
FFM: Injecting Out-of-Domain Knowledge
via Factorized Frequency Modification

Zijian Wang Yadan Luo Zi Huang Mahsa Baktashmotlagh
The University of Queensland

{firstname.lastname}@uq.edu.au

Abstract

This work investigates the Single Domain Generalization
(SDG) problem and aims to generalize a model from a sin-
gle source (i.e., training) domain to multiple target (i.e.,
test) domains coming from different distributions. Most
of the existing SDG approaches focus on generating out-
of-domain samples by either transforming the source im-
ages into different styles or optimizing adversarial noise
perturbations applied on the source images. In this pa-
per, we show that generating images with diverse styles
can be complementary to creating hard samples when han-
dling the SDG task, and propose our approach of Factor-
ized Frequency Modification (FFM) to fulfill this require-
ment. Specifically, we design a unified framework consist-
ing of a style transformation module, an adversarial pertur-
bation module, and a dynamic frequency selection module.
We seamlessly equip the framework with iterative adversar-
ial training that facilitates learning discriminative features
from hard and diverse augmented samples. Extensive exper-
iments are performed on four image recognition benchmark
datasets of Digits, CIFAR-10-C, CIFAR-100-C, and PACS,
which demonstrates that our method outperforms existing
state-of-the-art approaches.

1. Introduction

Domain shift [3, 32, 8] is a fundamental problem in com-
puter vision and it commonly occurs when the training and
test sets follow different distributions due to the shift in illu-
mination, weather, appearance, background, etc. Machine
learning models suffer considerable performance degrada-
tion when they are exposed to the domain shift. To ad-
dress this problem, domain generalization methods have
been introduced [51] that learn to perform well on the out-
of-distribution (OOD) data. Most of the existing domain
generalization methods [5, 36, 51, 16] assume the access
to multiple source domains collected under different envi-
ronmental conditions and aim to find domain invariant rep-

(a) Adversarial Perturbation (b) Style Manipulation

Figure 1: Difference between Fourier spectrum E[|F(X −
X̂)(m,n)|] of original images and (a) adversarially per-
turbed [47] (b) style modified [52] images. We average
the difference between Fourier spectrum over all CIFAR-10
training images. We can see that adversarial perturbations
are more concentrated on high frequency components (i.e.,
brighter to the corner), while style modification methods
mainly affect the low frequency components (i.e., brighter
to the middle).

resentations. A more realistic setting of domain general-
ization has been introduced recently [47, 39], where only
single source domain exists at the training stage, namely
Single Domain Generalization (SDG) [52, 39, 13, 47, 27].

Generally speaking, existing SDG approaches focus on
to address unforeseen domain shifts by generating fic-
titious domains and can be categorized as adversarial
noise perturbation-based [47, 59] and style manipulation-
based [52, 27]. The former one learns adversarial pertur-
bations on source images to form an auxiliary training set
to train a generalizable classifier. Style manipulation-based
approaches make use of an image generating network to
create fictitious domains, with an objective of maximizing
entropy [27, 39] or minimizing mutual information [52] be-
tween the augmented and the source images. Heuristically,
adversarial perturbation-based methods focus on generating
hard samples, while the aim of style manipulation-based
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methods is to create diverse samples.

Despite the encouraging results achieved by either cate-
gory of the SDG methods, we argue that diversity and hard-
ness are complementary to each other, so that simultane-
ously considering both characteristics in designing SDG al-
gorithms can potentially enhance the generalization perfor-
mance. As a proof of concept, recent research on model ro-
bustness [57, 50] reveals that for a naturally trained model,
imperceptible adversarial noise perturbations are encoded
in high-frequency components, while the more obvious
style is encoded in the low-frequency components. We vi-
sualize the frequency spectrum for the recent SDG methods
of [47, 52] in Fig.1, which confirms that the two categories
of SDG methods are complementary for domain generaliza-
tion in Fourier domain.

