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Abstract

Weakly-supervised object detection (WSOD) models at-
tempt to leverage image-level annotations in lieu of accu-
rate but costly-to-obtain object localization labels. This
oftentimes leads to substandard object detection and lo-
calization at inference time. To tackle this issue, we pro-
pose D2F2WOD, a Dual-Domain Fully-to-Weakly Super-
vised Object Detection framework that leverages synthetic
data, annotated with precise object localization, to supple-
ment a natural image target domain, where only image-
level labels are available. In its warm-up domain adap-
tation stage, the model learns a fully-supervised object de-
tector (FSOD) to improve the precision of the object pro-
posals in the target domain, and at the same time learns
target-domain-specific and detection-aware proposal fea-
tures. In its main WSOD stage, a WSOD model is specif-
ically tuned to the target domain. The feature extractor and
the object proposal generator of the WSOD model are built
upon the fine-tuned FSOD model. We test D2F2WOD on
five dual-domain image benchmarks. The results show that
our method results in consistently improved object detection
and localization compared with state-of-the-art methods.

1. Introduction

Object detection has achieved remarkable progress over
the past few years, mostly through the development of deep
neural network architectures [20, 4]. However, training
such deep neural networks needs large amounts of manu-
ally annotated images. Obtaining these annotations is costly
and time-consuming. Thus, reducing these costs is of great
importance, and many weakly-supervised object detection
(WSOD) methods [2, 29, 28] have been developed accord-
ingly. WSOD methods alleviate the reliance on precise ob-
ject localization information by training detection architec-
tures using only image-level annotations.

Most existing WSOD algorithms [2, 29, 28, 34, 21, 8, 13]
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Figure 1: Illustration of human-labeled objects contrasted to ob-
ject proposals generated by our D2F2WODwarm-up, RPN of Faster R-
CNN trained on synthetic data alone, and Selective Search (SS), on
the RealPizza10 dataset. It demonstrates the benefit of our learned
object proposal generator (warm-up stage) over SS. SS often fails
to generate accurate bounding boxes, making it hard to improve
classification accuracy. It also shows that our D2F2WODwarm-up is
better than learned RPN of Faster R-CNN trained on synthetic data
alone. Our warm-up domain adaptation stage can improve the pre-
cision of the object proposals in the target domain.

are based on multiple instance learning (MIL) [6]. They
treat images as bags of object proposals, which are pro-
duced by an object proposal generator [31, 41]. Although
many promising results have been achieved by WSOD, they
are still not comparable to fully-supervised object detectors
(FSOD) [20, 4]. One of the main reasons is that state-of-
the-art object proposal generators still cannot produce ac-
curate object proposals – this is a particularly serious issue
for in-the-wild images with multiple complex non-rigid ob-
jects and cluttered background, as shown in Fig. 1.

To overcome this difficulty, we introduce a simple object
proposal generation strategy that can be applied to different
WSODs to improve their detection performance. Our key
insight is to cast WSOD as a domain adaptation problem –
while target “natural” images often lack localization labels,
localization is “freely” available for “non-photographic”
synthetic images. For instance, when synthesizing images
such as SyntheticPizza10 [19], localization and identity la-
bels are available as a byproduct of the generation pro-
cess. Highly stylized images (e.g., Clipart1K [14], Water-
color2K [14], and Comic2K [14]) are likewise easier to an-
notate than natural images, where objects may exhibit com-
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plex changes in share or appearance. In this work, we are
interested in leveraging fully-annotated non-photographic
datasets to support accurate object localization in real-world
datasets. To this end, we propose a Dual-Domain Fully-to-
Weakly Supervised Object Detection (D2F2WOD) frame-
work, which is able to produce accurate object proposals
using image-level labels of natural images along with fully-
supervised non-photographic images through progressive
domain adaptation of an FSOD model.

Given the large domain gap between the source and the
target, across both foreground and background (F&B), it is
critical to (1) individually address the adaptation of F&B
in a disentangled manner when feasible, and (2) reduce
the domain gap in a gradual manner to control the prop-
agation of errors. In our work, we progressively adapt
an FSOD model from source images to the target domain
in five steps. First, we build an initial bridge between
the non-photographic source and the real-world target do-
mains using unpaired image-to-image translation (I2I), such
as [40]. This creates “target-like” intermediate images with
location-accurate object instances but divergent appearance.
Instead of the common practice of initializing an FSOD on
this intermediate domain, we further reduce the domain gap
by employing a copy-paste augmentation technique sourced
in [35, 9] to fuse the translated object appearance with real
background images and create a second transfer-labeled in-
termediate domain. This domain serves as the preliminary
stage for initializing an FSOD, to be used for pseudo la-
beling (PL) [16] in the subsequent WSOD learning phase
on the real target domain. However, the typical number of
confident pseudo-labeled instances resulting from the ini-
tialized FSOD and needed for WSOD is insufficient for ef-
fective adaptation to the target domain. To that end, we
re-employ the previously used augmentation technique to
increase the number of confident PL instances. Finally, we
learn a detection head utilizing these target-like object pro-
posal features. Our D2F2WOD achieves consistent improve-
ments compared with the state-of-the-art methods, offering
a strong baseline for WSOD models.

