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Abstract

Crowd counting has attracted increasing attentions in
recent years due to its challenges and wide societal ap-
plications. Despite persevering efforts made by the re-
search community, most of existing methods require a large
amount of location-level annotations. Collecting such type
of fine-granularity supervisory signals is extremely time-
consuming and labour-intensive, thereby hindering the well
generalization of these location-adherent models. To shun
this drawback, several pioneering studies open a promis-
ing research direction of location-agonistic crowd count-
ing. Albeit the noticeable efforts, they somewhat ignore the
merits of diverse learning paradigms and the issue of in-
tractable density shift. To ameliorate these issues, in this
paper, a novel Dynamic Mixture of Counter Network (DM-
CNet) is proposed for location-agnostic crowd counting.
Specifically, our DMCNet inherits the hybrid advantages
of CNNs (e.g. locality-oriented and pyramidal property)
and MLP-based structure (e.g. global receptive fields and
light weight). Particularly, the dynamic counter predictor
and the mixture of counter heads are delicately designed
to hammer at combating huge density shift and overfitting.
Extensive experiments demonstrate that our DMCNet at-
tains state-of-the-art performance against existing location-
agnostic approaches and performs on par with many con-
ventional location-adherent ones.

1. Introduction
During the past few years, counting problems (e.g.

crowd [51], cells [17], fruits [42] and generalized ob-
ject [43] counting) have drawn ever-increasing attention
from the research community in the realm of computer vi-

Figure 1. The categories of location-agnostic counting frame-
works under count-level supervisions. (a) Learn from locality-
oriented CNNs paradigm endowed with auxiliary sorting guid-
ance [20, 62]. (b) Learn characteristics with global receptive fields
via transformer-based structure [27]. (c) Our method inherits both
merits of CNNs and MLP-based paradigms in a hybrid manner,
and proposes a dynamic regression protocol.

sion, thanks to their far-ranging impacts on a train of soci-
etal applications, such as social distance monitoring [41],
metropolis management [36], traffic controlling [64] and
agriculture industry intelligentization [34], etc. The out-
break of COVID-19 pandemic has further stimulated the
resurging of the crowd counting field which deserves to be
dug deep into. Crowd counting task hammers at deriving
single and unconstrained count values from the input still
crowd scenes [24] or spatio-temporal video signals [35].
Inchoate approaches for crowd counting attach more prior-
ity to detect the body parts of crowd individuals dispersing
across the whole image through heuristically-designed fea-

167



ture engineering [66, 45, 23]. Albeit awesome accuracy im-
provements achieved, they are incompetent to produce sat-
isfactory results when encountering highly-congested im-
ages with severe occlusions, large scale changes and density
shifts, thereby hampering their generalization to wider sce-
narios. To surmount the barriers of those detection-based
approaches, Lempitsky et al. [21] initiate the supervisory
signal of density maps, and cast crowd counting problem
into a new trend of density map regression.

More recently, the superb representational ability of
Convolutional Neural Networks (CNNs) [46, 11] has ush-
ered crowd counting in a booming era via a sequence of
prevailing CNN-based models [65, 1, 4, 37, 55, 61, 25, 29].
The mainstream of existing methods take location-wise dot
or density maps as the central supervisory signals, and
therefore requires a large amount of location-level anno-
tations. A series of crowd datasets in vogue (e.g. Shang-
haiTech [65], UCF QNRF [12], JHU-CROWD++ [50]) are
perseveringly produced by manually marking dots around
centroids of all peoples heads appearing across congested
scenes, which is extremely time-consuming and labour-
intensive. For example, 1.51 million dots were manually
annotated for JHU-CROWD++ [50] whereas 1.25 million
heads were labelled for UCF QNRF [12].

Considering the arduous procedure of collecting samples
with strong spatial hints, efforts to ease the dependency on
location-wise annotations are well worth the trouble. In spe-
cific, L2R [32] and Sindagi et al. [49] endeavour to absorb
a mass of unlabelled data from Internet through designing
side sorting task and generating pseudo labels, respectively.
AL-AC [67] strives to limit the use rate of labelled images,
and attains the competitive results only using 10% anno-
tated samples. To reduce the usage of ground-truth spatial
regions, Xu et al. [61] excel in learning informative features
from stochastically-predefined partial regions with smaller
areas. In spite of great efforts, the requirement of gather-
ing burdensome location-wise annotations still cannot be
circumvented and these models fail to cope with the case
where supervisions of pure crowd counts are solely avail-
able, as crowd counts can be easily inferred from ground-
truth density maps but not vice versa [20].