In light of the above observation, in this paper, we aim
to simultaneously generate diverse and hard fictitious do-
mains. To this end, a novel Factorized Frequency Mod-
ification (FFM) module is proposed with two learnable
branches. To generate hard samples, the noise perturbation
branch modifies the high-frequency components of the in-
put samples. The diversity of generated samples is achieved
via the style transformation branch by modifying the ampli-
tude of the low-frequency component of the input sample.
Unlike the existing approaches of [56, 53] that use hard
code frequency selection parameters, we develop a sys-
tematic way of frequency selection by dynamically learn-
ing high/low-frequency bands for different datasets. The
proposed end-to-end framework optimizes the task model
and FFM iteratively in an adversarial manner. Under this
training scheme, FFM gradually promotes the diversity and
hardness of generated samples, while the task model is
learning to predict under an enlarged domain gap.

The contribution of our work can be summarized as fol-
lows: (1) we propose a single domain generalization frame-
work, namely Factorized Fourier Modification, which ex-
pands the source domain by simultaneously augmenting
the human-perceptible style-encoded in the low-frequency
component and imperceptible noise-encoded in the high
frequency component- of input samples; (2) A dynamic fre-
quency selection module is proposed to learn domain in-
variant high/low frequency band, which is superior to using
domain-specific hard-coded frequency band as in [56, 53];
(3) To validate the effectiveness of our model, we con-
duct extensive experiments on four single domain general-
ization benchmark datasets, including digits, CIFAF-10-C,
CIFAR-100-C, and PACS. The results clearly demonstrate
the superiority of our proposed approach over the state-of-
the-art single domain generalization methods of ADA [47],
MEADA [59], L2d [52], etc.

2. Related Work
Domain Generalization (DG) methods aim to tackle the
domain shift problem by aligning multiple source domains
in the latent space. To this end, the existing approaches
either follow statistical matching [36, 35, 41] or domain
adversarial learning [29, 34, 42, 26] techniques. While
the early DG methods focus on domain invariant learning,
the learnt models may overfit to the source domains, lim-
iting their generalization on unseen domains. Inspired by
meta-learning [14], some DG works [24, 2, 30, 12, 11]
aim to alleviate this issue by exposing the model to meta
domain shifts during the training phase. Data augmenta-
tion [62, 61] is another way to prevent the model from over-
fitting to source domains. Specifically, augmentation-based
DG methods create novel domains by interpolating among
source domains, either in the image- [61, 60] or the feature-
level [28, 9]. Some methods take the advantage of image
style transfer techniques [19, 7], which either mixes [62] or
partially swaps [38] the intermediate convolutional feature
statistics of the samples in source domains to broaden the
training set.
Single Domain Generalization (SDG) is a more challeng-
ing yet realistic setting, and assumes that only one source
domain is available at training stage. Since most of the ex-
isting DG methods exploit the domain correlations to im-
prove generalization power of the model, they fail to per-
form well on the SDG setting. The current SDG meth-
ods can be categorised to adversarial gradient image aug-
mentation [47, 59] or style augmentation [27, 52, 39] tech-
niques. Methods from the former category optimize adver-
sarial noises to perturb source images, and aim to gener-
ate hard samples for the classifier. Specifically, they ei-
ther optimize the noise perturbation on the source samples
by maximizing classification error [47], or entropy maxi-
mization [59]. [39] applies an auxiliary Wasserstein autoen-
coder to promote difference between generated and source
images in the input space, and therefore relaxes the fea-
ture space constraint. Style augmentation-based methods
[52, 27] adopt an image generation network to diversify
the source domain which optimize the generator network
by minimizing upper bound of mutual information [52] or
maximizing InfoNCE loss [27] between the generated sam-
ples and the corresponding source samples.
Frequency-domain Analysis and Model Robustness. Re-
cent literature establishes the connection between data ma-
nipulation in frequency domain and the robustness of the
model. [44] shows the network can be easily misled by
slightly perturbing the frequency magnitude of the input.
[57] demonstrates that, from the Fourier perspective, ad-
versarial perturbations to a naturally trained model tend to
concentrate on the high-frequency components of the data.
[40, 50] point out that a model tends to grasp low-frequency
information at the early stage of the training, but gradually
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Figure 2: The augmentation module of the proposed Factorized Frequency Modification (FFM). FFM augments input images
through a style modification branch and a noise perturbation branch. A dynamic frequency selection strategy is proposed to
balance the contribution of the frequency components from the two branches. The outputs are visualized in the spatial space,
on the right side of the figure.

overfit to the human imperceptible high-frequency compo-
nents of input, which can result in sacrificing robustness for
higher accuracy.

