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Abstract

Effective and flexible allocation of visual attention is key
for pedestrians who have to navigate to a desired goal un-
der different conditions of urgency and safety preferences.
While automatic modelling of pedestrian attention holds
great promise to improve simulations of pedestrian behav-
ior, current saliency prediction approaches mostly focus
on generic free-viewing scenarios and do not reflect the
specific challenges present in pedestrian attention predic-
tion. In this paper, we present Context-SalNET, a novel
encoder-decoder architecture that explicitly addresses three
key challenges of visual attention prediction in pedestrians:
First, Context-SalNET explicitly models the context factors
urgency and safety preference in the latent space of the
encoder-decoder model. Second, we propose the exponen-
tially weighted mean squared error loss (ew-MSE) that is
able to better cope with the fact that only a small part of
the ground truth saliency maps consist of non-zero entries.
Third, we explicitly model epistemic uncertainty to account
for the fact that training data for pedestrian attention pre-
diction is limited. To evaluate Context-SalNET, we recorded
the first dataset of pedestrian visual attention in VR that in-
cludes explicit variation of the context factors urgency and
safety preference. Context-SalNET achieves clear improve-
ments over state-of-the-art saliency prediction approaches
as well as over ablations. Our novel dataset will be made
fully available and can serve as a valuable resource for fur-
ther research on pedestrian attention prediction.

1. Introduction
The visual behavior of pedestrians in a street cross-

ing situation is influenced by the concrete layout of the
street [13, 41], but also to a large extent by the existence
of the time pressure [48, 2]. Due to its importance to traf-
fic safety, pedestrian attention has been studied extensively
in human science [2, 14, 20, 61]. Automatic prediction of
pedestrian attention can open up the possibility to create
more realistic training environments both for humans and

Figure 1. In contrast to classical free-viewing visual attention
prediction on static images, pedestrian visual attention prediction
is highly context dependent. Furthermore, saliency maps gener-
ated from pedestrian attention are more sparse compared to free-
viewing saliency maps that are aggregated over several subjects
viewing the same image.

autonomous agents. Furthermore, it will help to more accu-
rately model and understand critical traffic scenarios [25].
Automatic prediction of human attention has received great
interest in the computer vision community since more than
two decades [4, 3]. Significant progress has been made
especially on datasets employing a context-agnostic, free
viewing paradigm with static images [28, 37, 18]. These
models predict saliency maps that are averages of gaze be-
havior obtained from several observers for a given static im-
age. Much fewer works proposed visual attention prediction
models in an interactive environment that take into account
navigation or search task characteristics [51, 6]. Until now,
no approach for the prediction of pedestrian attention in an
interactive environment exists that is able to account for the
context factors that are specific to pedestrian behavior (i.e.
urgency and safety). Likewise, to the best of our knowledge,
no publicly available dataset to train such a model exists.

We close this gap by proposing the first method and
dataset for pedestrian attention prediction in street-crossing
scenarios. Whereas, we do not address the task of salient
object detection1, which is a well-established area. Our
approach consists of an encoder-decoder architecture and
addresses three key challenges that distinguish pedestrian

1https://paperswithcode.com/task/salient-object-detection
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attention prediction from the classical scenario of saliency
prediction on static images. First, to capture the context
dependence of pedestrian attention, we augment the hid-
den state of the encoder-decoder with information on the
urgency and the safety preference of the pedestrian. Sec-
ond, as opposed to the static image scenario, only a few
pixels are activated in the saliency maps of visual attention
in an interactive environment. To better cope with this fact,
we propose the exponentially weighted Mean Squared Error
(ew-MSE). This loss punishes the network less for wrong
high-saliency predictions. Third, neural saliency models are
commonly trained on multiple datasets to reduce model un-
certainty and achieve the highest performance. As only our
novel dataset for pedestrian attention prediction is available
as of now, we explicitly model the epistemic uncertainty of
the model [33].