To evade the burden of location annotations and narrow
the gap between training and inference domains, the idea
of location-agnostic crowd counting emerged [20, 62, 27].
In practice, large-scale datasets taking only single counts
as annotations can be easily acquired in many target sce-
narios. For instance, once a ground-truth crowd count is
collected and fixed for a venue with controlled access, e.g.
bus station, the annotations for subsequent images can be
quickly inferred by adding/subtracting numbers of objects
entering/leaving [56]. Hence, weakly-supervised crowd
counting has a vast prospect in expanding dataset scales,
and enhancing the evolution of more generalized counting

Figure 2. Long-tailed distribution of density values upon plenty of
patches stochastically cropped from the dataset ShanghaiTech Part
A [65]. Drastic and non-uniform density shifts existing in training
set can be easily observed.

problem with multifarious objects. Location-free count-
ing model aims at directly learning mapping functions from
count-level supervisory signals, which is completely in ac-
cordance with the ultimate goal of crowd counting task.

Existing count-level approaches either resort to CNNs to
capture feature vector [20, 62] (see Fig. 1 (a)), or devote to
cutting-edge learning paradigms (e.g. Transformer [54, 7]
(see Fig. 1 (b))) for explicitly capturing global receptive
fields. Although the effectiveness of locality-oriented fea-
tures and global receptive fields have been demonstrated by
these individual approaches for weakly-supervised crowd
counting, they somewhat neglect the collaborative im-
pacts of meritorious learning paradigms (CNNs and Trans-
former). Recently, several eye-catching attempts have been
made to delve into the hybrid combination to maximize the
advantages of distinct paradigms in the field of image clas-
sification. For example, approaches [63, 6, 9] allow models
to marry properties of CNNs and transformer, whereas Li et
al. [22] try to seamlessly cascade the CNNs and MLP-based
structure through a Hierarchical Convolutional MLPs.

Apart from the lack of complementarity between intrin-
sic merits from disparate learning paradigms, recent ap-
proaches ignore the issue of density shift (illustrated in
Fig. 2) to some extent. Density map-based algorithms have
extensively investigated the problem of density changes by
presenting a pool of sophisticated techniques, such as multi-
column [65, 1] and divide-and-conquer strategies [60]. On
top of homogenous supervisory signal (i.e. count-level an-
notations), density shifts inevitably bring implicit ambi-
guity in the training procedure of location-agnostic mod-
els, resulting in unsatisfactory and overfitting-prone perfor-
mance. Besides, the non-uniform density shift easily con-
fuses the model on what distribution to learn. It is therefore
more pregnant to suppress the negative influences of density
change for weakly-supervised counting models than that for
conventional ones, as strong location cues (density or dot
maps) contribute to moderate this issue.
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To ameliorate aforementioned challenges and further ad-
vance the blossom of location-agnostic counting protocols,
a novel Dynamic Mixture of Counter Network (DMCNet)
for location-agnostic crowd counting is presented in this pa-
per, see Fig. 3. The proposed DMCNet features the seam-
less collaboration of locality-oriented CNNs and global
MLP-based paradigms, dubbed as Global Token Mixer and
Pyramidal Feature Extractor accordingly, and a dynamic
counter condenser. Wherein, crude features are character-
ized at the first place by a pretrained VGG-16 [46] on Ima-
geNet [44] before entering high-level transformations. The
transfer of pretrained prior hammers at avoiding the collaps-
ing of model trained from scratch. Then, MLP-based global
token mixer is designed to proceed to extract multi-scale
feature tokens with global receptive fields, while pyramidal
feature extractor progressively enlarges receptive fields with
the goals of hunting for spatial cues and steering the model
towards learning dynamic weights. To better resist the huge
density shift, we excavate a new dynamic scheme to dynam-
ically choose the capability-sufficient and density-aware re-
gression head instead of fixed counter head in existing work.
Since the translation from the soft outputs of counter predic-
tor to the discrete selection operation will hinder the back-
propagation of gradient flow [68], here a principled repa-
rameterization method Gumbel-Softmax [14] is delicately
adopted to preserve end-to-end training. In short, the main
contributions of this work are fourfold:

• A novel Dynamic Mixture of Counter Network (DMC-
Net) for location-agnostic crowd counting is proposed
for boosting weakly-supervised crowd counting with
count-level supervisory signals.

• Seamless collaboration between global token mixer
and pyramidal feature extractor is dug into with the
goal of sharing intrinsic merits of hybrid learning
paradigms and enrich feature steering space.

• To combat the density shift and overfitting, a gumbel-
softmax-based dynamic strategy is put forward to-
wards dynamically and adaptively choosing the appro-
priate regression head for attaining an ensemble from
a mixture of counter experts [13].

• Extensive experiments and ablation studies on prevail-
ing benchmark datasets (e.g. ShanghaiTech Part A,
Part B, UCF QNRF and JHU-CROWD++) demon-
strate the superiority of our proposed DMCNet over
the state of the arts.

