted 87.1 (2.4) 2.9 (1.5) 65.7 (9.5) 22.0 (4.3)

ODIN [26] 50.7 25.9 20.4 18.7
+ inpainted 71.2 (20.5) 11.8 (14.1) 53.4 (33.0) 7.1 (11.6)

Image Resynthesis [30] 66.3 25.0 54.9 9.8
+ inpainted 66.6 (0.3) 25.0 (0.0) 57.9 (3.0) 9.8 (0.0)

SynBoost [13] 77.5 15.4 68.4 3.4
+ inpainted 80.7 (3.2) 14.3 (1.1) 75.5 (7.1) 2.0 (1.4)

Maximized Entropy [8] 86.3 6.4 86.4 1.9
+ inpainted 85.4 (0.9) 6.2 (0.2) 86.3 (0.1) 1.0 (0.9)

DaCUP (ours) w/o 90.9±0.9 2.4±0.3 80.5±2.5 2.7±0.7
+ inpainted 90.7±0.6 (0.2) 2.3±0.3 (0.1) 80.9±1.6 (0.4) 1.6±0.1 (1.1)
+ inpainted trained 91.2 (0.3) 2.4 (0.0) 86.1 (5.6) 1.5 (1.2)

Table 3. Inpainting module impact on state-of-the-art methods.
For all methods, it significantly reduces the false positives (FPR95)
on all datasets. Besides Maximum Entropy [8], with performance
effectively unchanged, average precision (AP) is improved too.
The last three rows show the benefit of jointly training the inpaint-
ing module and the main method. For detailed discussion, see
the ablation study section (4.1). The full results for the individual
datasets are in supplementary materials.

Component Analysis. For the component analysis, all
models are trained using the S(CityScapes,BDD100k)
dataset, mainly to speed up the training process with lim-
ited available resources. The individual tested components
are: (i) the baseline, which refers to [40], (ii) embedding
space Section 3.1, (iii) embedding channels Section 3.2 and
(iv) inpainting Section 3.3. Table 2 shows the results for this
experiments and highlights the additive performance gains
of the individual contributions.
Inpainting Module. This ablation experiment demon-
strates the benefit of the inpainting module itself when used
as a post-processing step. Ideally, the inpainting model
would be trained jointly with the respective methods, how-
ever, due to limited resources we proposed this simpler
technique that regardless of the sub-optimal combination
yields significant performance improvements. The differ-
ence between using the simpler post-processing version and
jointly trained (as proposed in Section 3.3) is shown in the
last two rows of Table 3. The architecture of the simple ver-
sion is the same as proposed, however, the trainable weights
were set manually to put progressively more weight to the
higher-level features (0.2, 0.3, 0.5 respectively) and the fi-
nal anomaly score map in the inpainted regions is computed
as an average between the perceptual loss and the original
output. The inpainting mask is obtained by thresholding
the method’s output and the threshold was fine-tuned for
each method by grid search using values (0.1, 0.2, ..., 0.9).
The results are shown in Table 3. The inpainting module
helps in most cases, mainly in the reduction of the false
positives. The effect is somewhat diminished for the best
performing methods, however, even for the best performing
(Maximized Entropy [8]) it helps to reduce the false posi-
tives on Obstacle Track+by half with negligible impact on
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Obstacle Track LostAndFound NoKnown Processing
speed [s]

AUPR↑ FPR95 ↓ sIoU↑ PPV↑ F1 ↑ AUPR↑ FPR95 ↓ sIoU↑ PPV↑ F1 ↑

Maximum Softmax [20] 15.7 16.6 19.7 15.9 6.3 30.1 33.2 14.2 62.2 10.3 0.47
Mahalanobis [24] 20.9 13.1 13.5 21.8 4.7 55.0 12.9 33.8 31.7 22.1 15.46
ODIN [26] 22.1 15.3 21.6 18.5 9.4 52.9 30.0 39.8 49.3 34.5 3.85
JSRNet [40] 28.1 28.9 18.6 24.5 11.0 74.2 6.6 34.3 45.9 36.0 0.09
Image Resynthesis [30] 37.7 4.7 16.6 20.5 8.4 57.1 8.8 27.2 30.7 19.2 0.65
Road Inpainting [29] 54.1 47.1 57.6 39.5 36.0 82.9 35.8 49.2 60.7 52.3 —
SynBoost [13] 71.3 3.2 44.3 41.8 37.6 81.7 4.6 36.8 72.3 48.7 1.62
Maximized Entropy [8] 85.1 0.8 47.9 62.6 48.5 77.9 9.7 45.9 63.1 49.9 0.43
NFlowJS [16] 85.6 0.4 45.5 49.5 50.4 89.3 0.7 54.6 59.7 61.8 —

DaCUP (ours) 81.5 1.1 37.7 60.1 46.0 81.4 7.4 38.3 67.3 51.1 0.80

Table 4. Comparison with the state-of-the-art on SegmentMeIfYouCan benchmark (on two tracks – Obstacle and LaF NoKnown). The
DaCUP is among the top 3 methods in all criteria. The last column reports processing time per-image, averaged over sixty 1280 × 720
images, on NVIDIA GeForce RTX 2080 Ti.

