
Toward Edge-Efficient Dense Predictions with Synergistic Multi-Task Neural
Architecture Search

Thanh Vu1* Yanqi Zhou2 Chunfeng Wen3† Yueqi Li3 Jan-Michael Frahm1

1UNC at Chapel Hill 2Google Research 3X, The Moonshot Factory
{tvu,jmf}@cs.unc.edu {yanqiz}@google.com {fannywen,yueqili}@google.com

Multi-Task
Learning

Hardware
-Aware NAS

Dense
Predictions

on Edge

accuracy
 speed

 speed
 accuracy

 scalability

negative
transfer

reduction

proxyless
target
task

GFLOPs

R
el

at
iv

e
A

cc
ur

ac
y

G
ai

n
(%

)

-5

0

5

10

15

0 25 50 75 100

Figure 1: An overview of our proposed methods. First, EDNAS framework leverages the synergy and joint learning of multi-task dense
prediction (MT-DP) and hardware-aware NAS to both complement each component and boost on-device performance. On the left is an
illustration of the synergistic relationship of these components. Second, JAReD loss reduces depth estimation noise and further improves
accuracy. On the right is the performance of our proposed techniques on CityScapes compared to state-of-the-art MT-DP approaches.

Abstract
In this work, we propose a novel and scalable solution to

address the challenges of developing efficient dense predic-
tions on edge platforms. Our first key insight is that Multi-
Task Learning (MTL) and hardware-aware Neural Archi-
tecture Search (NAS) can work in synergy to greatly benefit
on-device Dense Predictions (DP). Empirical results reveal
that the joint learning of the two paradigms is surprisingly
effective at improving DP accuracy, achieving superior per-
formance over both the transfer learning of single-task NAS
and prior state-of-the-art approaches in MTL, all with just
1/10th of the computation. To the best of our knowledge, our
framework, named EDNAS, is the first to successfully lever-
age the synergistic relationship of NAS and MTL for DP.
Our second key insight is that the standard depth training
for multi-task DP can cause significant instability and noise
to MTL evaluation. Instead, we propose JAReD, an im-
proved, easy-to-adopt Joint Absolute-Relative Depth loss,

*Work done during an internship at X. †Work done while at X.

that reduces up to 88% of the undesired noise while simul-
taneously boosting accuracy. We conduct extensive evalua-
tions on standard datasets, benchmark against strong base-
lines and state-of-the-art approaches, as well as provide an
analysis of the discovered optimal architectures.

1. Introduction

Recent years have witnessed a strong integration of com-
puter vision in many downstream edge applications such as
autonomous driving [2, 11, 38, 44, 52, 65, 68], mobile vi-
sion [16, 24, 25, 60, 61, 63], robotics [27, 35, 42], and even
computational agriculture [12, 28, 37], fueled by rapid in-
novations of deep neural networks. In many of these appli-
cations, pixel-level dense prediction tasks such as semantic
segmentation or depth estimation can play a critical role.
For example, self-driving agents are using semantic and
depth information to detect lanes, avoid obstacles, and lo-
cate their own positions. In precision agriculture, the output
of these tasks can be used for crop analysis, yield predic-

1400

tion, in-field robot navigation, etc. As more and more neu-
ral models are being deployed into the real world, there has
been a continuously growing interest in developing edge-
efficient architectures for dense predictions over the years.

However, designing fast and efficient dense prediction
models for edge devices is challenging. First of all, pixel-
level predictions such as semantic segmentation and depth
estimation are fundamentally slower than some other popu-
lar vision tasks, including image classification or object de-
tection. This is because after encoding the input images into
low-spatial resolution features, these networks need to up-
sample them back to produce high-resolution output masks.
In fact, dense estimation can be several times or even an
order of magnitude slower than their counterparts, depend-
ing on the specific model, hardware, and target resolution.
Thus, real-time dense prediction models are not only non-
trivial to design, they can easily become a latency bottle-
neck in systems that utilize their outputs. Such problems
are intensified for edge applications on platforms like the
Coral TPU [13] due to the limited computational resources,
despite the need for low latency, e.g., to inform the users or
process subsequent tasks in real time.

Second, developing models for these edge environments
is costly and hard to scale in practice. On one hand, the
architectural design process requires a significant amount
of time, human labor, and expertise, with the development
process ranging from a few months to a couple of years. On
the other hand, edge applications may require deployment
on various platforms, including cell phones, robots, drones,
and more. Unfortunately, optimal designs discovered for
one hardware may not generalize to another. All of these
together pose challenges to the development of fast and ef-
ficient models for on-edge dense predictions.

To tackle these problems, our first key insight is that
Multi-Task Learning of Dense Predictions (MTL-DP or
MT-DP) and hardware-aware Neural Architecture Search
(h-NAS) can work in synergy to not only mutually ben-
efit but also significantly improve accuracy and computa-
tion. To the best of our knowledge, our framework, named
EDNAS1, is the first to successfully exploit such a syner-
gistic relationship of NAS and MTL for dense predictions.
Indeed, on one hand, state-of-the-art methods for multi-task
dense predictions [4, 22, 36, 40, 53, 58, 66], in which related
tasks are learned jointly together, mostly focus on learning
how to share a fixed set of model components effectively
among tasks but do not consider if such a set itself is op-
timal for MTL to begin with. Moreover, these works typi-
cally study large models targeting powerful graphic accel-
erators such as V100 GPU for inference and are not read-
ily suitable for edge applications. On the other hand, NAS
methods aim to automatically learn an optimal set of neu-
ral components and their connections. However, the current

1short for “Edge-Efficient Dense Predictions via Multi-Task NAS”

literature often focuses on either simpler tasks such as clas-
sification [7, 33, 62] or single-task training setup [19, 34].
In contrast, we jointly learn MTL-DP and NAS and lever-
age their strengths to tackle the aforementioned issues si-
multaneously, resulting in a novel and improved approach
to efficient dense predictions for edge.

Our second key insight is that the standard depth esti-
mation training used in MTL-DP can produce significant
fluctuation in the evaluation accuracy. Indeed, our analysis
reveals a potential for undesirably large variance in both ab-
solute and relative depth. We hypothesize that this is caused
by the standard depth training practice that relies solely on
L1 loss function. This can significantly and negatively af-
fect the accuracy of MT-DP evaluation as arbitrary “im-
provement” (or “degradation”) can manifest purely because
of random fluctuation in the relative error. It is important
that we raise awareness of and appropriately address this is-
sue as segmentation and depth information are arguably two
of the most commonly jointly learned and used tasks in edge
applications. To this end, we propose JAReD, an easy-to-
adopt augmented loss that jointly and directly optimizes for
both relative and absolute depth errors. The proposed loss
is highly effective at simultaneously reducing noisy fluctu-
ations and boosting overall prediction accuracy.