2. Related Work
Location-adherent Crowd Counting. During the re-

cent few years, the supervisory signals of density or
dot maps have been dominating the realm of crowd

counting. The attention-getting challenges mainly in-
clude drastic scale variation, huge density shift and clut-
tered backgrounds. Multi-branch/column structures are ex-
plored in MCNN [65], Hydra-CNN [40], Switch-CNN [1],
SANet [4], DSSINet [30], ASNet [15], and SASNet [52] to
broaden the range of feature scales and cater for large scale
variations. CSRNet [24], ADCrowdNet [31] and Adaptive
Dilated Network [2] trigger a new line of explorations on
expanding receptive fields via dilated and deformable con-
volutions. MBTTBF [48] devise a principled way of deriv-
ing pseudo scale supervision from density map for strength-
ening the scale awareness of features. Sindagi et al. [47]
try to simultaneously predict global and local density lev-
els, whereas DensityCNN [16] introduces an auxiliary den-
sity classifier for predicting global density. To filter out the
background noises, Miao et al. [39] propose to reduce the
false positive predictions by equipping attention mechanism
in shallow layers, whereas Liu et al. [31] train an indepen-
dent front-end network to estimate foreground crowd region
maps imposed on original inputs.

Location-agnostic Crowd Counting. To get rid of in-
tractable pixel-wise annotations, several location-agnostic
counting pioneers lay the foundation of weakly-supervised
crowd counting. Yang et al. [62] propose a soft-label sort-
ing sub-network working with the counting backbone to
explicitly mine the density-sensitivity ability. Although it
tries to learn from sorting rather than location cues, the
model is built upon CNNs and deliveries extremely lim-
ited receptive fields, thereby leading to very unsatisfactory
and error-prone prediction. In addition, the soft target of
auxiliary order matrix is heuristically-defined, which con-
tributes little to the holistic performance. To promote the
accuracy of count-level regressors, MATT [20] feeds few
location-level annotations together with numerous count-
level samples into the CNNs-based backbone at the same
time. However, the usage of density maps still not be dis-
pensed with. More recently, thanks to the widespread appli-
cation of transformer in computer vision, Liang et al. [27]
steer the approach to abstract features with global receptive
fields through leaning upon transformer modules. Albeit
intriguing improvements, it overlooks the locality-oriented
representations from CNNs units, and introduces cumbrous
and data-consuming self-attention condensers, especially in
the case where spatial hints are removed and training set
is insufficient. Besides, all above prior approaches are ill-
considered in terms of ambiguity caused by drastic density
shift. Hence, there is still large room for optimizing feature
extractions and adapting them to location-agnostic models.

Dynamic Reparameterization Shemes. VAE [18] pro-
poses to reparameterize internal random variable by decom-
pose it into random (normal distribution) and certainty fac-
tors. Kusner et al. [19] utilize gumbel softmax to fit con-
tinuous distribution for GANs generating sequences of dis-
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crete elements. FBNet [59] deals with non-differentiable
issue introduced by sampling operation via a gumbel-based
differentiable neural architecture search. DRNet [68] deter-
mine the input resolution dynamically based on each input
sample, resulting in a better trade-off between classifica-
tion accuracy and computational overheads. Inspired by the
effectiveness of these attempts in other application scenar-
ios, we exploit dynamic reparameterization technique for
crowd counting to approximate continues density distribu-
tion, thereby lowering the risks of overfitting and the sensi-
tivity to unpredictable density shifts.

3. Dynamic Mixture of Counter Network
In this section, we elaborate the proposed Dynamic Mix-

ture of Counter Network (DMCNet) for weakly-supervised
crowd counting. Fig. 3 depicts the overall schema of our
DMCNet. Following the common practice [24], the first
ten layers (involving three max pooling layers) of a VGG-
16 pretrained on ImageNet are incorporated as the frontend,
with the purpose of preventing the model from seriously de-
generating. After passing the raw crowd scene I through
the frontend, a set of crude low-level features, denoted as
Fl, are extracted and then fed into the subsequent high-level
transformations consisting of global token mixer, pyramidal
feature extractor, and dynamic counter predictor.

3.1. Global Token Mixer

Recently, the great potentials of global receptive fields
have been exhibited by excavating cutting-edge learning
paradigms, particularly transformer [7] and multi-layer per-
ceptron (MLP [53, 26])-based methods, and stimulate a
promising research direction in computer vision. Tran-
sCrowd [27] is the pioneering work that utilizes trans-
former to dig up clues with global receptive fields, and
achieves impressive improvements for location-agnostic
crowd counting. Nevertheless, self-attention condenser is
data-consuming and makes the model prone to overfit-
ting due to the insufficiency of training crowd samples,
which is in line with the observations in several existing
works [3, 5, 58]. Taking these drawbacks into considera-
tion, here we choose the MLP-based paradigm to tokenize
and optimize features for directly regressing total counts.
Motivated by the fascinating performance and efficiency of
MLPMixer [53] in image classification, three-level MLP
transformations are designed to form the global token mixer
module. As demonstrated in Fig. 4, the low-level features
are split into a sequence of feature patches at three differ-
ent granularities/resolutions, which is followed by linear
projection operation and pivotal MLP transformations for
global modelling.