In the area of domain adaptation and generalization,
frequency-based methods have been proposed recently [56,
53], which aim to generate images by swapping the styles
of the images in different domains. Specifically, [56] pro-
poses to swap the low-frequency components of the am-
plitude spectrum between the source and target images.
Enlightened by Mix-up [58] strategy, [53] calculates the
weighted sum between the source and target amplitude
spectrum to interpolate among the available source do-
mains. Although a model trained with target-like source im-
ages achieves promising generalization performance, cur-
rent Fourier-based methods still suffer from the following
limitations: (1) Swapping or mixing the amplitude of do-
mains implicitly assumes that the unseen target domain is
the interpolation of the source domains, and such a strong
assumption can be easily breached in practice; (2) The im-
pact of the high-frequency components is overlooked in the
current methods; (3) Existing Fourier-based methods manu-
ally select the cut-off for low-frequency components, which
limits the diversity of the generated samples; (4) Due to lack
of access to multiple training domains, existing Fourier-
based strategies like [56, 53] are not applicable in the SDG
setting.

To overcome the above mentioned limitations, we pro-
pose our approach of factorized frequency modification to
generate semantic-aware and diverse out-of-domain sam-
ples, and propose to dynamically learn high/low frequency
band for different tasks. As highlighted by the recent re-

search of [57, 50, 40], naturally trained model eventually
overfits to human imperceptible high-frequency patterns.
This phenomenon results in higher accuracy, at the cost of
model generalization and robustness. Specifically, we argue
that only focusing on low-frequency augmentation and ne-
glecting the importance of high-frequency components may
hinder the generalization performance.

3. Methodology
Notations and preliminary. Given a source domain S =
{xi, yi}Ns

i=1 with Ns samples, SDG aims to learn a domain
agnostic task model H : X → Y that can perform well on
an unseen target domain T . The model can be written as:
H = f ◦ h, with f : X → Z denoting the feature extractor
and h : Z → Y the classifier. For a single image x, we omit
the dimension of image channels C and we have Fourier
Transformation formulated as:

F(x)(m,n) =
∑
h,w

x(h,w)e−j2π( h
H m+ w

W n), j2 = −1.

(1)
Here F : RH×W → CH×W denotes Fast Fourier Transfor-
mation (FFT). From the signal F(x), we can obtain ampli-
tude FA(x) and phase spectrum FP (x) as follows:

FA(x) = [Re(F(x))2 + Im(F(x))2]
1
2 ;

FP (x) = arctan

[
Im(F(x))

Re(F(x))

]
,

(2)

where Re(·) and Im(·) are the operators of keeping real and
imaginary part of inputs, respectively.
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The overview of our framework is shown in Fig.2. With
the aim of expanding the distribution of the training set, we
propose a Factorized Fourier Modification (FFM) module
G : X → X̂ to generate diverse and hard samples X̂ by
applying transformations in the frequency domain. To this
end, FFM learns two transformations, namely noise pertur-
bation g1(F(x); θ1) and style manipulation g2(F(x); θ2),
which aim to affect the high and low granularity informa-
tion of an input image, respectively. Moreover, we design
frequency masks of M1,2 ∈ {0, 1}C∗H∗W , with C, H , W
being the channel, height, and width. The frequency masks
dynamically determine the passing bands for the frequency
spectrum F(x̂). By applying a frequency transformation
on the input signals, and training the model with the trans-
formed data, we hypothesize that the model can perform
well when tested on the unseen target domains.

3.1. Factorized Frequency Modification

Factorized Frequency Modification (FFM) module con-
sists of noise perturbation branch and style transformation
branch. Noise perturbation branch aims to affect high gran-
ularity information that is hardly perceptible to human, but
able of harming the model predictions. Taking a source im-
age signal F(x) as an input, noise perturbation branch aug-
ments the frequency spectrum as follows:

F1(x) = F(x) + g1(F(x); θ1), (3)

where g1(·; θ1) ∈ G represents the transformation func-
tion parameterized by θ1. We implement g1(·; θ1) with
deep complex neural network [43] to transform F(x) in the
Fourier domain.