We conduct extensive evaluations on CityScapes [14]
and NYUv2 [50] to demonstrate the effectiveness and ro-
bustness of EDNAS and JAReD loss. Experimental results
indicate that our methods can yield significant gains, up to
+8.5% and +10.9% DP accuracy respectively, considerably
higher than the previous state of the art, with only 1/10th of
the parameter and FLOP counts (Fig. 1).

2. Background and Related Works
In general, dense prediction models are often designed

manually, in isolation, or not necessarily constrained by
limited edge computation [10, 27, 34, 35]. Specifically,
works on multi-task learning for dense predictions (MTL-
DP) [4, 5, 20, 22, 53, 58] often take a fixed base archi-
tecture such as DeepLab [9] and focus on learning to ef-
fectively shared components, e.g. by cross-task commu-
nication modules [5, 20], adaptive tree-like branching [4,
22, 58], layer skipping [53], etc. (Fig. 2). On the other
hand, neural architecture search (NAS) studies up until re-
cently have focused mostly on either image classification
problems[1, 7, 29, 33, 39, 62] or learning tasks in isola-
tion [19, 34, 54, 67]. Few have explored architecture search
for joint training of dense prediction tasks. However, as
mentioned earlier, edge efficiency can potentially benefit
both MTL-DP and NAS. To the best of our knowledge, our
study is the first to report successful joint optimization of
these two learning paradigms for dense predictions. Next,
we give an overview of the most relevant efforts in the two
domains of MTL and NAS. For more details, please refer to

1401

(a) Hard parameter sharing [36, 66] (b) Learning to branch [22, 4, 58] (c) Learning to skip layers [53] (d) Searching for layers (ours)

Figure 2: Conceptual comparison with existing approaches. While current MT-DP methods focus on how to better share a fixed set of
layers, we instead learn better sets of layers to share. Components in red are learnable while others are fixed

these comprehensive surveys: MTL [8, 15], MTL for dense
predictions [59], NAS [46], and hardware-aware NAS [3], .

Neural Architecture Search (NAS). In the past few years,
neural architecture search (NAS) has emerged as a so-
lution to automate parts of the network design process.
NAS methods have shown remarkable progress and outper-
formed many handcrafted models [34, 54, 55, 56]. In our
case, we are interested in hardware-aware NAS [6, 63, 67]
which can discover efficient architectures suitable for one
or multiple targeted edge platforms. This is typically done
by casting hardware-aware NAS as a multi-objective opti-
mization problem [6, 54, 63] and adding hardware cost, e.g.
latency, memory, and energy, alongside prediction accuracy,
to guide the search. However, current studies often focus on
image classification [1, 7, 29, 33, 39, 62] or learning tasks in
isolation [54, 67]. However, performing multiple dense pre-
diction tasks simultaneously can have significant benefits
for both inference speed and accuracy since tasks can lever-
age each other’s training signals as inductive biases to im-
prove their own learning and the model’s generalization [8].
Thus, we are interested in combining hardware-aware NAS
with multi-task learning of dense prediction tasks to achieve
both better accuracy and better inference speed on edge de-
vices. To this end, there have been only a limited number of
studies [4, 22, 53, 58] that started to explore similar prob-
lems, which we will discuss next.

MTL for Dense Predictions. The goal of Multi-Task
Learning (MTL) [8, 15] is to jointly learn multiple tasks
together to leverage cross-task information to improve per-
task prediction quality. In the context of edge applications,
we are also interested in the property of MTL that lets
tasks share computation and output multiple task predic-
tions in one pass, thereby improving the overall inference
speed. This is particularly useful for dense predictions be-
cause they tend to be more computationally expensive than
their counterparts such as classification [24, 26, 48, 55, 56]
or detection [57, 64]. A popular formulation of MTL
that accomplishes this goal is called hard parameter shar-
ing (HPS) [36, 66]. Compared to soft parameter sharing
(SPS) [20], whose multi-task model size scales linearly with
the number of tasks due to separate per-task sub-networks,

HPS models are more edge-friendly due to their compact
architectural structure. Specifically, HPS architectures are
typically composed of a shared trunk that extracts joint fea-
tures for all tasks and multiple per-task heads or branches
that take the extracted features as input and produce spe-
cific task prediction. The most standard setup is to have all
task heads branch off at the same point [36]. This is also
our setup of choice for the scope of this work. In addi-
tion, recent studies have begun to explore strategies to learn
adaptive sharing architectures from data [4, 22, 40, 53, 58].
Attention [40] and Layer-skipping[53] have been used to
efficiently learn a single shared model while modifying
their behaviors to output the desired task-specific predic-
tion, given a task. Other studies [4, 22, 58] opt to augment
the HPS architectures by learning the branching of tasks. In
other words, the learned models may have multiple splitting
points, where some tasks can branch off earlier while some
others share more layers. A common theme of these ap-
proaches is that given a fixed starting architecture, the focus
is on learning which components of such network should be
shared. Our work shifts the focus to the base network and
instead asks what components should be included in such
architecture to best benefit multi-task dense predictions.

3. Methodology

3.1. EDNAS: Joint MTL-DP and h-NAS

Synergistic Joint Learning. Our key idea is that we can
leverage multi-task inference to significantly reduce com-
putation across several dense prediction tasks, while utiliz-
ing hardware-aware NAS to simultaneously improve edge
latency, design scalability, and multi-task learning. Com-
bining these two paradigms, MT-DP and NAS, is beneficial
not only to edge inference but also to each other. Fig. 1
illustrates these relationships. First, regarding edge appli-
cations, multi-task models [59] that output several predic-
tions at once are attractive since they share computation
across tasks to avoid multiple inference runs and improve
the overall latency linearly by design. However, this multi-
task setup also leads to performance degradation, known as
negative transfer. While most current works attribute this
problem to improper sharing of neural components, we hy-

1402

pothesize that components of popular base networks such as
DeepLab [9] -ResNet [23] may be well-tuned for their orig-
inal individual task, but not necessarily optimal for multi-
task setting. It is possible that certain layers, for exam-
ple, may need more channels to capture nuanced features
required when the number of tasks increases. Moreover,
these models may need to be deployed on different edge
platforms and thus, their components need to be optimized
accordingly. This motivates us to explore NAS as a system-
atic and scalable method to discover components that could
be more suitable for multi-task learning and edge inference.
Second, from the perspective of NAS, directly searching
for multi-task architectures can potentially yield better re-
sults than transferring single-task searched architectures to
multi-task settings post NAS. In a way, we are removing a
proxy target and its assumption that architectures, which are
good for an individual task such as segmentation, are also
optimal for multi-task learning.