The specific contributions of this work are threefold:
First, we propose Context-SalNET, the first approach that
addresses the task of pedestrian attention prediction. Sec-
ond, we record the first publicly available dataset pedes-
trian attention prediction. The dataset consists of diverse
street-crossing scenarios recorded in virtual reality and ex-
plicitly varies the context factors urgency and safety prefer-
ence. The dataset consists of 528 different scenarios formed
based on German In-depth Accident Study (GIDAS) report
with a different street layouts and considered in this work
context factors. Additionally, the complexity has been ex-
tended with layout components like safety-island and mul-
tiple lanes in moving directions [62, 63]. Thus, the to-
tal number of recorded frames is 35K, which are addi-
tionaly labelled with the context information of 11 partic-
ipants in total. The full dataset will be made publicly avail-
able for future research. Third, we conduct comprehen-
sive quantitative and qualitative evaluations on this novel
dataset, showing the effectiveness of our context modelling
approach as well as our proposed ew-MSE loss and the util-
ity of modelling epistemic (statistical) uncertainty. In ad-
dition, Context-SalNET outperforms a current state-of-the-
art saliency prediction approach [18] trained on the same
dataset and improves over the current best saliency predic-
tion approach on the MIT/Tübingen benchmark [36] which
was trained on a much larger collection of datasets (no train-
ing code available for a direct comparison) [44].

2. Related Work
Our work is related to the state of the art in human at-

tention prediction, and, more specifically to task-dependent
visual attention prediction.

2.1. State of the Art in Visual Attention Prediction

Most work on human attention prediction has focused
on the task of predicting context-free saliency maps on im-
ages [28, 38, 12, 18, 60]. The ground truth for this task

is a gaze density map averaged over many observers for
a given image. The current state-of-the-art approaches on
the influential MIT saliency benchmark [36] are DeepGaze
IIE [44] (1st), UniSal [18] (2nd) and SalFBNet [16]
(3rd). DeepGaze IIE improves over its previous version
DeepGazeII [38] by fusing different backbone networks,
thus, the exact training setup is essential to avoid perfor-
mance bias. At the time of submission, no open-source
implementation of DeepGaze IIE was available that would
allow us to train the network on our dataset. [16] pro-
posed SalFBNet which learns a saliency distribution using
pseudo-ground-truth, and subsequent fine-tuned on existing
datasets. No implementation was publicly available at the
time of submission. UniSal [18] on the other hand uti-
lizes domain adaptation to train a single model for both
image- and video based saliency generation. We choose
UniSal as a context-free baseline method, as the authors
provide an open-source implementation, allowing for train-
ing on our dataset. The majority of saliency generation
models [44, 18, 15] are following similar architectural de-
signs with encoder and decoder. UniSal [18], for instance,
consists of a MobileNet V2 [56] encoder, followed by con-
catenation with learned priors, Bypass-RNN, and a de-
coder with skip connections, fusion and smoothing layers.
The usage of domain-adaptive modules allows for domain-
shift between the image and video saliency datasets. Note
that a large body of work exists on video saliency predic-
tion [46, 68, 75, 30, 47, 45, 39], as well as on egocen-
tric saliency prediction [64, 26, 70]. Recent works in this
field commonly extract temporal features like optical flow,
recurrences, or 3D convolutions [47, 45, 39, 64]. While
these techniques are applicable to our scenario, our focus
in this work is to investigate pedestrian attention predic-
tion informed by context attributes, as well as our proposed
ew-MSE loss that addresses the challenge of sparse ground
truth saliency. To isolate these aspects and to increase the
comparability to the current state of the art in saliency pre-
diction, we choose to leave the integration of temporal fea-
tures to future work.

2.2. Task-dependent Visual Attention Prediction

A large number of works show the importance of the
task context in human visual attention allocation [73, 5,
40, 22, 21]. For example, [21] studied the effects of free-
viewing, as well as search- and navigation tasks on visual
attention in a virtual environment.They found that naviga-
tion, in contrast to free-viewing and search tasks, produces
fixations which are more center located. Moreover, in [40],
authors studied the relation between eye movements and
day-to-day activities like food preparation tasks, indicating
nearly all eye movements are made to task-relevant objects.
It confirms the high effect of the ”top-down” component,
whereas the bottom-up attributes like color, shape, and size
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contribute very little to ”intrinsic saliency”. Interestingly,
authors in [7] classified the type of driving (manual vs au-
tonomous) given gaze patterns recorded in a virtual study.
All these works scientifically confirm the importance and
influence of contextual factors on visual attention.