Style transformation branch modifies the amplitude of
low frequency components in the input signal, which is as-
sumed to encode human perceptible style information, such
as illumination and color. To enhance the diversity of the
generated images, the style transformation branch learns to
transform the source signal as follows:

F2(x) = g2(F(x); θ2), (4)

where g2(·; θ2) is the nonlinear transformation function pa-
rameterized by θ2. Leveraging the property that style in-
formation are encoded in the amplitude, we design a group
of convolutional layers to augment the style of the input.
Specifically, g2(·; θ2) is defined as:

g2(F(x); θ2) = g′2(FA(x); θ2)e
−jFP (x), (5)

with FP (x) and FA(x) being the phase and amplitude of
frequency spectrum F(x), obtainable from Eq.(2).

To resemble the frequency spectrum of the augmented
image x̂, FFM sums up the transformed frequency compo-
nents with the ones not chosen by the frequency masks:

F(x̂) =F1(x) ◦M1 + F2(x) ◦M2

+ F(x) ◦ (1− (M1∥M2)),
(6)

Here, M1 and M2 are the frequency masks for the out-
put of noise perturbation branch F1(x) and style transfor-
mation branch F2(x), so to construct the augmented fre-
quency spectrum of F(x̂). Note that, F1,2(x), M1,2 and 1
all have the same dimensionality. Finally, by applying In-
verse Fast Fourier Transformation, FFM transforms F (x̂)
from the frequency domain back to the original domain to
obtain the augmented image x̂.

3.2. Dynamic Frequency Selection

Unlike previous Fourier based method [56] that use fixed
hyper-parameters to mask the low/high pass frequency, we
propose a systematic way to dynamically learn the fre-
quency selection mask M1 and M2. Inspired by [1], we
model the mask learning process as training a binary be-
lief network. Specifically, we first initialize M̃1, M̃2 ∈
RC×H×W as follows:

M̃1(i, j) =

{
1, if d((i, j), (ci, cj)) < rh

0
,

M̃2(i, j) =

{
1, if d((i, j), (ci, cj)) > rl

0
.

(7)

d(·, ·) represents Euclidean distance between (i, j)th posi-
tion (i, j) and the center of the mask (ci, cj), calculated on
each channel of pixels. rl and rh represent the radius.

We calculate the confidence of each pixel position based
on the amplitude spectrum of the input signal, and obtain
the mask by comparing the confidence with a uniform prob-
ability distribution P̂ ∼ Uniform(0.49, 1), as follows:

M1 = P̂ < (σ(M̃1 ◦ FA(x)) + 0.5),

M2 = P̂ < (σ(M̃2 ◦ FA(x)) + 0.5),
(8)

where σ denotes Sigmoid activation function.

3.3. Feature Space Frequency Augmentation

To further promote the diversity of the augmented sam-
ples, we equip the framework with feature-level frequency
augmentation. We introduce two straightforward Fourier
augmentation strategies on the feature-level: (1) random
perturbation applied on the amplitude of selected frequency
components; and (2) random frequency dropout.
(1) We formulate the first feature-level augmentation strat-
egy as:

FA(ẑ) = FA(z) + gz(FA(z), θz) ◦M, (9)

with gz(·; θz) denotes the nonlinear projection function and
M being the random binary mask. We apply mask M to the
generated amplitude, so as to select frequency components
to be perturbed. We then reconstruct the frequency spec-
trum F(ẑ) from the modified amplitude spectrum FA(ẑ)
and the original phase spectrum FP (z):
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F(ẑ)(m,n) = FA(ẑ)(m,n)e−jFP (z)(m,n). (10)

(2) As a second feature-level augmentation, we randomly
drop the frequency components as follows:

F(ẑ) = F(z) ◦M. (11)

We apply inverse FFT on F (ẑ) to map back the features
from the frequency domain to the spatial domain. In prac-
tice, we apply the above-mentioned augmentation strategies
on features of the source image z and the augmented image
ẑ. The augmentation layer can be easily integrated with
backbone network, such as ResNet, WideResNet, AlexNet,
etc. Note that, feature-level frequency augmentations are
deactivated at the test time.