Hardware-Aware Multi-Task Objective. Given a fixed set
of N tasks T = {T1, T2, ...TN}, we formulate the problem
of multi-task NAS as a multi-objective search. Our goal
is to discover optimal models with both high accuracy for
all tasks in T and low inference latency on specific edge
devices. Let a be an architecture with weights wa sampled
from the search space A and h be a target edge hardware.
Our optimization can then be expressed as follows:

max
a⊂A

Rwd(a, T, h, w∗
a) (1)

s.t. w∗
a = argmin

wa

Loss(a, T, wa) (2)

and Lat(a, h) ≤ lh (3)

with Rwd() being the objective or reward function and lh
being the target edge latency dependent on the hardware and
application domain. Inspired by [54], we use a weighted
product for the reward function Rwd() to jointly optimize
for models’ accuracy and latency constrained by hardware-
dependent requirements such as inference latency, chip
area, energy usage, etc. This allows for flexible customiza-
tion and encourages Pareto optimal solutions of multi-
objective learning [17]. In this work, we focus on inference
latency Lat(a, h) as the main hardware constraint.

Rwd(a, T, h, wa) = Acc(a, T, wa)

[
Lat(a, h)

lh

]β
(4)

s.t. β =

{
p if Lat(a, h) ≤ lh

q otherwise
(5)

We use an in-house cycle-accurate performance simula-
tor to estimate the on-device latency of sampled architec-
tures during NAS. This offers a middle ground between

the accurate-but-expensive benchmarking methods that use
real, physical devices and the cheap-but-inaccurate one that
use proxy metrics like FLOPs, MACs, or number of pa-
rameters. Moreover, by configuring such a simulator differ-
ently, we can inject hardware-specific information and bias
the search to adapt to different targeted edge platforms.

Unlike prior works [54, 67], we extend the notion of
Acc() to multi-task setting using a simple-yet-effective
nested weighted product of metrics and tasks. Let Mi =
{mi,1,mi,2, ...,mi,K} be the set of metrics of interest for
tasks Ti, e.g. {mIoU, PixelAcc} for semantic segmentation.
Our multi-task Acc() can be expressed as:

Acc(a, T, wa) =

[∏
i

mi

]1/N

(6)

s.t. mi =

∏
j

m
wi,j

i,j

1/
∑

j wi,j

(7)

This extended formulation is straightforward and scalable
even when the number of tasks or metrics increases. Since
our goal is to discover multi-task networks that can perform
well across all tasks without bias to individual tasks, we
treat all task rewards equally in our formulation.

Edge-Friendly Base Architecture. Previously works [4,
22, 36, 53, 58] typically use bigger networks such as ResNet
[23] or VGG [51] backbone with ASPP [9] decoder. Such
models, however, are not suitable for edge platforms like
the Coral TPU [13] due to their limited computational re-
sources. To this end, we propose the use of Efficient-
Net [55, 56] backbone and BiFPN fusion modules [57],
which have been shown to have significantly better FLOPs
and parameter efficiency (e.g. an order of magnitude lower)
compared to their counterparts [32, 55, 57, 67]. These ad-
vantages make them promising candidate modules to build
edge-friendly models. To generate multi-task outputs while
saving computation, we share the majority of the network,
including both the EfficientNet backbone and BiFPN mod-
ules, across all tasks and use only small per-task heads.
This keeps our model compact and avoids a significant in-
crease in size as the number of tasks goes up . We also
replace Swish activation and attention-based fusion with
ReLU6 and Sum operations in [55] to further improve effi-
ciency on edge. We balance the compact EfficientNet back-
bone with 4 BiFPN fusion modules instead of 3 like [57]
to boost accuracy. The multi-scale fusion modules take fea-
tures {P3, P4, P5, P6, P7} from levels 3-7 of the backbone.
These components together make up our edge-friendly base
architecture, which we will use as both the seed for our NAS
and the baseline model for evaluating MTL performance.

1403

Depth Loss mIoU σ% AbsE σ% RelE σ%

L1 38.6 2.5 0.01763 4.4 0.3541 4.1
JAReD 38.9 1.6 0.01680 1.9 0.3237 0.5
% improved ↑0.8 ↓36.0 ↓4.7 ↓56.8 ↓8.6 ↓87.8

Table 1: Depth estimation noise and JAReD loss. We train a
model for segmentation and depth prediction on CityScapes with
the standard L1 and proposed JAReD loss. The mean and standard
deviation are taken across 3 runs. Except for mIoU, lower is better.

Edge-Friendly Search Space. Modern NAS usually re-
tains some aspect of the base architecture in order to
keep the search space tractable and to reduce the compu-
tational cost. Thus, it is important to have a good ini-
tialization architecture to seed the search. For this, we
leverage the base architecture designed above and Pyglove
[43], a Python AutoML library that supports flexible layer-
level mutation for NAS components via symbolic program-
ming. This allows us to transform the static Efficient-
Net backbone into a tunable search space by replacing
any standard computational node with a PyGlove’s mu-
table object, e.g. converting Conv2d(kernel=3) into
Conv2d(kernel=oneof([3,5,7])). Furthermore,
we expand the search space to include Fused-IBN [56, 64,
67] modules alongside the standard Inverted Bottleneck
(IBN) [48]. Despite inciting more trainable parameters,
Fused-IBN can potentially offer better efficiency on edge
devices if strategically placed, e.g. via NAS. This is be-
cause industry accelerators are better tuned for regular con-
volution than their depthwise counterparts, e.g. resulting
in 3× speedup for certain tensor shapes and kernel dimen-
sions [64]. Our final search space is defined by the follow-
ing per-layer decisions:

• Layer type: {IBN, Fused-IBN}
• Kernel size: {3, 5}
• Output channel multiplier: {0.5, 0.75, 1.0, 1.5}
• Expansion ratio: {3, 6}

The search is performed for all 16 IBN blocks of our
base EfficientNet backbone, together with the other search
parameters, producing an expressive search space of size
(2 ∗ 2 ∗ 4 ∗ 2)16 = 280 ≈ 1.2e24.