Our contributions are three-fold: (1) We propose a
framework for object proposal generation based on do-
main adaptation, applicable to different WSODs, including
OICR [29], and CASD [13]. The five-step progressive do-
main adaptation process exploits gradual adaptation of the
FSOD on generated samples, as well as with decoupled fo-
cus on foreground and background, and it can be seamlessly
integrated with different types of FSOD backbones such
as Faster R-CNN [20] and transformer-based detectors [4].
(2) We construct a dual-domain image benchmark Synthet-
icPizza10→ RealPizza10 with non-photographic images as
the source and real-world images as the target domains. (3)
The experimental results show that our D2F2WOD achieves
state-of-the-art performance on five benchmarks.

2. Related Work
Weakly-Supervised Object Detection. WSOD meth-
ods generally aim to exploit only image-level annotations,
as opposed to the fine-grained object localization usually
used in FSOD. Existing methods mainly cast WSOD as a
multiple-instance learning (MIL) problem, where objects
are not necessarily centered in images and there is clut-
tered background [18]. In MIL-based models, an image
is interpreted as a bag of potential object instances. These
models generally consist of three components: feature ex-
tractor (FE), object proposal (OP) generator, and detection
head (DH). Given an image, they first feed it into the OP
generator and the FE to generate proposals and features
maps, respectively. Then, the feature maps and object pro-
posals (OPs) are forwarded into a Spatial Pyramid Pool-
ing (SPP) layer [32] or a Region-of-Interest (RoI) pooling
layer [20] to produce fixed-size object proposal features.
Finally, these feature vectors are fed into the DH to clas-
sify and localize objects. End-to-end weakly-supervised
deep detection network (WSDDN) [2] proposes one of
the first MIL frameworks. Based on Fast R-CNN [10],
it introduces a two-stream network to perform classifica-
tion and localization, respectively. However, in WSDNN,
the top ranking OPs may only cover the most discrimina-
tive parts of the objects instead of whole object instances,
due to a lack of supervision in terms of precise local-
ization information in the training process. Subsequent
work [29, 28, 34, 1, 36, 21, 8, 13, 30] aims to alleviate
this problem by extending WSDDN. One of the key factors
that affect the performance of WSOD is the quality of OPs.
Many existing methods are built upon unsupervised RoI ex-
traction, such as selective search (SS) [31] and edge boxes
(EB) [41]. To generate OPs, SS uses both exhaustive search
and segmentation, and EB uses object edges. [37] proposes
a hierarchical region proposal refinement network and [30]
proposes a two-stage region proposal network, to refine pro-
posals gradually. Some other work, such as W2N [12], con-
tinues refine the noisy dataset generated by a well-trained
WSOD with semi-supervised learning.

Different from the above methods, in this work, we first
cast WSOD as a domain adaptation problem, by leveraging
an auxiliary source domain to pre-train an FSOD model.
The FSOD model is progressively adapted from the source
to the target domains. After we obtain the adapted FSOD
model, we treat it as the weakly-supervised OP generator
in the WSOD settings, and at the same time the FE of the
FSOD is treated as the pre-trained FE for the WSOD model.
Domain Adaptation for Object Detection. Domain adap-
tation typically involves two domains, namely source and
target domains. Most of existing domain adaptation meth-
ods aim to address the domain shift between a fully-labeled
source domain and an unlabeled or weakly-labeled target
domain, which is formulated as unsupervised or weakly-
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supervised domain adaptation, respectively. State-of-the-art
domain adaptation for object detection introduces different
strategies to reduce the domain divergence. For example,
adversarial feature learning is leveraged to adapt object de-
tectors to a target domain with the help of a domain dis-
criminator [5, 25, 26, 11, 33], thus producing domain in-
variant features. Highly confident predictions generated by
a source detector are used as pseudo-labels to fine-tune the
detector on the target domain [14, 15, 39, 24]. Similarly, an
unpaired I2I model [14, 22, 11] can be employed to map a
source image to a target-like image. Introducing this target-
like domain mitigates the difficulty of direct transfer be-
tween source and target with a large domain gap.

Different from the aforementioned approaches, our
method decouples the domain shift into the foreground and
background shift. This makes it possible to gradually, in
a focused manner, adapt the detector from source to target.
We also use data augmentation in the adaptation stage, since
augmentations such as color jittering [27], mixup [38] and
copy-paste [35, 9] can have major impact on image classi-
fication and object detection. Furthermore, OPs generated
by the adapted object detector are augmented by an addi-
tional refinement of proposal branches using the detection
heads in the WSOD settings. This refinement improves the
network’s ability to classify and localize the OPs.