3.4. Adversarial Training

We employ adversarial training to improve the general-
ization ability of task model. Specifically, FFM module
learns to increase the diversity and hardness of the gener-
ated fictitious domains, while the task model’s goal is to
obtain domain invariant representations in the latent space.
The main goal of the existing adversarial training strategies
for domain generalization is either to generate hard samples
to confuse the classifier [39, 59], or to minimize the mu-
tual information between the source samples and the corre-
sponding augmented samples [52]. All the aforementioned
approaches somehow fail to take into account the intra-
class diversity among samples in their adversarial training.
To jointly consider the intra-class diversity and hardness of
generated samples, we adopt the supervised contrastive loss
of [21]:

Lsupcl = −
N∑
i=0

1

|P (i)|
∑

p∈P (i)

log
e(zi·zp/τ)∑

a∈A(i) e
(zi·za/τ)

P (i) = {p ∈ A(i) : yp = yi}.
(12)

Here, zi denotes the latent representation of i-th sample.
A(i) is a set that contains the positive latent representation
z+ from the positive set P (i), and the negative latent repre-
sentation z− of i-th sample. Temperature is denoted by τ .
Maximizing the supervised contrastive loss promotes FFM
to generate diverse positive samples that are uniformly dis-
tributed across the space.

The augmented images from FFM together with the orig-
inal source images are passed to the task network, where we
adopt standard cross entropy for classification:

Ltask =− 1

2N

[ N∑
i=0

yi log(h(f(xi, θf ), θh)

+

N∑
i=0

ŷi log(h(f(x̂i, θf ), θh))
]
,

(13)

Overall Objective Function. A two-step iterative train-
ing strategy is adopted to optimize the FFM module
G(·; θ1, θ2, M̃1, M̃2), and the task model, consisting of
F (·; θf ) and H(·; θh). Specifically, given the source im-
ages X and the generated images X̂ , we freeze the weights
of the task model and train the FFM module:

max
θ1,θ2,θz,M̃1,M̃2

Lsupcl (14)

We then freeze the weights of FFM and optimize the task
network:

min
θf ,θh

Ltask + λLsupcl, (15)

with λ being the hyper-parameter to balance the contribu-
tion of Lsupcl to the overall objective function.

4. Experiments
4.1. Datasets

We evaluate our method on four benchmark SDG
datasets, covering diverse object recognition scenes. (1)
Digits contains 5 digit recognition datasets, including
MNIST [22], SVHN [37], MNIST-M [15], SYN [15], and
USPS [10]. These datasets are mainly different in the back-
ground, font, and image quality of their images. Following
[59, 39], we take 10,000 images from MNIST as the source
domain, and compute the model accuracy on all other do-
mains. (2) PACS consists of 4 domains of photo, art paint-
ing, cartoon, and sketch. Each domain contains 7 classes
and there are 9,991 images in total with the image size of
224 × 224. PACS is a more challenging dataset than Dig-
its due to the large distribution shifts from one domain to
the other. We follow the official split of the train [23], val-
idation, and test. (3) CIFAR-10-C [18] and (4) CIFAR-
100-C [18] contain tiny 32 × 32 RGB images from 10 and
100 classes, respectively. There are 19 corruptions from 4
main categories, including noise, blur, digital, and weather.
Each corruption has 5 severity levels, with ’5’ denoting the
severest corruption level.

4.2. Implementation details

For noise perturbation branch g1(·; θ1), we employ 3-
layer complex convolution neural networks [43], which has
input and output channel equal to 3 and a hidden dimension
of 64. Style transformation branch g2(·; θ2) is a 3-layer con-
volution neural networks that has the same dimensionality
with g1(·; θ1). Both of the complex convolutional layer and
convolutional layer has the kernel size of 1. For all the ex-
periment we set initial radius rl and rh to be 0.5W and W ,
respectively.

4.3. Results on Digits

Experimental Setup. Following [59, 39, 52], we dupli-
cate the channel of grey-scale images to convert them into
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Table 1: Single domain generalization accuracy (%) on Dig-
its. Models are trained on MNIST and evaluated on the rest
of the digits datasets. Best performances are highlighted in
bold.