Despite the importance of context in human attention al-
location, only few attention prediction methods explicitly
model context. An early computational model predicting
task-dependent visual attention prediction was introduced
in [51]. The authors incorporated task-dependent top-down
modulation with bottom-up saliency extraction to model
participants’ attention when playing video games. Later, [6]
instructed subjects to navigate in simulated environments
(2D and 3D). Task attributes were modelled by a gist de-
scriptor [65, 55], as well as by the subjects’ current mo-
tor actions. More recently [74] proposed a task-dependent
saliency prediction model for web pages. Their CNN mod-
els task-specific and a task-free aspects of attention in sep-
arate branches of the network. In contrast to previous work
which explicitly modelled different kinds of tasks (e.g. nav-
igation versus free viewing [6]), we for the first time explic-
itly model the qualitative aspects urgency and safety prefer-
ence within the framework of pedestrian navigation tasks.

3. Method
The overall architecture of Context-SalNET (Figure 2)

consists of an encoder-decoder neural network, which is
conditioned on the context attribute information (Input 2,
Figure2). To cope with the fact of sparse saliency maps in
the interactive pedestrian scenario, we introduce the expo-
nentially weighted MSE (ew-MSE) loss. Furthermore, we
model epistemic uncertainty in accordance to [33] to ac-
count for the fact that the available data for pedestrian at-
tention prediction is limited.

3.1. Context-SalNET Architecture

Our encoder-decoder architecture is inspired by [50], but
introduces a novel concatenation layer between encoder and
decoder that introduces context information (see Figure 2).
The encoder consists of blocks of CNN layers. Each block
is followed by a max-pooling layer. The concatenation bot-
tleneck layer is composed of an embedding layer to encode
context information, followed by a fully connected layer
with dropout and batch normalization in order to improve
the optimization landscape [57] and to solve for the inter-
nal covariate shift. The decoder mirrors the encoder except
for the addition of upsampling layers to achieve the corre-
sponding resolution. In order to maintain fine-grained spa-
tial resolution, we add skip connections as described in [23]
between blocks 5 and 6 of the encoder and blocks 1 and 2
of the decoder, respectively. In preliminary experiments,
these skip connections proved to have a large impact on
performance. Except for the Sigmoid output layer, we use

ReLU activation functions [49]. The output of the Context-
SalNET is a saliency map indicating the attention focus of
the pedestrian. To avoid overfitting and enable probabilis-
tic inference, dropout is applied to blocks 4 and 6 of the
encoder and 1-3 blocks of the decoder.

3.2. Exponentially Weighted MSE Loss

Compared to classical saliency prediction, where ground
truth saliency maps are aggregated over several observers
of a static image, ground truth saliency maps in pedestrian
attention prediction are much more sparse, only containing
few non-zero entries. To account for this, we modify the
mean squared error (MSE) loss that is commonly used in
saliency prediction by exponentially weighting it with the
magnitude of the prediction. The resulting exponentially
weighted MSE (ew-MSE) loss penalises high predictions
less, combating the tendency of vanilla MSE to resort to
predicting zeros as a result of the sparse ground truth. For-
mally,

ew-MSE= 1
N

N∑
i=1

exp(−ŷi)(yi − ŷi)
2 (1)

where ŷ denotes the model output, y the ground-truth, and
N corresponds to the number of output pixels of ŷ.

3.3. Model Uncertainty

While human attention is influenced by image evidence
as well as context factors, the non-deterministic simula-
tion state space including dynamic vehicles, pedestrian, dy-
namic traffic lights, and obstacles introduces substantial
stochastic components. Due to the interactive nature of our
environment, resulting in different head angles, height, and
body orientations, every FoV image and corresponding eye-
gaze fixation is unique. In contrast to classical saliency
prediction [28], this stochasticity can not be averaged out
and the resulting sparseness of data leads to a large model
(i.e. epistemic) uncertainty [27]. To address this challenge,
we for the first time propose to model uncertainty in a hu-
man attention prediction model. We report Epistemic uncer-
tainty inline with [33], where the dropout variational infer-
ence is adopted during the inference phase to approximate
the distributions over the network parameters. Hence, both
the training and inference phases are conducted with acti-
vated dropout in order to sample from the stochastic poste-
rior, thus, to derive mean and variance over each predicted
pixel. In preliminary experiments, we also evaluated the ef-
fects of modelling aleatoric uncertainty, but we observed no
performance improvements.