In specific, individual MLP unit is comprised of two
types of MLP layers, a token MLP and a shared channel
MLP, which aim at mixing information along dimensions

of spatial and channel. The zoomed-in view in Fig. 4 shows
the details. Moreover, inspired by shake-shake regulariza-
tion technique [10], a principled aggregation strategy is pre-
sented through summing multi-scale tokens to facilitate the
communication across tokens at multiple scales. During the
training phase, stochastic affine combination of levels are
performed to avoid overfitting rather than directly summing.
Apart from feature refinement, the multi-scale summation
operations implicitly introduce residual learning [11] into
the model learning simultaneously, which is conducive to
expedite model’s convergence.

3.2. Pyramidal Feature Extractor

Although global token mixer is capable of extracting
multi-granularity tokens with global receptive fields, the
pyramidal structure of features are completely discarded.
The natural property of feature pyramid delivered by CNNs
has been proven to be beneficial for enhancing capability
of architectures [63, 6, 9, 22]. To preserve the hierarchical
attribute inherited from CNNs-based frontend and mine
global spatial cues, a stem of CNN-based pyramidal feature
extractor is devised to steer the model’s learning. Analo-
gous to the frontend, de facto standard building units of 3×3
convolutions and max pooling layers are setup to gradually
expand the receptive fields of spatial feature maps. The
pyramidal feature extractor consists of a sequence of layers
“conv→pooling→conv→pooling→conv→pooling→conv”
followed by a global average pooling to generate the
feature vector with high-level semantics. Batch normaliza-
tion and ReLU function are leveraged to reduce internal
covariate shift and add non-linearity of feature space. The
introduction of pyramidal feature extraction succeeds in
inheriting meritorious hierarchical features working with
global-oriented tokens from global token mixer module.

3.3. Dynamic Mixture of Counter Experts

On top of high-level tokens and feature vector with
pyramidal semantics provided by both MLP- and CNNs-
based structures, the DMCNet proceeds to learn dynamic
counter weights and regress final counts through Dynamic
Counter Predictor and the Mixture of Counter Experts. In-
spired by the effectiveness of dynamic resolution [68] and
mixture of experts (MoE) [13, 8], a dynamic mixture of
counter is proposed at the end of the network to dynami-
cally and adaptively determine the suitable density-specific
regression counter. As for the mixture of counters, it in-
cludes a group of MLP-based heads with varied model
scales. Specifically, each regression head consists of oper-
ations (e.g. fully-connected layers, 1D batch normalization,
2D dropout and ReLU activate functions), and its width is
heuristically-defined. To better combat density shift, a prin-
cipled way is to assign small-scale heads to samples with
lower density values (e.g. 5 people number), whereas the
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Figure 3. The overall schema for DMCNet architecture, which consists of a pretrained VGG-16 frontent, global token mixer, pyramidal
feature extractor and dynamic mixture of counter experts. Crude low-level features are fed into two meritorious learning paradigms (MLP
and CNN)-based modules for characterizing tokens embracing global receptive fields and features with pyramidal property, respectively.
Finally, a dynamic scheme is delicately devised to dynamically and automatically determine the usage status of pre-designed mixture of
counter experts and produce the predicted count values.

Figure 4. The details of the proposed global token mixer. To cap-
ture multi-scale tokens, three-granularity strategy is designed to
split the low-level features into three sequences of non-overlapped
patches at different resolutions. The cross-level tokens are inte-
grated via point-wise summations.

crowd scenes with larger densities (e.g. 500 count) deserve
to be tied to counters with higher complexity. An intuitive
and natural solution for automatically selecting the corre-
sponding counters is to train an attention condenser and
softly recalibrate the outputs of all counter heads. Albeit
feasibility, this scheme is of limited benefit as all counters
are jointly trained, which is inclined to disturb each other’s
learning procedure and introduce ambiguity. Therefore,
following the previous attempts [18, 13], we try to force
the intermediate token to represent underlying distribution

instead of specific features by dynamically resampling or
reparameterizing rear structure of regression counters in a
one-hot manner.