SVHN MNIST-M SYN USPS Avg.
ERM [45] 27.83 52.72 39.65 76.94 49.29
CCSA [35] 25.89 49.29 37.31 83.72 49.05
d-SNE [54] 26.22 50.98 37.83 93.16 52.05
JiGen [5] 33.80 57.80 43.79 77.15 53.14
ADA [47] 35.51 60.41 45.32 77.26 54.62
M-ADA [59] 42.55 67.94 48.95 78.53 59.49
ME-ADA [59] 42.56 63.27 50.39 81.04 59.32
RSDA [46] 47.4 81.5 62.0 83.1 68.5
RSDA+ASR [13] 52.8 80.8 64.5 82.4 70.1
L2D [52] 62.86 87.30 63.72 83.97 74.46
RandConv [55] 57.52 87.76 62.88 83.36 72.88
Ours 64.11 82.25 63.91 83.56 73.45
Ours+RandConv 64.66 84.92 64.70 84.80 74.77

RGB images, and we resize all the images to size 32 × 32.
LeNet-5 is adopted as the backbone network for all digits
experiments, with the SGD optimizer for both factorized
frequency module and the backbone network.
Results. We report the single domain generalization ac-
curacy in Tab. 1. The results shows that FFM outperforms
SOTA on challenging domains, i.e., SVHN and SYN, which
have different backgrounds and styles from MNIST. For rel-
atively easier domains like MINST-M and USPS, which are
either different in background color or font from the source
domain, our method achieves comparable results with the
SOTA methods.

4.4. Results on CIFAR-10-C and CIFAR-100-C

Experimental Setup. Following [59, 39], we train our
model on the training split of clean images, i.e., CIFAR-
10 or CIFAR-100, and test them on the test set of corrupted
data. To make fair comparison, we use a randomly initial-
ized WideResNet (16-4) backbone similar to the baselines.
The network is optimized by using SGD with the initial
learning rate of 0.1, which is gradually reduced by a cosine
annealing scheduler.
Results. In Tab. 2, we compare the classification accuracy
of baselines and our approach on CIFAR-10-C dataset, and
on corruptions of severity level ‘5’. Due to the space lim-
itation, we only report the results on 15 corruption types.
As shown in Tab. 2, FFM outperforms both adversarial
noise perturbation-based methods and style modification-
based methods on a wide variety of corruptions. Specifi-
cally, our method achieves the highest results among base-
lines on most of the different types of ‘Weather’, ‘Blur’,
and ‘Noise’ corruptions, with small drops on some of the
‘Digital’ corruptions. According to [57], most of the cor-
ruptions in ‘Blur’ and ‘Noise’ categories are biased towards

high-frequency components, while corruptions in ‘Weather’
category exist in the low-frequency components. The su-
perior results of FFM verifies the necessity of considering
both high- and low-frequency components when designing
domain generalization algorithms.

CIFAR-100-C is a more challenging dataset compared to
CIFAR-10-C due to a more comprehensive label space. We
report the results on CIFAR-100-C in Tab. 3. Since CIFAR-
100-C has the same corruption types as CIFAR-10-C, we
observe similar results and behaviour, where we largely out-
perform the SOTA by approximately 7.6%, 7.3%, 8.4%,
and 5.9% on ‘Weather’, ‘Blur’, ‘Noise’, and ‘Digital’ cor-
ruptions, respectively. This confirms the superiority of our
approach over baselines.

We further demonstrate the performance of different
methods on CIFAR-10-C and CIFAR-100-C under five cor-
ruption levels in Fig.3. As shown in Fig.3, parts (a) and
(b), the margin of accuracy between our method and the
baselines are gradually getting enlarged as the level of cor-
ruption increases. This indicates that our method is more
robust to the large domain shifts compared to the other base-
lines. Meanwhile, we observe a larger performance gain in
the CIFAR-100-C compared to CIFAR-10-C, which shows
that our method performs better than the baselines on the
challenging domain generalization tasks.

4.5. Results on PACS

Experimental Setup. We employ ResNet-18 [17] pre-
trained on Imagenet as the backbone network, with the
batch size of 64. For each generalization task, the backbone
network is finetuned on the source domain and tested on the
rest three target domains. We utilize SGD with a learning
rate of 0.002 to optimize the network for 50 epochs. We
also investigate the effectiveness of our method in a clas-
sical multi-source domain generalization setting, where we
leave one domain out for test and use the other three do-
mains to train the network. Under this setting, we utilize
AlexNet and ResNet-18 as the backbone networks. We set
the batch size to 64 and the learning rate to 0.001 to train
the network for 30 epochs.
Results. Tab.4 shows the single domain generalization re-
sults on PACS dataset. We take one domain as source and
report the average accuracy over the other three domains.
The results show that our approach significantly outper-
forms the baselines. We also report the results under multi-
source domain generalization setting in Tab.5. Note that
under this setting, our method do not require any domain la-
bels during training. Our proposed FFM achieves the SOTA
results on different backbone networks.