3. Methodology
The proposed Dual-Domain Fully-to-Weakly Supervised

Object Detection framework (D2F2WOD) aims to address
the lack of object localization information in the target do-
main by formulating WSOD as a domain adaptation prob-
lem. It decouples WSOD model training into two stages
– domain adaptation and WSOD. In the domain adapta-
tion stage, we progressively learn a domain-adaptive FSOD
by leveraging an auxiliary source domain as warm-up. In
the WSOD stage, this adapted FSOD is used to initialize
the WSOD model, which is then refined on the target do-
main. D2F2WOD is a general framework that can employ
different FSOD and WSOD methods. Here, we focus on
two representative FSOD backbones – Faster R-CNN [20]
and DETR [4], and two representative WSOD models – the
widely-used OICR [29] and the state-of-the-art CASD [13].
In this section, we first formulate the problem, followed by
the framework overview, the details of the architecture, and
the training procedure for each stage of D2F2WOD.

3.1. Problem Formulation

Fig. 2 illustrates our D2F2WOD approach. Our goal is to
detect object instances in a real-world, weakly-supervised
target domain T (e.g., real pizza in Fig. 2) by leveraging
a non-photographic source domain S (e.g., synthetic pizza
in Fig. 2). For this problem, we have access to images with
only image-level annotations (i.e., class labels) in T and im-

ages with rich instance-level annotations (i.e., class labels
and bounding boxes) in S.

Formally, Xs ∈ Rh×w×3 denotes an RGB image from
S, where h and w are the height and width of the image,
respectively. Y

(f)
s = {(b1, c1), . . . , (bNs

, cNs
)} indicates

the instance-level full-annotation associated with Xs, where
bi ∈ R4 is the i-th object localization bounding box defined
by [xmin, ymin, xmax, ymax] that specifies its top-left corner
(xmin, ymin) and its bottom-right corner (xmax, ymax), and
ci ∈ {1, . . . , C} is its category label. Ns is the number of
object instances associated with Xs. The classes to be de-
tected in T are shared with S, and C is the number of object
categories in the two domains. Similarly, Xt ∈ Rh×w×3

denotes an RGB image from T , and Y
(w)
t = [y1, . . . , yC ] ∈

{0, 1}C denotes the image-level weak-supervision, where
yc ∈ {0, 1} indicates the absence (presence) of at least one
instance of c-th category. Nt is the number of present object
classes associated with Xt. We denote Vj as object pro-
posal feature vectors of images from domain j ∈ {S, T }.
In this work, we aim to learn an object detector for the tar-
get domain, Ŷ(f) = f(X|θ),X ∈ T , by leveraging both
the fully annotated data Ds = {(Y(f)

s ,Xs)} from S and
the weakly annotated data Dt = {(Y(w)

t ,Xt)} from T ; in
other words, θ∗ ← D = {Ds ∪ Dt}.

3.2. Approach Overview

To boost the performance of a WSOD model on T ,
our key insight is to jointly improve the precision of the
OPs, and learn target-domain-specific and detection-aware
proposal features. To this end, our D2F2WOD exploits
the fully-labeled S (FLS) domain and introduces a dual-
stage training scheme as shown in Fig. 2. In the warm-
up domain adaptation stage, an FSOD is pre-trained (PT)
on S and progressively fine-tuned (FT) on (1) a transfer-
labeled intermediate (TLI) domain G1, (2) an augmented
(Aug.) transfer-labeled intermediate domain G2, and then
on (3) the pseudo-labeled target (PLT) domain T and (4)
the augmented pseudo-labeled target domain T . As shown
in Fig. 2, G1 is constructed as target-like instances with ac-
curate transferred localization information, and G2 is con-
structed as target-like images with accurate transferred lo-
calization information and real background, thus bridging
the S and T and facilitating the adaptation. In the main
WSOD stage, an MIL-based WSOD model is specifically
tuned to T . The FE and the OP generator of the WSOD
model are built upon the fine-tuned FSOD model.

3.3. Warm-Up Domain Adaptation Stage: Learning
Domain-Specific Features & Object Proposals

The warm-up stage of D2F2WOD trains an FSOD model
on the dual S-T , which provides the pre-trained deep FE
and OP generator to produce object proposal feature vec-
tors on T . This FSOD model is later used in the main
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Figure 2: An overview of our Dual-Domain Fully-to-Weakly Supervised Object Detection Architecture (D2F2WOD). Upper block: warm-
up domain adaptation stage; lower block: main weakly-supervised object detection stage. Here ‘A B’ denotes that the parameters of
module B are initialized from module A’s parameters. ‘A B’ denotes that the output of module A is used as an input of module B or
module B directly copies module A’s parameters without further fine-tuning. ‘PNDH’ denotes the proposal networks and detection heads
in an FSOD model.

stage for initializing the WSOD model. Our method gener-
alizes across different FSODs. Here, we adopt two architec-
tures for the FSOD model – Faster R-CNN [20] and Sparse
DETR [23] from the DETR [4] family of object detectors1.