Method µA[px] / µR Pr Re TPr FPr F1

MaskRCNN [18] - / - 93.1 (64.0) 41.7 (89.0) 27.1 (0.8) 2.0 (0.4) 57.6 (74.5)
ENet [35] 78 / 85.9 59.8 (17.2) 96.3 (96.0) 62.6 (3.8) 42.0 (18.6) 73.8 (29.1)
DeepLabV3 [9] 21 / 97.0 80.0 (43.5) 92.7 (95.8) 60.2 (3.8) 15.1 (5.0) 85.9 (59.9)
BiSeNet [45] 17 / 97.6 90.6 (74.8) 89.9 (94.8) 58.4 (3.8) 6.1 (1.3) 90.3 (83.7)
RefineNet [27] 18 / 97.6 89.1 (67.3) 93.0 (96.3) 60.4 (3.9) 7.4 (1.9) 91.0 (79.2)
WaSR [4] 21 / 97.1 95.6 (84.2) 87.5 (92.1) 56.8 (3.7) 2.6 (0.7) 91.4 (88.0)

DaCUP (ours) 42 / 93.0 92.3 (64.7) 84.5 (85.5) 54.9 (3.4) 4.6 (1.9) 88.2 (73.6)
w/o inpaint 28 / 95.6 96.4 (80.0) 81.6 (92.9) 53.0 (3.7) 2.0 (0.9) 88.4 (86.0)

Table 5. Comparison with top performing methods on the MODS
benchmark. The results for the state-of-the-art methods are from
the benchmark publication [6]. Performance in the danger zone
(15m around the vehicle) is shown in parentheses. The first (bold)
and the second (underline) best results are marked.

average precision. If the inpainting module is trained jointly
it can manifest in larger performance gain as demonstrated
in our proposed method (last three rows in the Table 3).

4.2. State-of-the-Art Comparison

The proposed DaCUP method is compared with state-
of-the-art methods on the SegmentMeIfYouCan benchmark
(Table 4), and on the LaFRAROFS dataset (Table 3). The
proposed method performs favorably against other state-of-
the-art methods, ranking among top-3 in the SMIYC bench-
mark and top-1 on the LaFRAROFS dataset (note that the
NFlowJS [16] method is not open-source and therefore
only the results for the SMIYC benchmark from the official
leaderboard are available). The processing speed of state-
of-the-art methods with available source code is provided
in last column of Table 4. We observed that the main issue
of the proposed method is the detection of small, distant
objects. Our hypothesis is that it is caused by the low reso-
lution of the embedding space features with no lateral skip
connection during upsampling in all stages, i.e. in the re-
construction module, in the distance-based features and in
the coupling module.

4.3. Anomaly detection in maritime scenario

The proposed DaCUP method is primarily intended for
an autonomous driving scenario, however, there are no do-

main specific design choices and thus it is not limited to
the driving scenario. It is possible to apply DaCUP to other
applications with similar setting, i.e. one known class with
limited appearance variability vs. the rest. We demonstrate
in a maritime scenario on the task segmenting water and the
sky; everything else as an anomaly - an obstacle.

We trained the segmentation network and the DaCUP on
the MaSTr1325 - Maritime Semantic Segmentation Train-
ing Dataset [5] with the same setting and parameters (water
and sky as known classes and everything else as anomalies).
The method was evaluated on the MODS benchmark [6]. It
performed competitively in obstacle detection (see Table 5)
with no domain specific knowledge, e.g. IMU or horizon es-
timation module as WaSR [4]. The performance of DaCUP
with the inpainting module is degraded because the inpaint-
ing network hallucinates many false positives, since it was
not trained using marine domain data, whereas the other
parts were re-trained. Both methods used the same single
threshold (set to 0.3) to classify to water or obstacle.

5. Conclusions
We proposed the DaCUP method, exploiting general

properties of anomalous objects. It efficiently models the
multi-modal appearance of road surfaces to localize anoma-
lies, and provides image consistent anomaly detection us-
ing an inpainting mechanism and distance-based features.
The method achieves state-of-the-art results. The proposed
inpainting module can be used by other methods (demon-
strated by plugging a simplified version as a post-processing
step) to greatly reduce false positives. We applied the
DaCUP on different data domain and achieve performance
comparable to specialized methods. The main limitation of
DaCUP is its lower performance for small and distant ob-
jects, most likely caused by the use of low resolution fea-
tures with no lateral skip connections during upsampling.
Acknowledgements This work was supported by Toyota
Motor Europe.
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