Hard resampling inevitably cuts the backpropagation
flow and hurts the smooth process of end-to-end training.
To address this issue, a gumbel softmax is adopted here
to predict dynamic one-hot encodings and make the dis-
crete selection differentiable during backpropagation phase.
In our method, the dynamic counter predictor calculates
a set of probabilities for the mixture of counters, denoted
as Pc = [pc1, pc2, ..., pcn], where n is the total number of
counter heads in the mixture. Given the probabilities, the
discrete counter decisions (one-hot vector D) can be dy-
namically computed as:

D = onehot(argmax(log(pci) +Gi)), i = 1, 2, ..., n,
(1)

where onehot means the function generating one-hot masks
and Gi indicates the gumbel noise drawn from independent
identically distribution U for each crowd scene:

Gi = −log(−log(x)), x ∈ U(0, 1). (2)

During back propagation, considering the non-
differentiability of argmax operation, the inference of
the one-hot sampling can be approximated by following
continuous and differentiable gumbel softmax:

D̂i =
exp(log(pi) +Gi)/r∑n

j=1(exp(log(pj) +Gj)/r)
, i = 1, 2, ..., n,

(3)
where r is temperature hyperparameter and set as 1 in our
experiments. Through this straight-through trick of gumbel
softmax, the gradient flows from discrete hard argmax are
adjusted to be continuous and fluent, whereas the highest
density entry of the original density distribution is not af-
fected [68]. The probabilities for candidate counter heads
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are computed by our dynamic counter predictor including
three linear layers with ReLU function and 2D dropout.
Given the outputs of the mixture of counter experts C =
[C1, C2, ..., Cn], the final count prediction Np of the DMC-
Net is formulated as:

Np = C ·D, (4)

where · denotes inner product between candidate output
vector and the one-hot selection weights.

3.4. Objective Function

Given the location-agnostic labels Ngt (i.e. only ground-
truth counts), the primary supervisory signal Lreg is de-
rived from the L1 distance between Ngt and Np as follows:

Lreg =

B∑
i=1

|Np −Ngt|, (5)

where B is the batch size and this loss term is crucial for
optimizing the model to predict accurate crowd counts. Be-
sides, to steer the better learning of the dynamic counter
predictor, a deeply-supervised loss term Lcls is designed
and imposed on the intermediate logits Pc. Lcls is calcu-
lated via cross entropy between Pc and yc as follows:

Lcls = −
B∑
i=1

M∑
c=1

yi,clog(pi,c), (6)

where B is the batch size and M means the total class
number. Wherein, yc is obtained through the function
m = Floor(Ngt ÷ T ) and (yi,m = 1, yi,else = 0), where
T represents the heuristically-defined thresholds depend-
ing on the maximum values of crowd counts. By adopting
this density classification constraint, the proposed dynamic
counter predictor can be driven to provide density-aware
features and infer more accurate dynamic selection weights
for further easing ambiguity caused by severe density shifts.
The overall objective function for optimizing our DMCNet
is therefore formulated as:

L = Lreg + Lcls. (7)

As two types of ground truths are homogenous, two op-
timization directions from Lreg and Lcls are in parallel
with the learning target of the holistic model. Hence,
heuristically-predefined hyperparameter is not introduced
to balance the impacts of two loss terms, thereby mitigat-
ing the extra burden of manual fine-tuning.

4. Experiments
4.1. Implementation Details

Datasets and Evaluation Metrics. The ShanghaiTech
benchmark [65] is formed by two parts of evaluation

datasets: Part A and Part B. This dataset consists of 1,198
crowd scenes with a total number of 330,165 labelled peo-
ple. Wherein, Part A contains 482 (300 for training and
182 for testing) congested images while Part B includes 716
images (400 for training and 316 for testing). More dif-
ficult UCF QNRF [12] dataset is collected from the web-
site and is comprised of 1,553 images with a total number
of 1,252,642 people, in which 1201 images are taken for
training the model and 334 samples for inference. To better
verify the superiority of our DMCNet, a large-scale dataset
JHU-CROWD++ [50] is also considered, which includes
4,372 images with a division of 2,722 images for training,
1,600 samples for inference, and 500 ones for validation.
This dataset has the issue of huger density shift ranging
from 0 to 25,791. Even though NWPU [57] is another alter-
native large-scale source, its ground truths are not released
for testing. Therefore, we choose the JHU-CROWD++ as
the representative large-scale dataset. For evaluation met-
rics, we choose Mean Absolute Error (MAE) to indicate the
counting accuracy and Mean Square Error (MSE) to reflect
the volatility of predicted results.

Implementation. To suppress the computational over-
heads caused by over-large resolutions, all raw samples are
resized to 1024×768 or under. During the training phase, a
batch of patches at the resolution of 256×256 are stochas-
tically cropped online from the resized images. The ground
truths only involve the single and unconstrained values of
crowd counts related to patches in a batch. Random hor-
izontal/vertical flip, random rotation and lighting are uti-
lized to form the data augmentation. In our experiments,
batch size is set to 24 for Part A and Part B, 36 for UCF-
QNRF and JHU-CROWD++. The initial learning rate is 1e-
5. Adam optimizer with momentum of 0.95 and weight de-
cay of 5e-4 is leveraged to train our model. We allocate 45
counter heads in the mixture for all datasets. At the training
stage, the gumbel-based hard mask is used to dynamically
determine the candidate counter head, while soft weights
from softmax function are calculated to dynamically and
adaptively integrate the outputs of the mixture of counters
during the inference. In Equ. 6, the threshold T is set to be
20 for Part A and Part B, 70 for UCF QNRF and 220 for
JHU-CROWD++ due to diverse ranges of density values.