3.3.1 Progressive Domain Adaptation.

Directly training the FSOD model on the dual domain is
challenging, because of (1) substantial data distribution
shift between source (non-photographic images) and tar-
get (natural images) domains in both foreground and back-
ground, and (2) significant supervision discrepancy be-
tween source (fully-labeled) and target (lack of localization
information) domains. Inspired by DT+PL [14], we over-
come this difficulty by generating an intermediate domain
G1 and G2 with instance-level annotations transferred from
the source domain. Correspondingly, we introduce a five-
step progressive domain adaptation strategy (upper part in
Fig. 2) that first pre-trains the FSOD-1 model on the fully-
labeled S, and gradually fine-tunes it on the transfer-labeled
G1 and augmented transfer-labeled G2 to be FSOD-2 and

1Sparse DETR enhanced the efficiency of DETR and improved the per-
formance on small objects datasets, and thus we choose Sparse DETR here.

FSOD-3, and then on the first-round pseudo-labeled T and
second-round augmented pseudo-labeled T to be FSOD-4
and FSOD-5.
Automated generation of intermediate domains for ini-
tial adaptation. To facilitate the adaptation, a desired prop-
erty of the intermediate domain should be that its images are
similar to the target images while having accurate localiza-
tion information. To this end, we generate the intermediate
domain images as composition of photo-realistic, target-like
objects guided by the layout of objects in the source im-
ages, thus allowing direct transfer of localization annota-
tions from the source images to the generated images.

Specifically, since there are no corresponding image
pairs between S and T domains, we train CycleGAN [40],
an unpaired I2I network, to map source images Xs to do-
main G1 intermediate to the target T :

Xg1 = fS→G1
(Xs), (1)

where Xg1 ∈ Rh×w×3 is the image generated by I2I net-
work. Given this I2I mapping, we transfer the labels from
instances in Xs to those in Xg1 as

Y(f)
g1 = Y(f)

s : Xg1 = fS→G1
(Xs). (2)
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Using the intermediate images Xg1 together with their
instance-level annotations Y

(f)
g1 , we fine-tune the FSOD-1

model, pre-trained on S, into FSOD-2.
To make Xg1 closer to the Xt images, we focus on sepa-

rately bridging the foreground and background gap. Specif-
ically, we employ an object-aware data augmentation based
on copy-paste [35] to map Xg1 to Xg2 images. For each
Xg1 image, we randomly copy several foreground object
instances from G1, with resizing and flipping transforma-
tions, and paste them onto the real-world target background
images from T to generate Xg2 . Using the augmented inter-
mediate images Xg2 together with their instance-level anno-
tations Y(f)

g2 , we fine-tune the FSOD-2 model to FSOD-3.
Instance-level pseudo-annotation of target images for
continual adaptation. While the intermediate domains G1
and G2 partly bridge the source and target domains, there
is still non-negligible domain shift between the intermedi-
ate and target domains. For example, the synthesized ob-
jects translated via CycleGAN are still different from those
in the target images; the layout of objects in the interme-
diate domain is restrictive to that in S and lacks the real-
world variation in T . Therefore, to achieve good detec-
tion performance on the target domain, we need to further
fine-tune the FSOD-3 model on the target domain T as
FSOD-4. For this purpose, we use FSOD-3, initially fine-
tuned on G2, to produce instance-level pseudo-annotations

Y
(pl(1))
t = {(b1, c1), . . . , (bNt , cNt)} for each weakly-

labeled target (WLT) image Xt.
Specifically, for each image Xt, we first obtain the pre-

dictions D(3) from the FSOD-3 model:

D(3) = {D1, ..., DC} = fFSOD-3(Xt), (3)

where Dj indicates all predictions belonging to class j ∈
{1, . . . , C}. Dj = {d1, ..., dNj

}, Nj is the number of class
j detections, dm = (pm, b̂m, j), and pm ∈ R indicates the
probability of detection b̂m belonging to class j. For each
ground-truth object class c, we select the top-1 confident

prediction dq from Dc, and we add (b̂q, c) to Y
(pl(1))
t :

dq = (pq, b̂q, c) : yc = 1, q = argmax
m

pm. (4)