3.2. Depth Estimation Noise and JAReD Loss

Instability in Depth Estimation. During our study, we dis-
cover that depth prediction accuracy can vary greatly across
different training runs of the same setting. This is illus-
trated in Tab. 1 by the results of standard depth training with
L1 loss. Note that the standard deviation of depth errors
across identical runs are fairly large at 4.4% and 4.1%, ×2
higher than that of segmentation mIoU. Such large variation

is problematic for the multi-task evaluation as one model
could potentially arbitrarily and falsely “improve” or “de-
grade” purely by chance. Moreover, this may even interfere
with the joint learning MT-DP and NAS through noisy task
accuracy in the objective function in Eq 4. In other words,
it would be challenging for NAS to identify good architec-
tures if training accuracy itself is unstable and unreliable.

Joint Absolute-Relative Depth. We hypothesize that the
noisy depth result is due to the fact that popular MT-DP
training [36, 53, 59] relies only L1 loss, which focuses on
optimizing for absolute depth and only implicitly learn rel-
ative depth. For monocular setting, learning absolute depth
directly is ill-posed and challenging due to the scale ambi-
guity [18, 31]. Instead, we propose to augment the standard
loss using a weighted relative-error component, resulting in
a Joint Absolute-Relative Depth loss, or JAReD:

LJAReD =
1

N
Σ|y − ŷ|+ λ

1

N
Σ

∣∣∣∣y − ŷ

y

∣∣∣∣ (8)

Tab. 1 shows that JAReD can help significantly reduce depth
estimation noise—the STDs of all tasks decrease, especially
for relative error with 87.8% lower fluctuation. Moreover,
JAReD can simultaneously improve accuracy, with both ab-
solute and relative errors dropping by 4.7% and 8.6%.

4. Experiments
4.1. Setup

Datasets and Tasks. We evaluate our proposed method us-
ing two popular datasets for multi-task dense predictions:
CityScapes [14] and NYU-v2 [50]. CityScapes contains
2975 training images and 500 validation images of driving
scenes while NYU-v2 is composed of 1449 densely labeled
RGBD indoor images, with a stand training-to-validation
split of 795 to 654. We use the preprocessed versions pro-
vided by AdaShare [53]. We jointly learn semantic segmen-
tation (19 classes) and depth prediction for CityScapes. For
NYU-v2, we study 3-task learning of segmentation, depth
prediction, and surface normal estimation.

Baselines. We adopt the standard practice of evaluating
our proposed techniques against the Single-Task (ST) and
vanilla Multi-Task (MT) versions, which are EfficientNet-
based in our case. We refer to these as edge baselines. For
fair comparisons, we consult the training hyperparameters
used by AdaShare [53] to match their baseline performance
and only compare the relative improvements.

Implementation Details. For all experiments, we use
EfficientNet-B0 [55] as our backbone. We use Regular-
ized Evolution [45] as our search controller as it can pro-
duce compact and accurate models with less search time,

1404

Model Seg Depth ∆Seg ∆Depth Avg
Method #P GFLOP Speed mIoU PAcc AbsE RelE ∆mIoU ∆PAcc ∆AbsE ∆RelE ∆TS ∆TD ∆T

ST baseline [53] 42.6 87.1 — 40.20 74.70 .0170 .330 — — — — — — —
MT baseline [53] 21.3 43.6 — 37.70 73.80 .0180 .340 -6.2 -1.2 -5.9 -3.0 -3.7 -4.5 -4.1
Cross-Stitch [41] 42.6 48.4 — 40.30 74.30 .0150 .300 +0.2 -0.5 +11.8 +9.1 -0.1 +10.4 +5.1
Sluice [47] 42.6 48.4 — 39.80 74.20 .0160 .310 -1.0 -0.7 5.9 6.1 -0.8 +6.0 +2.6
NDDR-CNN [21] 44.1 50.1 — 41.50 74.20 .0170 .310 3.2 -0.7 0.0 6.1 +1.3 +3.0 +2.2
MTAN [36] 51.3 57.9 — 40.80 74.30 .0150 .320 +1.5 -0.5 +11.8 +3.0 +0.5 +7.4 +3.9
DEN [1] 23.9 51.2 — 38.00 74.20 .0170 .370 -5.5 -0.7 0.0 -12.1 -3.1 -6.1 -4.6
AdaShare [53] 21.3 87.1 — 41.50 74.90 .0160 .330 3.2 0.3 5.9 0.0 +1.8 +2.9 +2.3

ST edge baseline 3.4 2.3 ×1.0 40.04 88.68 .0157 .340 — — — — — — —
MT edge baseline 3.4 1.2 ×1.2 38.64 88.49 .0171 .354 -3.5 -0.2 -8.5 -4.1 -1.9 -6.3 -4.1
EDNAS 4.3 4.1 ×1.3 46.52 90.61 .0143 .316 +16.2 +2.2 +8.9 +6.9 +9.2 +7.9 +8.5
EDNAS+JAReD 4.3 4.1 ×1.3 46.11 90.47 .0143 .281 +15.1 +2.0 +9.1 +17.4 +8.6 +13.3 +10.9

Table 2: Two-task CityScapes results. Best numbers are in bold, the second best are underlined. ST stands for single-tasks. MT stands
for multi-task. We multiply the FLOPs by the number of tasks for methods that need multiple runs to get different per-task predictions.
FLOP counts are in gigas(G) and parameter counts are in millions(M). Both of these, along with our model’s edge latency, are measured
for 256x256 resolution. We consult Table 8 and Table 11 in [53] as well as its first author to acquire the full measurements of prior works

Seg Depth Surface Normal Avg
Method mIoU PAcc AbsE RelE MeanE θ11 θ22 θ30 ∆T

ST edge 23.1 58.3 0.50 0.20 13.8 50.8 81.2 90.8 —
MT edge 19.5 54.8 0.55 0.22 16.5 41.9 73.0 85.1 -11.3

ST [53] 27.5 58.9 0.62 0.25 17.5 34.9 73.3 85.7 —
MT [53] 24.1 57.2 0.58 0.23 16.6 42.5 73.2 84.6 +2.0
MT edge 19.5 54.8 0.55 0.22 16.5 41.9 73.0 85.1 -0.1

Table 3: NYUv2 baselines. ST and MT are prior large-scale mod-
els from [53] while edge denotes our edge-friendly baselines

thus shortening the experimentation cycle. Nonetheless, we
expect other controllers, e.g. PPO [49] as used by prior
works [54, 67], to also work. We use Adam [30] optimizer
and cosine learning rate scheduler for all our training, in-
cluding both the proxy task during NAS and the final train-
ing of the best candidates, to reduce hyperparameter tuning
effort. For full training, we train each model 3 times and
take the average results similar to Table 1 to reduce noise.
All models are trained from scratch without any pretrained
weights. We acquire wall-clock latency measurements by
benchmarking models on a Coral EdgeTPU [13]. Further
details are included in the supplementary.