4.2. Comparison with State-of-the-art

We compare our proposed DMCNet with state-of-
the-art approaches under different supervisory signals
of location-level and count-level annotations, as demon-
strated in Table 1. Our method consistently and signifi-
cantly outperforms the best location-agnostic TransCrowd
by 11.55% MAE on Part A, 7.09% on Part B, 0.69%
on UCF QNRF and 7.02% on JHU-CROWD++, accord-
ingly, and achieves the state-of-the-art performance on
four benchmark datasets. The best results are shown
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Methods Location Part A Part B UCF-QNRF JHU-CROWD++
Agnostic MAE MSE MAE MSE MAE MSE MAE MSE

ADCrowdNet [31] × 63.2 98.9 7.6 13.9 - - - -
MBTTBF [48] × 60.2 94.1 8.0 15.5 97.5 165.2 81.8 299.1
DSSINet [30] × 60.63 96.04 6.85 10.34 99.1 159.2 133.5 416.5
S-DCNet [60] × 58.3 95.0 6.7 10.7 104.4 176.1 - -
ASNet [15] × 57.78 90.13 - - 91.59 159.71 - -

AMRNet [33] × 61.59 98.36 7.02 11.00 86.6 152.2 - -
S3 [28] × 57.0 96.0 6.3 10.6 80.6 139.8 - -

DM-Count [55] × 59.7 95.7 7.4 11.8 85.6 148.3 - -
BL [37] × 62.8 101.8 7.7 12.7 88.7 154.8 75.0 299.9

UOT [38] × 58.1 95.9 6.5 10.2 83.3 142.3 - -
P2PNet [51] × 52.74 85.06 6.25 9.9 85.32 154.5 - -
MATT [20] ✓ 80.1 129.4 11.7 17.5 - - - -
Sorting [62] ✓ 104.6 145.2 12.3 21.2 - - - -

TransCrowd-T [27] ✓ 69.0 116.5 10.6 19.7 98.9 176.1 76.4 319.8
TransCrowd-G [27] ✓ 66.1 105.1 9.3 16.1 97.2 168.5 74.9 295.6

Our DMCNet ✓ 58.46 84.55 8.64 13.67 96.52 163.99 69.64 246.93

Table 1. Experimental comparisons against existing state of the arts under two types of annotation configurations on four prevailing
datasets. Best results for location-adherent and -agnostic are shown in boldface. Our approach consistently outperforms current location-
agnostic methods and attains state-of-the-art accuracy as well as lowest volatility. It also performs on par with many conventional location-
adherent approaches.

in boldface and demonstrate the superiority of the pro-
posed model. Even though the labels adopted by our
method are extremely weak and simple (i.e. only to-
tal crowd counts), DMCNet attains competitive accuracy
against fully-supervised counterparts. For example, on
Part A, our model produces the 58.46 MAE, which is on
par with the location-demanding S-DCNet/UOT and out-
performs other models in vogue, e.g. BL (62.8 MAE),
AMRNet (61.59 MAE) and DM-count (59.7 MAE). More
interestingly, our model achieves the best MSE value of
84.55 on Part A, which shows that location-agnostic DM-
CNet delivers great stability of predictions due to less
ambiguity on point locations. On more large-scale and
arduous datasets UCF QNRF and JHU-CROWD++ with
huger density shifts, our DMCNet still performs well. For
dataset UCF QNRF, our model obtains the best MAE,
MSE of 96.52, 163.99 and even outperforms up-to-date
conventional MBTTBF (97.5 MAE), DSSINet (99.1MAE)
and S-DCNet (104.4 MAE). On more large-scale dataset
JHU-CROWD++, our DMCNet outperforms all location-
adherent and location-agnostic counting approaches for
comparison, which illustrates the consistent superiority of
the proposed method on simple or more complex datasets.

4.3. Ablation Study

To verify the impacts of the individual modules in our
DMCNet (e.g. mixture of counter heads, auxiliary classi-
fication loss, pyramidal feature extractor and gumbel soft-
max), a series of experiments is conducted here to ablate

these components. All ablation studies are carried out based
on the dataset ShanghaiTech Part A.

Models MAE MSE MAE Gains
Baseline 63.31 95.67 -

+ Mixture (w.o Lcls) 60.86 86.98 2.45
+ Lcls 60.11 87.17 0.75

+ CNNs (w.o Gumbel) 59.86 88.62 0.24
+ Gumbel Noise 58.46 84.55 1.40

Table 2. Ablation study on different components. Baseline is con-
structed only using MLP-based global token mixer and a fixed re-
gression head. Then a set of proposed individuals are plugged pro-
gressively to enrich the model until the final DMCNet. The MAE
gains demonstrate the effectiveness of four internal elements.