The FSOD-3 model is subsequently fine-tuned on the target

images Xt with instance-level pseudo-annotations Y(pl(1))
t

into FSOD-4, finally adapting from the target-like G2 to
T . In principle, it can be performed K times to generate

instance-level pseudo-annotations Y(pl(k))
t and adapted into

FSOD-(3 + k), where k ∈ {1, . . . ,K}.
However, the typical number of confident pseudo-

labeled instances resulting from the FSOD-3 is insufficient
for effective adaptation to the target domain. To add in-
stances annotations, we use the copy-paste augmentations

again to produce those object instances. We repeat the pre-
vious step, in which the FSOD-4 model is used to pro-

duce instance-level pseudo-annotations Y
(pl(2))
t . For each

pseudo-labeled instance (b̂q, c) in Xt, we copy and ran-
domly paste it L times as {(b̂q1 , c)..., (b̂qL , c)} onto the
original target image Xt and produce an augmented im-

age X
′

t with new pseudo-annotations Y(pl(2))
t . The FSOD-

4 is subsequently fine-tuned on the augmented targets X
′

t

with instance-level pseudo-annotations Y(pl(2))
t into FSOD-

5, thus adapting from T to the augmented T .

3.4. Main WSOD Stage: Classification and Local-
ization Refinement of Object Proposals

In the main stage of D2F2WOD, we exploit the FSOD-5
model obtained in the warm-up stage to initialize a WSOD
model and train it on the real-world target data. As ex-
plained in Sec. 2, an MIL-based WSOD model consists of a
FE, an OP generator, and a DH. We initialize the FE of the
WSOD model with the FE of the fine-tuned FSOD-5 (blue
block in Fig. 2) and continually train it on T . We replace the
standard selective search based OP generator of the WSOD
model by the entire fine-tuned FSOD-5 (green block in
Fig. 2), which is not trained in the WSOD training proce-
dure. Note that here we treat the detection output of the
FSOD-5 as the object proposals of the WSOD. This strat-
egy can be seamlessly applied to different types of WSODs,
and here we consider the widely-used OICR [29] and the
state-of-the-art CASD [13]. By doing so, our proposed
model significantly outperforms existing WSOD methods
due to: (1) target-domain-specific pre-trained features, (2)
detection-aware pre-trained features, and (3) target-domain-
specific object proposals.
Generating object proposals and its features. Given an
image Xt, the OP generator aims to obtain Mt bounding
boxes R = {b1, ...,bMt

} associated with Xt. To this end,
for each image Xt, we first obtain the predictions D(5) from
the fine-tuned FSOD-5 model:

D(5) = {D1, ..., DC} = fFSOD-5(Xt). (5)

Given that the number of predictions produced by DETR
is much less than that of Faster R-CNN, we adopt differ-
ent proposal generation strategies. For DETR, all predicted
bounding boxes are added to R. For Faster R-CNN, we se-
lect predicted bounding boxes b̂m belonging to the ground-
truth classes to R. Using the FE followed by an RoI pooling
layer and two fully-connected (FC) layers for the WSOD
model, we then obtain d-dimensional object proposal fea-
ture vectors Vt ∈ Rd×Mt for each input image Xt (lower
part in Fig. 2).
Classification and localization refinement of object pro-
posals. These object proposal feature vectors Vt are fed
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into the detection head of OICR [29] or CASD [13] to clas-
sify and localize objects. Please refer to the Sec. 1 of sup-
plementary material for the details.

4. Experimental Results
Benchmarks. We evaluate our method on five dual-
domain image benchmark pairs: SyntheticPizza10 [19]
→ RealPizza10 [19], Clipart1K [14] → VOC2007 [7],
Watercolor2K [14] → VOC2007-sub, Comic2K [14] →
VOC2007-sub, and Clipart1K → MS-COCO-sub [17]
datasets. We construct the SyntheticPizza10 dataset
from [19] by including single-layer images and removing
the pizza base-only images (i.e., without any toppings). Re-
alPizza10 is a subset of the PizzaGAN [19], containing
9,213 real images annotated with 13 toppings. As we use
pseudo-labeling, we require the classes in (S, T ) to be the
same. Thus, we remove images from the PizzaGAN dataset
having only spinach, arugula, or corn, the classes absent
from SyntheticPizza10, to construct RealPizza10. Simi-
larly, MS-COCO-sub and VOC2007-sub datasets are con-
structed by removing images without having at least one
class from the S domains. Please see the Sec. 2 of the sup-
plementary material for details.