3.4. Training Details

We train Context-SalNET according to Equation 1,
where AUC metrics is utilized as an early stop criteria.
Given a total of ∼ 35K pedestrian visual attention im-
ages, we set the ratio of 80% to 20% for the training-
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Figure 2. CNN encoder-decoder architecture of the generator network. The input consists of: 1) field-of-view image and; 2) sample of
corresponding frame specific context attributes. The objective is to output corresponding attention map. Skip connections are indicated
with arrows between encoder and decoder, where batch normalization (BN) is applied to account for different data distributions.

validation data splits, where the testing is performed on
the unseen and subject-specific dataset. We utilized Adam
[34] optimizer with the loss rate of 10−5 and the batch
size of 96 images across the entire workflow of this work.
The input image resolution is set to 224x224x3, as in line
with VGG16 architecture. During leave-one-subject-out
cross-validation training, we used clusters with Tesla A100
(40vGB) and Quadro RTAX6000 (48vGb), 2-Core CPU,
and 128GB RAM, each. The weights of Encoder (batches
of convolution layers 1-5) are initialized from VGG16 [59]
for faster convergence and to overcome insufficient gradi-
ents. UniSal [69] is trained on our dataset in line with
the initial training pipeline, allowing for a fair comparison
to Context-SalNET. Both UniSal and introduced Context-
SalNET rely on backbone networks, ModelNet V2 [56] and
VGG16 [59] respectively, where both pre-trained on the Im-
ageNet dataset2.

4. Dataset
The focus of this research is goal-directed pedestrian be-

havior in traffic scenarios and the influence of context at-
tributes, i.e. high-level aspects. Thus, the targets of the
research are achievable by utilizing synthetic environments
even if a lack in photorealism introduces a domain gap to
real images. However, on a more general note, a domain gap
exists in any combination of training vs testing settings [71]
and is beyond the scope of this work.

4.1. Context Attributes and Scenarios

We manipulated two context factors in the navigation
task that are highly relevant to pedestrian scenarios. First,
we vary the time pressure to which participants are exposed.
Second, we instruct participants to perform their task in ei-
ther a risky or a safe way. To avoid ambiguity we would

2https://www.image-net.org/

like to stress that in our work, we use the notion of context
attributes (time pressure, riskiness), which differs from the
notion of task (e.g. free-viewing vs. search vs. navigation)
used in some previous works [21].

To record a realistic dataset with a high relevance to chal-
lenging real-life traffic situations, we base our scenarios
on the German in-Depth Accident Study3 (GIDAS) which
identified nine classes of critical street-crossing scenarios
(see Figure 4) that specify street layouts and traffic partic-
ipants (pedestrian, vehicle, and potential obstacles). We
added three more additional scenarios to cover additional
urban scene complexities like safety island between two op-
posite direction lanes, multiple lanes in each driving direc-
tion, and crossings involving consecutive traffic lights. This
helps to additionally increase the variation in participants’
visual behavior and the number of opportunities to realise
safe or unsafe street crossing behavior. To further increase
the realism, we embedded these scenarios into a virtual re-
construction (digital-twin) of a real city with accurate street
layouts including traffic lights, pedestrian street crossings,
bicycle lanes, parking spots, as well as reconstructions of
the actual buildings.

4.2. Recording Setup

To simulate the traffic scenarios we chose the open-
source simulation software OpenDS4, whereas we consid-
ered other simulators like Carla5, LGSVL6, and GTA57,
however by the time of conducting the recording ses-
sion it was missing some important features, e.g., sup-
port of pedestrian-centric VR goggles with eye-gaze record-

3GIDAS - https://www.gidas.org/start.html
4OpenDS - https://opends.dfki.de
5Carla - https://carla.org/
6LGSVL - https://www.svlsimulator.com/
7GTA5-https://www.gta5-mods.com/scripts/

driving-mode-selection
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Figure 3. Samples of the recorded dataset and additionally extracted information. Left: samples of recorded field-of-view (FoV) images,
corresponding eye gaze information, and segmentation maps (inline with CityScapes color schema with extensions caused by fine-grained
scene-related details). Right: accumulative distribution of fixation points across all subjects with a context-based split. The N indicates
the number of samples of a specific context type, where mean and std values are self-explanatory.