Evaluation Metrics. We use mean Intersection over Union
(mIoU) and pixel accuracy (PAcc) for semantic segmenta-
tion, and mean absolute error (AbsE) and mean relative er-
ror (RelE) for depth prediction. For surface normal estima-
tion on NYU-v2, we use mean angle distance error (MeanE)
across all pixels, as well as the percentage of pixels with
angle distances less a threshold θ ∈ {11.25°, 22.5°, 30°},
denoted as {θ11, θ22, θ30} respectively. Following other
works [40, 53, 59], we calculate a single evaluation score
∆T averaging over all relative gains ∆Ti of all tasks Ti

relative to the Single-Task baseline. A formal definition of
these metrics are provided in our supplementary materials.

4.2. Results

EDNAS for 2-task CityScapes. Tab. 2 shows our experi-
ments for the 2-task learning of 19-class semantic segmen-
tation and depth estimation on CityScapes dataset. In this
experiment, the same ∆T of -4.1 is shared by the MT edge
baseline and its large-scale counterpart, indicating that they
both experience a similar level of negative transfer and MTL
difficulty. Following [53], we present MTL gains relative to
the ST baseline model. The proposed EDNAS exhibits a
strong multi-task performance with ∆T=+8.5, outperform-
ing all prior methods. Since the full training of MT edge
baseline and EDNAS-found architecture are identical, it
shows that joint MTL-DP and NAS can produce a superior
relative improvement of +8.5 - (-4.1) = +12.6 compared to
the vanilla multi-task model.

JAReD Loss. From Tab. 2, we see that the proposed JAReD
loss is able to greatly improve depth estimation with a rel-
ative gain of ∆TD=13.3%. This in turn further strengthens
the overall multi-task performance by a significant margin
of +2.4 on top of the already-strong result (∆T=+8.5) of
EDNAS. Together, our two proposed techniques outperform
all previous approaches on 3 out of 4 individual metrics,
namely ∆mIoU, ∆PAcc, and ∆RelE, as well as on all the
average metrics, which are ∆TS , ∆TD, and ∆T .

Edge-Efficient Inference. Regarding edge efficiency, ED-
NAS and EDNAS+JAReD use only 1/5th of the parameters
and 1/10th of the FLOPs compared to prior ResNet-based
methods. More importantly, the EDNAS-found model is
able to practically maintain the same on-device speed as the
vanilla MT baseline, if not slightly faster, despite the +12.6
improvement. This equates to a 30% improvement in la-
tency compared to separate single-task inferences, and fur-

1405

Seg Depth Surface Normal Avg
Method mIoU PAcc AbsE RelE MeanE θ11 θ22 θ30 ∆TS ∆TD ∆TSN ∆T

MT baseline [53] 24.1 57.2 0.58 0.23 16.6 42.5 73.2 84.6 — — — —
Cross-Stitch [41] 25.4 57.6 0.58 0.23 17.2 41.4 70.5 82.9 +3.0 +0.0 -3.0 +0.0
Sluice [47] 23.8 56.9 0.58 0.24 17.2 38.9 71.8 83.9 -0.9 -2.2 -3.7 -2.3
NDDR-CNN [21] 21.6 53.9 0.66 0.26 17.1 37.4 73.7 85.6 -8.1 -13.4 -3.3 -8.3
MTAN [36] 26.0 57.2 0.57 0.25 16.6 43.7 73.3 84.4 +3.9 -3.5 +0.7 +0.4
DEN [1] 23.9 54.9 0.97 0.31 17.1 36.0 73.4 85.9 -2.4 -51.0 -4.1 -19.2
AdaShare [53] 30.2 62.4 0.55 0.20 16.6 45.0 71.7 83.0 +17.2 +9.1 +0.5 +8.9

MT edge baseline 19.5 54.8 0.55 0.22 16.5 41.9 73.0 85.1 — — — —
EDNAS 22.1 57.7 0.51 0.20 14.3 49.5 79.2 89.4 +9.3 +8.2 +11.3 +9.6
EDNAS+JAReD 22.1 58.1 0.51 0.20 12.6 56.1 83.9 92.4 +9.7 +8.2 +20.3 +12.7

Table 4: Three-task NYUv2 results . Our tasks of interest include 40-class semantic segmentation, depth estimation, and surface normal
estimation. Best numbers are in bold, the second best are underlined. ST stands for single-task and MT stands for multi-task. We multiply
the FLOPs by the number of tasks for methods that need multiple runs to get different per-task predictions. The measurements of prior
works are from Table 9 and Table 11 in [53]

Model Seg Depth Seg∆ Depth∆ Avg∆
Method #P GFLOP Speed mIoU PAcc AbsE RelE ∆mIoU ∆PAcc ∆AbsE ∆RelE ∆TS ∆TD ∆T

ST edge baseline 3.4 2.3 ×1.0 40.04 88.68 .0157 .340 — — — — — — —
ST edge+maxLR 3.4 2.3 ×1.0 55.02 92.29 .0121 .288 +37.4 +4.1 +23.2 +15.3 +20.7 +19.3 +20.0
ST edge+maxLR+JAReD 3.4 2.3 ×1.0 55.02 92.29 .0116 .168 +37.4 +4.1 +26.7 +50.5 +20.7 +38.6 +29.7

ST edge+maxLR+JAReD 3.4 2.3 ×1.0 55.02 92.29 .0116 .168 — — — — — — —
MT edge+maxLR+JAReD 3.4 1.2 ×1.2 53.80 91.94 .0124 .159 -2.2 -0.4 -7.4 +5.7 -1.3 -0.9 -1.1
Transfer: NAS-Seg−→MT 4.1 2.5 ×1.3 58.17 92.78 .0118 .156 +5.4 +0.5 -2.9 +6.2 +3.1 +2.8 +3.0
Transfer: NAS-Dep−→MT 3.6 2.5 ×1.3 57.97 92.73 .0119 .158 +5.7 +0.5 -1.8 +7.4 +2.9 +1.6 +2.3
EDNAS+maxLR+JAReD 4.3 4.1 ×1.3 58.54 92.78 .0117 .156 +6.4 +0.5 -1.3 +7.4 +3.5 +3.1 +3.3

Table 5: Stronger baselines on CityScapes. ST edge baseline and ST edge+maxLR have identical training setting with the only exception
of their learning rate being 3e-4 and 1e-2 respectively

ther demonstrates the benefits of our proposed joint learning
for discovering and training better multi-task architectures
for dense predictions on edge platforms.