The number of instances for each class in each pair of
datasets is unbalanced. Compared with the other bench-
marks, SyntheticPizza10 → RealPizza10 are more chal-
lenging since all Pizza object instances are quite small and
have diverse shape and texture. Although [19] uses a va-
riety of different clip-art images for each topping to obtain
the synthetic pizzas as shown in Fig. 3, the number of these
ingredient templates is still limited. In a real food image,
the shape, color and texture of each ingredient object are
dependent on cooking actions. As shown in Fig. 3, for each
ingredient, the domain gap between SyntheticPizza10 and
RealPizza10 varies. In addition, the gap extends to bases of
synthetic and real pizzas, as shown in Fig. 3.
Baselines and Evaluation Procedure. We mainly focus
on comparing against the state-of-the-art DAOD base-
lines (cross-domain): DT+PL [14] and PADOD [11],
and widely-used WSOD baselines (single-domain):
OICR [29], CASD [13], and other baselines including WS-
DDN [2], PCL [28], C-MIL [34], WSOD2(+Reg) [36], Pred
Net [1], C-MIDN [8], MIST(+Reg) [21], WeakRPN [30],
CASD2 (training CASD two times: once for proposal and
once for object detection), and CASD+W2N [12]. Our
evaluation follows the standard detection procedure. We
compute Average Precision (AP) and the mean of AP
(mAP) as the evaluation metric. A predicted box is treated
as a positive example if it has an IOU > 0.5 between
ground truth bounding boxes and the predicted box.
Implementation Details. In the warm-up stage, Faster R-
CNN [20] and Sparse DETR [23] were used as our FSOD
models. For each target image, we generated 438 object

Synthetic Toppings

Pepperoni

Bacon

Mushroom

Pepper

Olive

Tomato

Basil

Real Toppings Synthetic Bases

Real Bases

Figure 3: There is a domain shift in toppings and bases of piz-
zas. Left: Examples of toppings used to create synthetic pizza
images [19]. Middle: Examples of toppings in real pizza images.
Right top: Examples of bases used to create synthetic pizza im-
ages [19]. Right bottom: Examples of bases in real pizza images.

Figure 4: Identify object detection errors.

proposals per image on average on VOC2007 and 441 ob-
ject proposals per image on average on RealPizza10. Please
refer to the Sec. 3 in the supplementary material for details.
Source vs. Target Labeling Cost. Two factors determine
the trade-off of source vs. target FSOD: the cost of building
a synthetic image generator and the realism of the synthe-
sized images. When the realism of the synthetic images
is moderate, the cost of building the generator is low. For
SyntheticPizza10, built from abstract clipart or patches, the
cost of generation is low. Moreover, the annotation of syn-
thetic images is either a byproduct of the generation or in-
herently easy for human annotators, if such annotation is
needed (e.g., Clipart1k). Thus, our approach has inherently
lower cost than the direct annotating the target domain.

4.1. Main Results

We compare D2F2WOD with state-of-the-art single (SD)
and cross-domain (CD) methods in terms of mAP. Ta-
ble 1 and Table 2 summarize the detection results on
five benchmarks based on Faster R-CNN FSOD back-
bone. The per class APs are listed in the supplementary
material Table 5. D2F2WOD incorporated with OICR is
denoted as D2F2WODoicr, and with CASD is denoted as
D2F2WODcasd. The results of our warm-up stage are denoted
as D2F2WODwarm-up.
D2F2WOD consistently outperforms the SD baselines. As
shown in Table 1, on Clipart1K→VOC2007, D2F2WODcasd
reaches 64.8% mAP, outperforming the original CASD by
7.8% mAP, and D2F2WODcasd+w2n reaches 66.9% mAP, out-
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Table 1: Results (mAP in %) for different methods on Clipart1K → VOC2007. We denote as Upper-Bound the FSOD (Faster R-CNN or
Sparse DETR) results, trained and tested on fully-annotated target domain to indicate the weak upper-bound performance of our methods.
Our warm-up stage is compared with CD models and our main stage is compared with SD models. Faster R-CNN in CD means that we
trained our network on fully-annotated source and test on fully-annotated target domains. The best and second best results for D2F2WOD
compared with baselines are shown in red and blue.

After Warm-Up Stage After Main Stage
Type CD Ours SD Ours

Method Upper-Bound Faster R-CNN [20] DT+PL [14] PADOD [11] D2F2WODwarm-up WSDDN [2] OICR [29] PCL [28] WeakRPN [30] C-MIL [34] WSOD2(+Reg) [36] Pred Net [1] C-MIDN [8] MIST(+Reg) [21] CASD [13] CASD2 CASD+W2N [12] D2F2WODcasd D2F2WODcasd+w2n
mAP 69.9 22.8 34.6 24.2 37.3 34.8 41.2 43.5 45.3 50.5 53.6 52.9 52.6 54.9 57.0 57.4 65.4 64.8 66.9

Table 2: Results (mAP in %) for different methods on SyntheticPizza10 → RealPizza10 (SPizza → RPizza), Watercolor2K → VOC2007-
sub (Water → VocS), Comic2K → VOC2007-sub (Comi → VocS), and Clipart1K → MS-COCO-sub (Clip → CocoS).