4.6. Ablation Study

Impact of different components in FFM. To investigate
the contribution of each component in the overall frame-
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Table 2: Single domain generalization accuracy (%) on CIFAR-10-C. We report accuracy on 15 different types of corruption
at the severity level 5. Best performances are highlighted in bold.

Method Weather Blur Noise Digital

Fog Snow Forest Zoom Defocus Glass Motion Shot Impulse Gaussian Jpeg Pixelate Elastic Brightness Contrast Avg.

ERM [45] 65.92 74.36 61.57 59.97 53.71 49.44 63.81 35.41 25.65 29.01 69.90 41.07 72.40 91.25 36.87 56.15
CCSA [35] 66.94 74.55 61.49 61.96 56.11 48.46 64.73 33.79 24.56 27.85 69.68 40.94 72.36 91.00 35.83 56.31

M-ADA [39] 69.36 80.59 76.66 68.04 61.18 61.59 64.23 60.58 45.18 56.88 77.14 52.25 75.61 90.78 29.71 65.59
MEADA [59] 60.07 81.72 82.10 75.45 67.71 72.55 70.86 59.73 46.78 58.65 85.52 77.48 79.80 88.16 23.92 69.15
L2D [52] 69.21 78.70 81.35 72.86 64.58 61.53 68.52 78.32 13.61 74.81 82.31 53.19 76.50 91.33 48.16 69.08

Ours 80.23 84.62 84.86 81.01 79.94 67.50 83.71 82.67 23.16 80.90 81.80 70.17 77.40 90.82 78.54 77.77
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Figure 3: The average classification accuracy (%) under five severity levels of corruption on (a) CIFAR-10-C and (b) CIFAR-
100-C datasets. (c) Sensitivity to λ on PACS.

Table 3: Single domain generalization accuracy (%) on
CIFAR-100-C. We report the average accuracy over 4 main
categories of corruption at severity level 5. Best perfor-
mances are highlighted in bold.

Weather Blur Noise Digital Avg.
ERM [45] 6.38 32.48 38.01 37.34 28.55
ADA [47] 19.83 39.70 40.44 45.82 36.45
MEADA [59] 25.64 42.18 38.45 44.66 37.73
L2D [52] 25.40 37.91 43.34 46.07 38.18
Ours 33.06 49.51 51.74 51.98 46.57

work, we perform an ablation study on FFM and report
the results in Tab.4. Specifically, we conduct 3 sets of ex-
periments by removing (a) dynamic frequency selection;
(b) noise perturbation branch, and (c) style modification
branch, from the full model. Among those three variants,
we find that removing the style modification branch brings
the largest performance drop, which shows its importance
in our overall framework. By removing noise perturbation,
we see a slight drop in performance, shown in ‘Ours-noise’
results. This might due to the fact that the domain shift in
PACS mainly comes from style changes, rather than noise
and high-granularity information. Lastly, we remove the
dynamic frequency selection component from our frame-

Table 4: Single domain generalization accuracy (%) on
PACS. Best performances are highlighted in bold.

Photo Art Cartoon Sketch Avg.
ERM [45] 42.2 70.9 76.5 53.1 60.7
RSC [20] 41.6 73.4 75.9 56.2 61.8
L2D [20] 52.3 76.9 77.9 53.7 65.2
RSC+ASR [13] 54.6 76.7 79.3 61.6 68.1
GeomTex [31] 49.1 72.1 78.7 60.0 65.0
Ours 61.4 80.5 77.7 62.1 70.4
Ablation Study
Ours-Dyn. mask 58.4 79.1 77.2 62.1 69.2
Ours-Noise 59.2 78.6 77.6 59.3 68.7
Ours-Style 55.1 78.0 76.4 59.0 67.1

work, and instead, use a fixed frequency selection, which
results in 1.2% drop in the average performance.
Impact of feature augmentation. We study the impact
of the proposed feature level augmentation strategy on the
digits dataset and LeNet backbone, and show the results in
Fig. 5. Specifically, we compare the performance of our
proposed FFM with its two possible variants, including 1)
NoAug: removing the Fourier feature augmentation from
the network; and 2) Layer1: inserting feature augmenta-
tion after the first convolution. We observe that Layer1 and
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(a) MEADA (b) Ours

Figure 4: The t-SNE visualizations of extracted target fea-
tures on CIFAR-10-C. Features with the same semantic la-
bels are plotted with the same color.