Generalization to 3-Task NYUv2. Unlike with Cityscapes
where the MT baselines have similar accuracy drop, for
NYUv2, we notice a large difference between the amount
of negative transfer in MT edge baseline (∆T=-11.3) and in
the large-scale MT model (∆T=+2.0), as shown in Tab. 3.
This indicates that multi-task training on NYUv2 data may
be more challenging for edge models with limited computa-
tion. Because of such discrepancy in the level of MTL dif-
ficulty, we directly use the MT models (instead of ST mod-
els) as the baselines to benchmark the improvement gained.
Note that despite such a large gap compared to the ST edge
setting, our MT edge model is still comparable to the com-
putationally heavy ST baselines of prior studies, with a neg-
ligible ∆T=-0.1. The NYUv2 results from Tab. 4 show
that EDNAS and JAReD continue to achieve consistent and
significant improvements (∆T of +9.6 and +12.7) over the
baseline, similar to what we observed for Cityscapes.

Robustness to Stronger Baselines. To further demonstrate
the robustness of EDNAS as a solution for discovering bet-
ter multi-task architectures for dense predictions, we are in-
terested in examining its performance with stronger base-
lines (Tab. 5). Although prior work [53] only uses learning
rates in the order of 1e-4 to 1e-3, we also experiment with
other rates and observe a huge jump of ∆T=+20.3 in perfor-
mance when simply increasing the learning rate while hold-
ing other settings the same. We utilize this simple adjust-
ment to obtain our stronger edge baseline with the largest
learning rate of maxLR=1e-2. Taking a step further, we add
JAReD loss to our ST edge baseline both to demonstrate the
effectiveness of JAReD loss even for single-task depth esti-
mation and to acquire our strongest baseline for evaluation.
Our result of training the EDNAS-found architecture with
similar setup (+maxLR and +JAReD) illustrates the strength
of our proposed method with a relative multi-task gain of
∆T=+3.3. We emphasize that +3.3, despite being smaller
than the improvements we have seen so far, is still compa-
rable to the majority of state-of-the-art methods shown in
Tab. 2, and that is on top of a +30% stronger ST baseline!

1406

Index Layer Stride Kernel Filters Expansion

0 Conv2D 2 3 32 –
1 FusedIBN 1 3 16 1
2 IBN 2 5 36 6
3 FusedIBN 1 5 24 6
4 FusedIBN 2 3 60 6
5 FusedIBN 1 3 40 3
6 FusedIBN 2 5 120 3
7 IBN 1 3 120 3
8 FusedIBN 1 5 80 6
9 FusedIBN 1 5 168 6
10 FusedIBN 1 5 84 3
11 FusedIBN 1 5 84 6
12 FusedIBN 2 5 288 3
13 FusedIBN 1 3 96 3
14 FusedIBN 1 3 96 6
15 FusedIBN 1 3 96 3
16 FusedIBN 1 5 160 6

Table 6: Backbone Architecture found by EDNAS – Backbone
architecture found EDNAS for multi-task segmentation and depth
estimation on CityScapes, same model as presented in Tab. 2.

Joint Learning vs Transfer Learning. Tab. 5 also shows
the performance of EDNAS when compared to the trans-
ferring of NAS-found single-task models to the multi-task
setting. Although transferred architectures can bring a con-
siderable amount of improvement compared to our baseline
ST and MT models, EDNAS’ joint learning of multi-task
dense predictions and hardware-aware NAS evidently offers
the optimal performance among these models, achieving ei-
ther the best or second best scores in all categories. More-
over, it is also important to note that there is a significant
difference in the performance gains of the transferred depth
estimation network compared to that of the transferred seg-
mentation model. Therefore, we may not know in advance
which specific tasks transfer better than the other, further
illustrating the power and benefits of our EDNAS.

Analysis of EDNAS-Found Architectures. Tab. 6 gives
a summary of the backbone architecture found by ED-
NAS for multi-task segmentation and depth estimation
on CityScapes. This is the same model as presented in
CityScapes experiment section. Except for the first Conv2D
layer, which is a fixed stem, the following 16 layers (1-16)
are all tunable. Our first observation is that FusedIBN is
heavily favored by the search algorithm over regular IBN,
occupying 14 out of 16 tunable layers. This is likely due
to the fact that modern edge accelerators such as the Coral
Edge TPU [13] are more optimized for normal convolution
than for depthwise separable convolution. Therefore, they
can leverage the dense computations to improve both accu-
racy and inference latency. Second, we notice that 4 out of
our top 5 searched models have an IBN module at layer 2
and 7, including the one in Tab. 6. The remaining architec-

Index Layer Stride Kernel Filters Expansion

0 Conv2D 2 3 32 –
1 FusedIBN 1 3 24 1
2 IBN 2 3 36 6
3 IBN 1 3 36 6
4 FusedIBN 2 5 40 6
5 FusedIBN 1 5 40 3
6 IBN 2 3 80 6
7 FusedIBN 1 3 120 3
8 FusedIBN 1 3 80 6
9 FusedIBN 1 3 168 3
10 FusedIBN 1 3 56 6
11 FusedIBN 1 3 112 3
12 FusedIBN 2 5 192 6
13 FusedIBN 1 3 192 6
14 IBN 1 5 192 3
15 IBN 1 5 192 3
16 FusedIBN 1 5 240 3

Table 7: Backbone Architecture found by Single-task NAS –
An example of the backbone architecture found the single-task
NAS targeting depth estimation on CityScapes . We suspect that
multi-task learning can benefit from more expressive layers such
as FusedIBN; thus, fewer of such layers compared Tab. 6 may cor-
relate to the lower accuracy as seen in the previous experiments.

ture also has IBN for layer 7 but not for layer 2. Hence, we
believe that even though sparsely used, IBN layers can still
be beneficial if placed strategically, e.g. via EDNAS.