After Warm-Up Stage After Main Stage
Type CD Ours SD Ours

Method Upper-Bound Faster R-CNN [20] DT+PL [14] PADOD [11] D2F2WODwarm-up OICR [29] CASD [13] D2F2WODcasd

mAP

SPizza → RPizza - 4.3 14.9 8.1 17.9 4.7 12.9 25.1
Water → VocS 78.0 42.1 49.4 - 52.1 - 65.2 73.2
Comi → VocS 78.0 33.5 46.5 - 49.6 - 65.2 70.8
Clip → CocoS 84.3 13.9 22.1 - 25.7 - 48.3 57.2

performing the original CASD+W2N by 1.5% mAP, while
CASD2 outperforms the original CASD only by 0.4% mAP.
The detection performance does not benefit much from us-
ing CASD2, since doing so does not improve the gener-
ated proposals. On SyntheticPizza10 → RealPizza10 re-
ported in Table 2, D2F2WODcasd provides a 12.2% improve-
ment over the original CASD in terms of mAP. D2F2WOD
also consistently outperforms the CD baselines. Table 1
shows that on Clipart1K→VOC2007 D2F2WODcasd outper-
forms DT+PL and PADOD by 30.2% and 40.6% mAP, re-
spectively. As shown in Table 2, D2F2WODcasd outperforms
DT+PL and PADOD on SyntheticPizza10 → RealPizza10
by 10.2% and 17.0% mAP, respectively. D2F2WOD gen-
eralizes across different datasets. As shown in Table 2,
D2F2WOD effectively handles different domain shifts, suc-
cessfully leveraging a variety of S2.

We observe both stages of D2F2WOD yield consistently
improved detection and localization performance compared
with both state-of-the-art SD and CD baselines, especially
on the more challenging SyntheticPizza10 → RealPizza10
scenario. By exploiting our domain adaptation stage, we
believe that our training of the WSOD model is superior to
existing methods in three important ways. First, our pre-
trained features are target-domain-specific, because of pro-
gressive adaptation from source to intermediate to target do-
mains, whereas existing WSOD methods use features pre-
trained on ImageNet. Second, our pre-trained features are
detection-aware, while ImageNet features used in existing
WSOD methods are pre-trained with a single whole-image
classification loss, which encourages translation and scale-
invariant features. In contrast, the training of our FSOD
model involves classification and regression losses, provid-
ing features that are sensitive to object locations and scales
and are thus useful for detection. Third, our object pro-
posals are target-domain-specific and of high-quality, since
they are progressively learned directly on the target domain

2Resource constraints limit our focus on best select SOTA, with exten-
sive comparison delegated to Clipart1K → VOC2007 evaluation.

from foreground and background. Existing WSOD methods
use hand-crafted selective search object proposals, which
leads to inaccurate proposals especially for domains such
as Pizza, with properties different from VOC2007.

4.2. Ablation Study

We first conducted ablation studies to investigate the ef-
fectiveness of our warm-up stage on SyntheticPizza10 →
RealPizza10 based on the Faster R-CNN FSOD backbone.
Effectiveness of Progressive Adaptation. In our warm-
up stage, each adaptation stage (from FSOD-2 to FSOD-5)
provides an improvement of 5.4, 0.6, 4.7, 2.9% compared
with the previous step in terms of mAP, respectively. There-
fore, each adaptation step in our warm-up stage is helpful.
Impact of Adaptation Order. It is important when to use
copy-paste augmentation. Starting from the same baseline
model FSOD-1, if we sequentially fine-tune the FSOD-1
model on intermediate domain G1 and augmented interme-
diate domain G2, the detection performance will be im-
proved by 6.0% mAP from FSOD-1 to FSOD-3. How-
ever, if we sequentially fine-tune the FSOD-1 model on aug-
mented intermediate domain G2 and intermediate domain
G1, the detection performance will be improved by only
1.6% mAP from FSOD-1 to FSOD-3. Similarly, starting
from the same FSOD-3 model, if we sequentially fine-tune
the FSOD-3 model on first-round pseudo-labeled domain
T and second-round augmented pseudo-labeled domain T ,
the detection performance will be improved 7.6% mAP
from FSOD-3 to FSOD-5. However, if we sequentially fine-
tune the FSOD-3 model on augmented first-round pseudo-
labeled domain T and second-round pseudo-labeled do-
main T , the detection performance will be improved by
7.0% mAP from FSOD-3 to FSOD-5.
Generalizability of the Warm-up Stage across FSODs.
We investigate our warm-up stage on other FSOD models
such as Sparse DETR on SyntheticPizza10→ RealPizza10
datasets. Compared with Faster R-CNN backbone, our
D2F2WODwarm-up and D2F2WODcasd based on Sparse DETR
yields 0.6% and 1.1% improvement in terms of mAP, re-
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Table 3: Ablation study of D2F2WOD main configurations on Cli-
part1K → VOC2007 and SyntheticPizza10 → RealPizza10.