Figure 4. Traffic scenario layouts based on German In-Depth Acci-
dent Study (GIDAS). The solid vector stands for the approximated
moving direction of the vehicle(s), where the dashed vector indi-
cates an approaching direction of the subject. The red rectangle
stands for an obstacle on the way.

ing, digital-twin setup and workflow control. Moreover,
OpenDS has the key advantage that it will allow other re-
searchers to replay the recorded pedestrian trajectories that
we plan to publish since the raw as well as post-processed
dataset will be released. This will increase both the repro-
ducibility of our research and the value of the dataset to in-
vestigate novel research questions. Figure 3 shows samples
of recorded images (top row), namely RGB frames with cor-
responding post-processed saliency and segmentation maps
respectively. Besides, the corresponding depth maps are
also recorded and to be released. Thus, might assist in fu-
ture empirical studies. The bottom row in Figure 3 illus-
trates distributions of aggregated across all subjects fixation
points based on context factors. Moreover, provided visu-
alizations of context based eye-gaze distributions is inline
with the empirical studies, where subjects tend to look fur-
ther away with vertical mean = 120, 28 and td = 20, 79
in case of ”InHurry/Unsafe” setup (Figure 3, bottom left)
to look for more potential hazards like approaching vehi-
cles. Thus, the perception of higher risk leads to more cau-
tions behaviour and more detailed assessment of the traf-
fic before crossing the street. Such factors are i.e., the ab-
sence of traffic signals and zebra crosswalks, lower time-to-
collision, faster cars, wider streets with several lanes [54].
Whereas, in the case of ”NoHurry/Safe” setup (Figure 3 ,
bottom right), we observe smallest vertical std = 17, 51
with mean = 117, 21 and highest horizontal std = 26, 76.
The aim of our study is to model the impact of context at-
tributes on human visual attention as opposed to low-level

modelling of fine-grained image features, hence, the render-
ing capabilities of the gaming engine is not central for our
research.

To achieve a maximum degree of realism and immersion
in the simulation, we made use of virtual reality goggles.
We employed the HTC Vive Eye8 featuring an integrated
eye tracker. Furthermore, we used two Base Stations 2.0
and collected user input via a Xbox One controller. The
camera rotation and translation coordinates are taken di-
rectly from VR goggles. Thus, pitch, jaw, and roll angles
as well as actions like jumping or squatting are supported
in our setup, which makes it a well-suited benchmark test
due to the underlined complexity. To balance resolution
with simulation performance, we choose a sampling rate of
3 frames-per-second to record the subject’s current field of
view, her current attention, as well as the corresponding se-
mantic segmentation map.

4.3. Procedure

We recruited 15 participants out of which four withdrew
due to feelings of motion sickness. Prior to the study, all
participants gave informed consent for participation and for
inclusion of their pseudonymized data in the dataset. For
each participant, the eye tracker was calibrated at the start
of the recording session. Subsequently, participants spent 5
minutes in the simulation to familiarize themselves with the
controls. Participants were presented with four blocks of
all 12 traffic scenarios each. Each block realized one com-
bination of time pressure (yes/no) and riskiness (high/low).
Each of the 12 trials in a block started by visually indicat-
ing the target location for 5 seconds. Data recording started
after these 5 seconds have passed. In each trial, partici-
pants are able to move forward, backward, left and right
and head movements were mapped to camera movements
along pitch, yaw, and roll angles. Hence, we collected
a unique dataset with 528 scenarios, resulting in ∼ 35K
of unique FoV images and corresponding segmentation,
saliency, depth maps as well as xml files to store simulated

8HTC Vive Eye - https://www.vive.com/
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Figure 5. Qualitative analysis of randomly selected best with (AUC > 0.99%) and worse (AUC < 0.70%) samples. The rows 1-2 stand
for the best samples, while rows 3-4 correspond to the worse visual predictions. Provided renderings serve two purposes: 1) qualitative
baseline evaluations with columns 2-5, and 9; 2) qualitative ablation evaluations with columns 6-9. Column 1 stands for the input FoV
image with a unique RGB sequence ID.

related information e.g., position, speed, orientation of the
body, and head.