Tab. 7 provides an example of architectures found by our
single-task NAS for depth estimation. We observe that there
are consistently and considerably lower numbers of Fused-
IBN modules, namely 11 compared to 14 in Table Tab. 6,
which is produced by EDNAS, a multi-task NAS algorithm.
Similar observation also applies to the single-task NAS for
segmentation, which has 12 FusedIBN layers. We conjec-
ture that multi-task learning might require more powerful
and expressive layers to capture cross-task nuances. As a
result, single-task NAS, which performs an indirect search
using individual tasks, may fail to recognize and meet these
needs, leading to fewer FusedIBN blocks and poorer accu-
racy as seen in the transferring experiments.

5. Conclusion
In this work, our two main contributions include EDNAS

and JAReD loss. The former is a novel and scalable solu-
tion that exploits the synergy of MTL and h-NAS to im-
prove both accuracy and speed for dense prediction task on
edge platforms. The latter is an easy-to-adopt augmented
depth loss that simultaneously mitigates noise and further
boosts accuracy. Through extensive experimentation, we
show that the proposed techniques can outperform state-
of-the-art methods, minimize on-device computational cost,
generalize to different data and training settings, as well as
discover meaningful and effective architectures.

1407

References
[1] Chanho Ahn, Eunwoo Kim, and Songhwai Oh. Deep Elastic

Networks with Model Selection for Multi-Task Learning. In
ICCV, 2019.

[2] Tanya Amert, Ming Yang, Saujas Nandi, Thanh Vu, James H.
Anderson, and F. Donelson Smith. The price of schedu-
lability in multi-object tracking: The history- vs.-accuracy
trade-off. In Proceedings of the IEEE International Sympo-
sium on Real-Time Distributed Computing (ISORC), 2020.

[3] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza
Ouarnoughi, Smail Niar, Martin Wistuba, and Naigang
Wang. Hardware-Aware Neural Architecture Search: Sur-
vey and Taxonomy. In IJCAI, 2021.

[4] David Bruggemann, Menelaos Kanakis, Stamatios Geor-
goulis, and Luc Van Gool. Automated Search for Resource-
Efficient Branched Multi-Task Networks. In BMVC, 2020.

[5] David Bruggemann, Menelaos Kanakis, Anton Obukhov,
Stamatios Georgoulis, and Luc Van Gool. Exploring Re-
lational Context for Multi-Task Dense Prediction. In ICCV,
2021.

[6] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
ICLR, 2019.

[7] Ronghong Cai and Jianping Luo. Multi-Task Learning for
Multi-Objective Evolutionary Neural Architecture Search. In
CEC, 2021.

[8] Rich Caruana. Multitask Learning. In Machine learning,
1997.

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, , and Alan L Yuille. Deeplab: Semantic
image segmentation with deep convolutional nets and atrous
convolution and and fully connected CRFs. In TPAMI, 2017.

[10] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin P. Murphy, and Alan Loddon Yuille. Semantic im-
age segmentation with deep convolutional nets and fully con-
nected crfs. CoRR, abs/1412.7062, 2015.

[11] Yuntao Chen, Chenxia Han, Yanghao Li, Zehao Huang, Yi
Jiang, Naiyan Wang, and Zhaoxiang Zhang. Simpledet: A
simple and versatile distributed framework for object detec-
tion and instance recognition, 2019.

[12] Mang Tik Chiu, Xingqian Xu, Yunchao Wei, Zilong Huang,
Alexander G. Schwing, Robert Brunner, Hrant Khachatrian,
Hovnatan Karapetyan, Ivan Dozier, Greg Rose, David Wil-
son, Adrian Tudor, Naira Hovakimyan, Thomas S. Huang,
and Honghui Shi. Agriculture-vision: A large aerial image
database for agricultural pattern analysis. In CVPR, 2020.

[13] Coral Edge TPU. https://coral.ai/.
[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, , and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. License: Cityscapes is freely available to academic
and non-academic entities for non-commercial purposes.

[15] Michael Crawshaw. Multi-Task Learning with Deep Neu-
ral Networks: A Survey. arXiv preprint arXiv:2009.09796,
2020.

[16] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin,
Fei Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yim-
ing Wu, Yangqing Jia, Peter Vajda, Matt Uyttendaele, and
Niraj K. Jha. Chamnet: Towards efficient network design
through platform-aware model adaptation, 2018.

[17] K. Deb. Multi-objective optimization. In Search methodolo-
gies, pages 403–449, 2014.

[18] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. In NeurIPS, 2014.

[19] Jiemin Fang, Yuzhu Sun, Qian Zhang, Yuan Li, Wenyu Liu,
and Xinggang Wang. Densely connected search space for
more flexible neural architecture search. In CVPR, 2020.

[20] Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and
Wei Liu. MTL-NAS: Task-Agnostic Neural Architecture
Search towards General-Purpose Multi-Task Learning. In
CVPR, 2020.

[21] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, , and Alan L
Yuille. Nddr-cnn: Layerwise feature fusing in multi-task
cnns by neural discriminative dimensionality reduction. In
CVPR, 2019.

[22] Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learn-
ing to Branch for Multi-Task Learning. In ICML, 2020.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

[24] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig
Adam. Searching for mobilenetv3, 2019.

[25] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications, 2017.

[26] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications.
arXiv preprint arXiv:1704.04861, 2017.

[27] Ping Hu, Federico Perazzi, Fabian Heilbron, Oliver Wang,
Zhe Lin, Kate Saenko, and Stan Sclaroff. Real-time seman-
tic segmentation with fast attention. In IEEE Robotics and
Automation Letters, volume 6, pages 1–1, 01 2020.

[28] Andreas Kamilaris and Francesc Xavier Prenafeta-Boldú.
Deep learning in agriculture: A survey. Comput. Electron.
Agric., 147:70–90, 2018.

[29] Eunwoo Kim, Chanho Ahn, and Songhwai Oh. Auto-
VirtualNet: Cost-adaptive dynamic architecture search for
multi-task learnin. In Neurocomputing, 2021.

[30] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In ICLR, 2015.

[31] Jae-Han Lee and Chang-Su Kim. Monocular depth estima-
tion using relative depth maps. In CVPR, 2019.

[32] Yanwei Li, Lin Song, Yukang Chen, Zeming Li, X. Zhang,
Xingang Wang, and Jian Sun. Learning dynamic routing for
semantic segmentation. In CVPR, 2020.

1408

[33] Jason Liang, Elliot Meyerson, and Risto Miikkulainen. Evo-
lutionary Architecture Search For Deep Multitask Networks.
In GECCO, 2018.