Importance of different components. We first design
a pool of experiments to incorporate each proposed compo-
nent step by step and report the corresponding MAE, see
Table 2. Wherein, the baseline represents the plain model
without any bells and whistles, which is built by cascad-
ing the frontend, global token mixer and a fixed regression
head. The first counter in the mixture of counters is selected
as the fixed counter head in baseline. On top of the base-
line, we involve the mixture of counters, auxiliary classifi-
cation supervision Lcls, CNNs-based pyramidal feature ex-
tractor and gumbel softmax, respectively. The results in Ta-
ble 2 demonstrates that the introduction of these fundamen-
tal mechanisms empowers the model and brings positive
impacts on the accuracy of DMCNet. Particularly, the MAE
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Figure 5. The visualization of learned dynamic weights (right) for
an example (left) in ShanghaiTech Part A, which shows that our
dynamic predictor indeed allows the model to generate diverse dy-
namic decision status for adapting to patches with density shifts.
Here, X axis denotes the number of mixture of counters and Y axis
is the sliding window index over input test scene, whereas Z axis
represents the probability value.

reduction provided by the mixture of counter heads and
gumbel softmax-based reparameterization are more promi-
nent, e.g. 2.45 and 1.40 accordingly.

Models MAE MSE Degradation
Holistic DMCNet 58.46 84.55 -

Gumbel Hard 58.75 83.99 0.49%
AVG Aggregation 70.18 95.68 20.04%

0th Head 178.79 295.69 205.84%
20th Head 67.35 95.87 15.20%
45th Head 70.64 99.28 20.83%

Table 3. Ablation study and performance degradation under differ-
ent testing schemes on ShanghaiTech Part A.

The impacts of dynamic mechanism. The dynamic
selection mechanism in DMCNet includes the mixture of
counters and the dynamic counter predictor. Their enhance-
ments on accuracies have been investigated in Table 2. To
better give insights into the behaviour of the dynamic mech-
anism, we investigate DMCNet under different configura-
tions and examine the performance degradations compared
with the results reported on Part A. Gumbel Hard means
that the one-hot dynamic weights (completely same as the
operation used in training phase) are generated during infer-
ence time. As the stochastic gumbel noises are introduced,
we run ten times and report the best result. AVG Aggre-
gation aims to execute recalibration by averaging outputs
of mixture of counters, whereas ith Head (i = 0, 20, 45) is
implemented by only retaining ith regression head with re-
moval of all other counters. It can be observed from Table 3
that dynamically determining the usage of counter set con-
tributes model’s performance. Choosing distinct heads in-
curs performance degradations with considerable difference
(from 67.35 to 178.79), which illustrates that heads with dif-
ferent complexities play diverse roles in our holistic DMC-
Net. To further visualize the discrepancy among learned
dynamic weights over varying patches, the weight distribu-

tions provided by our dynamic counter predictor on a Part A
example are depicted in Fig. 5. For different patches from
the same crowd scene, the dynamic weights for the mix-
ture of counters are adaptive. The confidence probabilities
of front counter heads focusing on sparse densities are rel-
atively higher than rare counters with huge densities. The
small values of X axis correspond to larger variations (long-
tailed distributions), which may be caused by the implicit
imbalance in training data and massive samples with sparse
densities bring less ambiguity (higher confidence).

The effects of auxiliary loss Lcls. To validate the effec-
tiveness of the proposed auxiliary loss term Lcls, we con-
duct experiments to ablate this term in Table 4, which em-
pirically demonstrates that the guidance of density classifi-
cation is beneficial for combatting density shits and prevent-
ing the model from degenerating. When removing the su-
pervision of Lcls, the performance of our DMCNet is heav-
ily influenced by the number of heads in the mixture. As
shown in Table 4, more heads are setup, worse accuracies
are obtained by models without Lcls. This phenomenon
may be caused by the fact that it is challenging for the model
to adaptively assign many heads to corresponding density
levels in a spontaneous manner. The counterpart with larger
number of heads is prone to overfitting due to limited train-
ing samples.

Models MAE MSE
w.i. Lcls 58.46 84.55

w.o. Lcls and 45 Heads 71.61 100.31
w.o. Lcls and 25 Heads 63.96 95.71
w.o. Lcls and 15 Heads 60.86 86.98

Table 4. The impact of removing the auxiliary classification loss
term under varied numbers of counters on ShanghaiTech Part A.