5. Experiments

5.1. Pre-Processing

Saliency ground truth information consists of fixation se-
quences, namely recorded X and Y coordinates projected
to the image plane. Following previous work that made use
of fixation maps in pedestrian navigation scenarios [66], we
aggregate the gaze locations obtained from the last three
frames to create a representation of participants’ current fo-
cus of attention. To arrive at continuous ground truth atten-
tion maps, we follow the saliency map computation in [67]
with degree of visual angle set to dva = 9.3. We discount
the previous attention points in intensity to allow the neu-
ral network to account for previous information, but to also
overfitting to the additional auxiliary information. On the
images recorded from the simulator, we applied Contrast
Limited Adaptive Histogram Equalization (AE) [76] to ob-
tain even color distributions across images, which improves
invariance to unique attributes of the scene, e.g. uniquely
colored buildings. For optimal alignment with community
standards, the labelling scheme of our segmentation maps
matches the CityScapes [11] labelling convention except
where we had to introduce new classes that are missing in
CityScapes (e.g. bicycle lanes, parking slots).

5.2. Quantitative Evaluation

Using our novel dataset, we evaluate Context-SalNET
on the task of pedestrian attention prediction both against
state-of-the-art saliency prediction approaches as well as
against ablations. We also evaluate a context-free version
of Context-SalNET against state-of-the-art approaches on
SALICON [32] in order to estimate its performance on an
established saliency benchmark dataset.
Metrics. In line with prior works [4, 67, 8], we adopt the
following evaluation metrics: AUC-Judd (AUC-J), AUC-
Borji (AUC-B), shuffled AUC (s-AUC), Similarity Met-
ric (SIM), Linear Correlation Coefficient (CC), Normalized
Scanpath Saliency (NSS) and Kullback-Leibler Divergence
(KLDiv) [9].
Comparison to SOTA saliency models. Table 1 shows
the evaluation results of Context-SalNET against the lat-
est publicly available state-of-the-art approaches on the
MIT benchmark[36], namely UniSal [18]. We include
the evaluation results of the pre-trained model provided
by DeepGaze IIE [44] (ranked 1st9) and SalFBNet [16]
as training code is not publicly available. Note however,
that these results are not comparable to the other meth-
ods as DeepGaze IIE, for instance, uses several backbone
networks and is trained on different datasets as well as
it utilises center bias information computed on the target
dataset.

Context-SalNET clearly outperformed both the center
bias baseline as well as UniSal [18] (ranked 2nd on MIT
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Method AUC-J ↑ s-AUC ↑ AUC-B ↑ NSS ↑ SIM ↑ CC ↑ KLDiv ↓
DeepGaze2E [44] 0.9526 0.6313 0.7842 2.7158 0.3726 0.5146 0.1326
SalFBNet-R18 [16] 0.9050 0.5418 0.5818 1.7376 0.2761 0.3225 0.2393
SalFBNet-R18Fix [16] 0.9014 0.5340 0.5591 1.6121 0.2605 0.2902 0.2646

Center Bias 0.8360 0.5101 0.5381 1.0940 0.2231 0.2130 0.1322
UniSal [18] 0.9388 0.5631 0.5961 2.7097 0.3978 0.4537 0.3755

Context-SalNET (ours) 0.9605 0.6654 0.7723 3.3048 0.4646 0.5843 0.1690

Table 1. Leave-one-subject-out baseline evaluation results using different evaluation metrics. Arrows indicate whether higher (↑) or lower
(↓) is better. DeepGaze2E/SalFBNet is shown separately as it is composed of several backbone networks and trained on different training
data than the other approaches. Bold numbers indicate the best results.