[34] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan Yuille, and Li Fei-Fei. Auto-deeplab:
Hierarchical neural architecture search for semantic image
segmentation. In CVPR, 2019.

[35] Haotian Liu, Rafael A. Rivera Soto, Fanyi Xiao, and
Yong Jae Lee. Yolactedge: Real-time instance segmentation
on the edge. In ICRA, 2021.

[36] Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-
End Multi-Task Learning with Attention. In CVPR, 2019.

[37] Nils Lüling, David Reiser, Alexander Stana, and Hans W.
Griepentrog. Using depth information and colour space vari-
ations for improving outdoor robustness for instance seg-
mentation of cabbage. 2021 IEEE International Conference
on Robotics and Automation (ICRA), 2021.

[38] Chenxu Luo, Xiaodong Yang, and Alan Yuille. Self-
supervised pillar motion learning for autonomous driving. In
CVPR, 2021.

[39] Jiaqi Ma, Zhe Zhao, Jilin Chen, Ang Li, L. Hong, and Ed H.
Chi. SNR: Sub-Network Routing for Flexible Parameter
Sharing in Multi-task Learning. In AAAI, 2019.

[40] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas
Kokkinos. Attentive Single-Tasking of Multiple Tasks. In
CVPR, 2019.

[41] I. Misra, A. Shrivastava, A. Gupta, , and M. Hebert. Cross-
stitch networks for multi-task learning. In CVPR, 2016.

[42] Kiru Park, Timothy Patten, Johann Prankl, and Markus
Vincze. Multi-task template matching for object detection,
segmentation and pose estimation using depth images. In
2019 International Conference on Robotics and Automation
(ICRA), pages 7207–7213, 2019.

[43] Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan,
Yifeng Lu, Hanxiao Liu, Gabriel Bender, Adam Kraft, Chen
Liang, and Quoc V. Le. PyGlove: Symbolic Programming
for Automated Machine Learning. In NeurIPS, 2020.

[44] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-
modal fusion transformer for end-to-end autonomous driv-
ing. In CVPR, 2021.

[45] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.
Le. Regularized Evolution for Image Classifier Architecture
Search. In AAAI, 2019.

[46] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,
Zhihui Li, Xiaojiang Chen, and Xin Wang. A Comprehen-
sive Survey of Neural Architecture Search: Challenges and
Solutions. In ACM Computing Surveys, 2021.

[47] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, , and
Anders Søgaard. Latent multi-task architecture learning. In
AAAI, 2019.

[48] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. MobileNetV2: In-
verted Residuals and Linear Bottlenecks. arXiv preprint
arXiv:1801.04381, 2018.

[49] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017.

[50] Pushmeet Kohli Nathan Silberman, Derek Hoiem, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In CVPR, 2012.

[51] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2015.

[52] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,
Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger,
Maxim Krivokon, Amy Gao, Aditya Joshi, Sheng Zhao,
Shuyang Cheng, Yu Zhang, Jonathon Shlens, Zhifeng Chen,
and Dragomir Anguelov. Scalability in perception for au-
tonomous driving: Waymo open dataset, 2020.

[53] Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate
Saenko. AdaShare: Learning What To Share For Efficient
Deep Multi-Task Learning. In NeurIPS, 2020.

[54] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. MnasNet:
Platform-Aware Neural Architecture Search for Mobile. In
CVPR, 2019.

[55] Mingxing Tan and Quoc V. Le. EfficientNet: Rethink-
ing Model Scaling for Convolutional Neural Networks. In
ICML, 2019.

[56] Mingxing Tan and Quoc V. Le. EfficientNetV2: Smaller
Models and Faster Training. In ICML, 2021.

[57] Mingxing Tan, Ruoming Pang, and Quoc V. Le. EfficientDet:
Scalable and Efficient Object Detection. In CVPR, 2020.

[58] Simon Vandenhende, Stamatios Georgoulis, Bert De Bra-
bandere, and Luc Van Gool. Branched Multi-Task Networks:
Deciding What Layers To Share. In BMVC, 2020.

[59] Simon Vandenhende, Stamatios Georgoulis, Wouter Van
Gansbeke, Marc Proesmans, Dengxin Dai, and Luc Van
Gool. Multi-Task Learning for Dense Prediction Tasks: A
Survey. In TPAMI, 2021.

[60] Thanh Vu, Marc Eder, True Price, and Jan-Michael Frahm.
Any-width networks. In CVPRW, 2020.

[61] Thanh Vu, Daniel Piros, and Amir Sadovnik. How your
phone recognizes your home: An investigation of mobile ob-
ject recognition. In National Conference on Undergraduate
Research (NCUR), 2016.

[62] Qifei Wang, Junjie Ke, Joshua Greaves, Grace Chu, Gabriel
Bender, Luciano Sbaiz, Alec Go, Andrew Howard, Feng
Yang, Ming-Hsuan Yang, Jeff Gilbert, and Peyman Milanfar.
Multi-path Neural Networks for On-device Multi-domain
Visual Classification. In WACV, 2021.

[63] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. FBNet: Hardware-Aware Effi-
cient ConvNet Design via Differentiable Neural Architecture
Search. In CVPR, 2019.

[64] Yunyang Xiong, Hanxiao Liu, Suyog Gupta, Berkin Akin,
Gabriel Bender, Yongzhe Wang, Pieter-Jan Kindermans,
Mingxing Tan, Vikas Singh, and Bo Chen. MobileDets:
Searching for Object Detection Architectures for Mobile Ac-
celerators. In CVPR, 2021.

1409

[65] Ming Yang, Shige Wang, Joshua Bakita, Thanh Vu, F. Donel-
son Smith, James H. Anderson, and Jan-Michael Frahm.
Re-thinking cnn frameworks for time-sensitive autonomous-
driving applications: Addressing an industrial challenge. In
Proceedings of the IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS), 2019.

[66] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient Surgery for
Multi-Task Learning. In NeurIPS, 2020.

[67] Yanqi Zhou, Xuanyi Dong, Berkin Akin, Mingxing Tan,
Daiyi Peng, Tianjian Meng, Amir Yazdanbakhsh, Da Huang,
Ravi Narayanaswami, and James Laudon. Rethinking co-
design of neural architectures and hardware accelerators.
arXiv preprint arXiv:2102.08619, 2021.

[68] Ming Zhu, Chao Ma, Pan Ji, and Xiaokang Yang. Cross-
modality 3d object detection. In WACV, 2021.

1410