5. Conclusion

In this paper, we propose a novel Dynamic Mixture of
Counter Network (DMCNet) for location-agnostic crowd
counting to further enhance weakly-supervised counting
protocols. Our DMCNet adopt the hybrid combination of
pyramidal CNNs and MLP-based structure to inherit both
meritorious learning paradigms. Wherein, multi-level MLP
global token mixer hammers at capturing global receptive
fields without resorting to cumbrous and data-consuming
transformers, whereas the pyramidal feature module aims
to preserve the property of hierarchical features. Besides, to
ameliorate the issue of density shift, we propose a dynamic
counter predictor and the mixture of counter with the goal
of dynamically and automatically choosing appropriate fu-
sion status of regression heads focusing on different density
levels. Extensive experiments on several prevailing bench-
mark datasets demonstrate the superiority of our DMCNet.
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perspective-free object counting with deep learning. In
European conference on computer vision, pages 615–629.
Springer, 2016.

[41] Narinder Singh Punn, Sanjay Kumar Sonbhadra, Sonali
Agarwal, and Gaurav Rai. Monitoring covid-19 social
distancing with person detection and tracking via fine-
tuned yolo v3 and deepsort techniques. arXiv preprint
arXiv:2005.01385, 2020.

[42] Maryam Rahnemoonfar and Clay Sheppard. Deep count:
fruit counting based on deep simulated learning. Sensors,
17(4):905, 2017.

[43] Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh
Hoai. Learning to count everything. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3394–3403, 2021.

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015.

[45] Oliver Sidla, Yuriy Lypetskyy, Norbert Brandle, and Stefan
Seer. Pedestrian detection and tracking for counting appli-
cations in crowded situations. In 2006 IEEE International
Conference on Video and Signal Based Surveillance, pages
70–70. IEEE, 2006.

[46] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[47] Vishwanath A Sindagi and Vishal M Patel. Generating high-
quality crowd density maps using contextual pyramid cnns.
In Proceedings of the IEEE International Conference on
Computer Vision, pages 1861–1870, 2017.

[48] Vishwanath A Sindagi and Vishal M Patel. Multi-level
bottom-top and top-bottom feature fusion for crowd count-
ing. In ICCV, pages 1002–1012, 2019.

[49] Vishwanath A Sindagi, Rajeev Yasarla, Deepak Sam Babu,
R Venkatesh Babu, and Vishal M Patel. Learning to count
in the crowd from limited labeled data. In European Confer-
ence on Computer Vision, pages 212–229. Springer, 2020.

[50] Vishwanath A Sindagi, Rajeev Yasarla, and Vishal M Pa-
tel. Jhu-crowd++: Large-scale crowd counting dataset and a
benchmark method. Technical Report, 2020.

[51] Qingyu Song, Changan Wang, Zhengkai Jiang, Yabiao
Wang, Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, and
Yang Wu. Rethinking counting and localization in crowds:
A purely point-based framework. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3365–3374, 2021.

[52] Qingyu Song, Changan Wang, Yabiao Wang, Ying Tai,
Chengjie Wang, Jilin Li, Jian Wu, and Jiayi Ma. To choose or
to fuse? scale selection for crowd counting. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35,
pages 2576–2583, 2021.

[53] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.
Mlp-mixer: An all-mlp architecture for vision. Advances
in Neural Information Processing Systems, 34, 2021.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[55] Boyu Wang, Huidong Liu, Dimitris Samaras, and Minh Hoai
Nguyen. Distribution matching for crowd counting. Ad-
vances in neural information processing systems, 33:1595–
1607, 2020.

[56] Mingjie Wang, Jun Zhou, Hao Cai, and Minglun Gong.
Crowdmlp: Weakly-supervised crowd counting via multi-
granularity mlp. arXiv preprint arXiv:2203.08219, 2022.

[57] Qi Wang, Junyu Gao, Wei Lin, and Xuelong Li. Nwpu-
crowd: A large-scale benchmark for crowd counting and lo-
calization. IEEE transactions on pattern analysis and ma-
chine intelligence, 43(6):2141–2149, 2020.

176



[58] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li,
Derek F Wong, and Lidia S Chao. Learning deep transformer
models for machine translation. ACL, 2019.

[59] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10734–10742, 2019.

[60] Haipeng Xiong, Hao Lu, Chengxin Liu, Liang Liu, Zhiguo
Cao, and Chunhua Shen. From open set to closed set: Count-
ing objects by spatial divide-and-conquer. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 8362–8371, 2019.

[61] Yanyu Xu, Ziming Zhong, Dongze Lian, Jing Li, Zhengxin
Li, Xinxing Xu, and Shenghua Gao. Crowd counting with
partial annotations in an image. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 15570–15579, 2021.

[62] Yifan Yang, Guorong Li, Zhe Wu, Li Su, Qingming Huang,
and Nicu Sebe. Weakly-supervised crowd counting learns
from sorting rather than locations. In European Conference
on Computer Vision, pages 1–17. Springer, 2020.

[63] Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Feng-
wei Yu, and Wei Wu. Incorporating convolution designs into
visual transformers. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 579–588,
2021.

[64] Shanghang Zhang, Guanhang Wu, Joao P Costeira, and
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