Method AUC-J ↑ s-AUC ↑ AUC-B ↑ NSS ↑ SIM ↑ CC ↑ KLDiv ↓
No uncertainty

vanilla MSE, no context 0.9587 0.6589 0.7642 3.2163 0.4508 0.5710 0.1782
vanilla MSE 0.9580 0.6567 0.7537 3.2441 0,4544 0.5722 0.1795
no context 0.9581 0.6542 0.7595 3.1670 0.4496 0.5645 0.1764
Context-SalNET 0.9584 0.6570 0.7600 3.1879 0.4472 0.5652 0.1770

Epistemic uncertainty
vanilla MSE, no context 0.9575 0.6552 0.7503 3.2682 0,4620 0.5711 0.1959
vanilla MSE, random context 0.9524 0.6459 0.7427 3.1028 0.4422 0.5498 0.2068
vanilla MSE 0.9588 0.6581 0.7577 3.2888 0.4661 0.5799 0.1933
no context 0.9592 0.6630 0.7744 3.2458 0.4548 0.5770 0.1679
random context 0.9599 0.6577 0.7588 3.2479 0.4566 0.5739 0.1642
Context-SalNET (ours) 0.9605 0.6654 0.77232nd 3.3048 0.46462nd 0.5843 0.16903rd

Table 2. Leave-one-subject-out ablation evaluation results using different evaluation metrics. We present combinations of three ablation
dimensions: uncertainty modelling, context modelling (either removing the context concatenation layer or by providing random context
information), and vanilla mean squared error (MSE) instead of our proposed exponentially weighted MSE.

Benchmark9) across 6 out of 7 metrics. Context-SalNET
clearly improves over DeepGaze2E in 5 out of 7 metrics,
while it is close in AUC-B.
Ablation Study. The results of our ablation study are
summarized in Table 2. To quantify the effect of con-
text modelling we created two different ablated versions:
random context consists of the exact same architecture as
Context-SalNET, but receives random context information
as input. For the no context condition on the other hand
we removed the context network and the context concatena-
tion layer, resulting in fewer network parameters. Crucially,
Context-SalNET clearly improves over both ablation con-
ditions. It improves in 6 out of 7 metrics over the random
context condition and in 5 out of 7 metrics over the no con-
text condition. We also evaluated the impact of our novel
ew-MSE loss by comparing to vanilla MSE. Here, Context-
SalNET improved in 6 out of 7 metrics over the variant with
vanilla MSE. Finally, we observe clear improvement for
epistemic uncertainty modelling. The ablation of Context-
SalNET without uncertainty modelling (i.e. no dropout at

9https://saliency.tuebingen.ai/results.html

test time) is inferior in all 7 metrics.
Performance on SALICON. While general saliency pre-
diction is not the focus of this paper, we evaluate a context-
free version of Context-SalNET on SALICON10 to obtain
an estimate on how our architecture performs on this task in
relation to SOTA approaches (see Table 3). More precisely,
Context-free-SalNET consists of our encoder-decoder ar-
chitecture including ew-MSE loss and epistemic uncer-
tainty modelling, but without the context network and con-
text concatenation layer. Context-free-SalNet shows results
that are close to the state of the art, and even outperfroms
the other methods by a significant margin in the CC metric.

5.3. Qualitative Evaluation

In Figure 5, we randomly selected success (top two rows)
and failure cases (bottom two rows) of Context-SalNET.
DeepGaze2E strongly relies on center bias priors, leading
to an over-estimation of the extent of the attention focus.
UniSal shows more accurate predictions in comparison to
the ground-truth. SalFBNet models show comparable to

10http://salicon.net/challenge-2017/
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Method AUC-J ↑ s-AUC ↑ IG ↑ NSS ↑ SIM ↑ CC ↑ KLDiv ↓
MD-SEM [19] 0.864 0.746 0.660 2.058 0.868 0.774 0.568
EMLNet [29] 0.866 0.746 0.736 2.050 0.886 0.780 0.520
SAM-Res [12] 0.865 0.741 0.538 1.990 0.899 0.793 0.610
ACNet-V17 [42] 0.866 0.739 0.854 1.948 0.896 0.786 0.228
DI-Net [72] 0.862 0.739 0.195 1.959 0.902 0.795 0.864
MSI-Net [35] 0.865 0.736 0.793 1.931 0.889 0.784 0.307
GazeGAN [10] 0.864 0.736 0.720 1.899 0.879 0.773 0.376
FBNet [15] 0.843 0.706 0.343 1.687 0.785 0.694 0.708
SalFBNet-Res18 [15] 0.867 0.733 0.805 1.950 0.888 0.773 0.303
SalFBNet-Res18Fixed [15] 0.868 0.740 0.839 1.952 0.892 0.772 0.236
Context-free-SalNet (ours) 0.862 0.730 0.750 1.833 0.763 0.870 0.308