Table 5: Multi-source domain generalization accuracy (%)
on PACS. D ID indicates the requirement of domain label
for a certain algorithm. Best performances are highlighted
in bold.

D ID P A C S Avg.

AlexNet

DSN [4] ✓ 83.30 61.10 66.50 58.60 67.40
Fusion [33] ✓ 90.20 64.10 66.80 60.10 70.30
MetaReg [2] ✓ 87.40 63.50 69.50 59.10 69.90
Epi-FCR [25] ✓ 86.10 64.70 72.30 65.00 72.00
MASF [11] ✓ 90.68 70.35 72.46 67.33 75.21
DMG [6] ✓ 87.31 64.65 69.88 71.42 73.32
HEX [49] ✗ 87.90 66.80 69.70 56.20 70.20
PAR [48] ✗ 89.60 66.30 66.30 64.10 72.08
JiGen [5] ✗ 89.00 67.63 71.71 65.18 73.38
ADA [47] ✗ 85.10 64.30 69.80 60.40 69.90
MEADA [59] ✗ 88.60 67.10 69.90 63.00 72.20
MMLD [34] ✗ 88.98 69.27 72.83 66.44 74.38
L2D [52] ✗ 90.96 71.19 72.18 67.68 75.50
Ours ✗ 90.78 71.86 71.17 75.31 77.28

ResNet-18

Epi-FCR [25] ✓ 93.90 82.10 77.00 73.00 81.50
MASF [11] ✓ 94.99 80.29 77.17 71.68 81.03
DMG [6] ✓ 93.55 76.90 80.38 75.21 81.46
FACT [53] ✓ 95.15 85.37 78.38 79.15 84.51
Jigen [5] ✗ 96.03 79.42 75.25 71.35 80.51
ADA [47] ✗ 95.61 78.32 77.65 74.21 81.44
MEADA [59] ✗ 95.57 78.61 78.65 75.59 82.10
MMLD [34] ✗ 96.09 81.28 77.16 72.29 81.83
L2D [52] ✗ 95.51 81.44 79.56 80.58 84.27
Ours ✗ 94.55 84.02 79.65 82.46 85.17

FFM consistently outperform the NoAug results, confirm-
ing the effectiveness of the purposed feature augmentation
strategy.
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Figure 5: Single domain generalization accuracy (%) on
Digits. We compare the performance of our proposed FFM
with its two possible variants, including NoAug and Layer1.

Sensitivity to hyperparameter. We validate the signifi-
cance of hyperparameter λ in our formulation and show the
results in Fig.3(C). We conduct a single domain general-
ization task on PACS, taking ‘photo’ as the source domain
and the rest as the target domains. We vary λ fron 0.01 to
20, and for each λ value, we conduct three random trials
to compute the standard deviation The results show that the
average accuracy varies from approximately 60% to 61.4%
within a large range of λ in 0.01− 20. The results confirms
the robustness and stability of the proposed approach with
respect to hyperparameter λ.
Visualization We use t-SNE to visualize the feature distri-
bution of MEADA, and our method on CIFAR-10-C. We
randomly sample 5% of data from 15 corruptions at sever-
ity ‘5’. As we can see in Fig.4, our proposed method
clearly outperform MEADA with better class-wise separa-
tions. MEADA fails to mostly accommodate samples in
their correct clusters. Moreover, the proposed method has a
better separation between the classes, which can help with
the prediction.

5. Conclusion
We propose Factorized Frequency Modification (FFM)

to address single domain generalization problem. The key
idea of FFM is to augment source data with diverse and
hard samples by transforming the style and high-granularity
information of source images in the Fourier domain. A
dynamic frequency selection strategy is developed to bal-
ance the contribution of transformed frequency components
in the augmented output. Extensive experiments on four
benchmark datasets demonstrate that the proposed FFM
outperforms SOTA single domain generalization methods.
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