mAP
Type Method Clip → Voc SPizza → RPizza

SD OICR 41.2 4.7

D2F2WODoicr

+FE 44.7 8.5
+OP 47.2 12.6

+FE+OP 52.7 13.8

SD CASD 57.0 12.9

D2F2WODcasd

+FE 60.0 14.8
+OP 60.1 24.0

+FE+OP 64.8 25.1

spectively. These results emphasize the generality of our
framework across different FSOD models. We also conduct
ablation studies to investigate the effectiveness of our ar-
chitecture components in the main FSOD stage, including
the domain specific pre-trained deep FE and the weakly-
supervised OP generator, as well as the generalization abil-
ity of our framework on two WSODs: OICR and CASD.
We perform experiments on Clipart1K → VOC2007 and
SyntheticPizza10→ RealPizza10. We find that: (1) our do-
main specific pre-trained deep FE and weakly-supervised
OP generator are both necessary for D2F2WOD; and (2)
D2F2WOD can generalize to different WSOD methods.
Main Stage Configurations. From Table 3, we observe
that compared with the single-domain baseline networks
(OICR and CASD), replacing the VGG16 backbone pre-
trained on ImageNet with domain specific pre-trained
deep FE can improve the performance on VOC2007 (mAP
from 41.2% to 44.7%, and from 57.0% to 60.0%, respec-
tively), and on RealPizza10 a consistent improvement is
achieved with 3.8% and 1.9% for OICR and CASD, re-
spectively. From Table 1, we observe that our object pro-
posal generator is also better than WeakRPN [30], including
a two-stage region proposal network. These results con-
firm the necessity of the domain-specific pre-trained deep
features. Table 3 also shows the impact of the weakly-
supervised OP generator; it achieves consistent improve-
ments of 3.1% and 11.1%, compared with CASD, on
VOC2007 and RealPizza10 datasets, respectively. Together,
FE+OP results in Table 3 suggest that these two key com-
ponents are both effective and complementary to each other.

HorseBoat

Basil

Bird

Olive Pepperoni

Ours vs. CASD Ours vs. CASDOurs vs. CASD

Figure 5: Example of success cases for our D2F2WODcasd vs.
CASD in the test set of RealPizza10 and VOC2007 datasets. We
only show instances with scores over 0.3 to maintain visibility.

Generalizability of D2F2WOD across WSODs. We investi-
gate the impact of our framework as a function of different
WSOD methods (here, OICR and CASD). Results in Ta-

ble 3 emphasize the generalizability of D2F2WOD across
WSODs. The performance gain is observed in both OICR
and CASD on the two datasets. The effect of D2F2WOD
is particularly significant for CASD on RealPizza 10, since
our object proposals are target domain-specific and of high-
quality. By contrast, existing WSOD methods use hand-
crafted selective search to generate object proposals, lead-
ing to inaccurate proposals especially for domains such as
Pizza that are very dissimilar to VOC2007.
Identifying Object Detection Errors. We use TIDE [3]
to understand the classification, localization, both Cls and
Loc, duplicate detection, background, and missed GT er-
rors in our model. As shown in Fig. 4, D2F2WOD effec-
tively reduces the localization error. Please see the Sec. 5
of supplementary material for more details.

4.3. Qualitative Analysis

Fig. 5 illustrates the detection results produced by
our D2F2WOD and CASD on RealPizza10 and VOC2007
datasets, respectively. There, it can be observed that
D2F2WOD does not only locate most objects, but that it also
produces more accurate bounding boxes. Specifically, in the
RealPizza10 images it can be appreciated bounding boxes
provided by our method (left) closely align with the objects
of interest, while for CASD (right) bounding boxes are of-
ten imprecise (either wrong shape or big/small). Similar
observations can be made for VOC2007 where CASD often
fails to locate objects or produces spurious bounding boxes.

5. Discussion and Conclusion

We propose D2F2WOD, a simple yet effective object gen-
eration strategy that can be applied to different WSOD
methods. The key insight is to cast WSOD as a domain
adaptation problem and improve performance by progres-
sive foreground-background focused transfer learning of an
FSOD from non-photographic source to real-world target
domains. Empirical evaluation shows D2F2WOD signifi-
cantly outperforms state of the art on several benchmarks.
Limitation. Our framework requires extra training time for
CycleGAN, which brings in the most additional computa-
tion overhead. While D2F2WOD offers a promising way to
solve WSOD in the presence of a large domain gap, it cur-
rently lacks the ability to jointly learn and refine all stages
in the pipeline. An end-to-end large-gap WSOD could of-
fer additional improvement in detection performance on the
target domain through creation of increasingly discrimina-
tive object features. However, one challenge with that set-
ting would be to control the back-propagation of possible
errors induced by the PL steps.
Acknowledgement. This work was supported in part by
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