Table 3. Evaluation results comparing Context-free-SalNET (since no context factors are presented for SALICON benchmark, we removed
it from the architecture) to current top methods on SALICON free-viewing saliency benchmark [31]. The lower values for KLDiv indicate
better performance. For CC metric the values should approach either 1 (positive correlation) or −1 (negative correlation), where 0 means
no correlation. The higher values, the better the performance rule is applied to the remaining metrics.

UniSal results, but includes more false positive predictions.
Context-SalNET is able to produce predictions close to the
ground truth without relying heavily on center bias or pro-
ducing false positive predictions. Columns 7-9 show quali-
tative results for the ablation conditions, supporting the util-
ity of each method contribution. Rows 3-4 show samples
of low-performing attention predictions, which holds across
baseline and ablation evaluations for all models. Confirm-
ing the statement, that visual attention prediction for pedes-
trians in street-crossing scenarios is indeed a challenge due
to the immense state-space of this navigation task.

6. Discussion

6.1. Applications

Our method can be applied in all areas where precise
modelling of pedestrian behavior is desired. This includes
driving simulators that can be used to train humans, but
also the generation of training data for autonomous driv-
ing, where modelling and predicting pedestrian behavior is
a key challenge [52]. Furthermore, it can be used for critical
scenario generation as an extension to [66] in order to bet-
ter understand and make predictions about dangerous traffic
situations. Accurately modelling the attention of pedestri-
ans in such scenarios can help to improve the generation of
plausible walking trajectories [1]. Finally, by introducing
certain extensions, it can be even applied to solve real-world
problems as in [43].

6.2. Limitations and Future Work

While we showed clear improvements of our methods
over previous approaches, a number of aspects need to be
addressed in future work. While we evaluated the im-
pact of context factors on pedestrian attention, in the future
our approach should also be extended to include additional

person-specific factors that are relevant in traffic scenar-
ios [58, 21, 17, 5]. Joint attention between the driver of a car
and the pedestrian is crucial in traffic situations [53], hence,
an explicit representation could empower attention predic-
tion models. Furthermore, it will be important to include
different roles of traffic participants (e.g. driver, bicyclist) in
our model. Additional challenges arise from the geograph-
ical location, since traffic scenarios can significantly differ
throughout the world. Authors in [24] summarized signif-
icant cultural behaviour differences in street-crossing tasks
between German and Japanese people. Moreover, while vir-
tual reality is an effective research tool to collect close-to-
natural data, future work also needs to find ways to validate
results obtained in VR in the real world. The impact of dif-
ferent pre-trained weights, ModelNet for instance, on final
performance is an interesting research question.

7. Conclusion
We introduced Context-SalNET, a novel context driven

visual attention generation approach for street-crossing
pedestrian scenarios. In evaluations of a newly recorded
VR dataset of street crossing tasks including several task
context factors, Context-SalNET outperformed a state-of-
the-art saliency prediction model and ablation experiments
demonstrated our methods’ ability to effectively exploit task
context factors. The dataset, including driving simulation
setups and recorded gaze behavior will be made publicly
available. Together with our novel method, this dataset will
be an important building block for future research on pedes-
trian attention prediction.

8. Acknowledgements
This work has been funded by the German Ministry for

Research and Education (BMBF) in the project REACT
(grant no. 01IW17003). P. Müller was funded by BMBF
(grant no. 01IS20075).

957



References
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rand, Aude Oliva, and Antonio Torralba. Mit saliency bench-
mark. 2015. URL: http://saliency. mit. edu/results mit300.
html, 12:13, 2014.

[9] Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba,
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