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Abstract

Despite the substantial progress in 3D hand pose estima-
tion, inferring plausible and accurate poses in the presence
of severe self-occlusion and high self-similarity remains an
inherent challenge. To mitigate the ambiguity arising from
invisible and similar joints, we propose a novel Topology-
aware Transformer network named HandGCNFormer, in-
corporating the prior knowledge of hand kinematic topol-
ogy into the network while modeling long-range context in-
formation. Specifically, we present a novel Graphformer
decoder with an additional node-offset graph convolutional
layer (NoffGConv) that optimizes the synergy of Trans-
former and GCN, capturing long-range dependencies as
well as local topology connection between joints. Further-
more, we replace the standard MLP prediction head with
a novel Topology-aware head to better utilize local topol-
ogy constraints for more plausible and accurate poses. Our
method achieves state-of-the-art performance on four chal-
lenging datasets including Hands2017, NYU, ICVL, and
MSRA.

1. Introduction
Accurate and robust 3D hand pose estimation is a cru-

cial component within a variety of human-machine applica-
tions, including augmented reality, virtual reality, and third-
person imitation learning. Hand pose estimation aims to es-
timate the location of hand joints from a single depth image
or RGB image. As commodity depth cameras get more af-
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(a) Self-occlusion (b) Self-similarity

(c) HandGCNFormer

Figure 1: The illustration of the HandGCNFormer. (a) and
(b) respectively indicate qualitative comparison between
AWR (left) and our HandGCNFormer (right) under self-
occlusion and self-similarity. Red pose is the ground truth.
Green pose represents predicted result. (c) indicates the
complementary feature representation of Transformer and
GCN in HandGCNFormer.

fordable and accurate, impressive advancements have been
made in depth-based methods [4, 14, 9, 37, 35, 19, 17, 46].
However, it remains extremely challenging under the situ-
ations of severe self-occlusion and high self-similarity be-
tween hand parts, as shown in Figures 1a and 1b.

Humans have the capability to predict the accurate hand
pose in complex scenarios thanks to their deep under-
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standing of the scene and strong prior knowledge of hand
kinematic structure, which provides sufficient context to
mitigate the ambiguity generated by invisible and simi-
lar joints. Although CNN-based hand pose estimation ap-
proaches [4, 37, 19, 46] have been the dominant framework,
they are incapable to model long-range dependencies due to
operating on fixed-sized window. To break this limitation,
recent methods [17, 18] leverage the superior global model-
ing capability of Transformer and yield better performance.
Nevertheless, it only implicitly extracts the long-range de-
pendencies underlying similarity of joint features, while ig-
noring the natural kinematic constraints of hand topology.

The kinematic topology of the hand reveals the inher-
ent articulated connection between joints. Some previ-
ous works [1, 42, 50] have shown that the graph convolu-
tional network (GCN) exhibits the powerful representation
of topology. Recently, the pose-guided hierarchical graph
convolution (PHG) method [35] attempts to model the long-
range dependencies between hand parts through stacking
multiple GCN layers. However, the cascaded GCN leads
to error accumulation in long-term elements of the graph
and the over-smoothing problem.

As illustrated in Figure 1c, we claim that the global atten-
tion of Transformer and local topology perception of GCN
construct an effective and complementary feature represen-
tation. To maximize their synergy, we propose a novel
Topology-aware Transformer network named HandGCN-
Former unifying the non-autoregressive Transformer for
modeling context information of depth image and long-
range dependencies between joints, with the graph convo-
lutional network (GCN) which naturally incorporates the
hand topology prior into our network and explicitly learns
the relative relationship between locally connected joints.

Specifically, we propose a Graphformer decoder. Each
decoder block contains a novel node-offset graph convolu-
tional layer (NoffGConv) in the front, followed by stan-
dard components including self-attention layer and cross-
attention layer. Unlike vanilla GCN, NoffGConv decouples
the node feature mapping and the offset feature mapping,
enhancing the guidance of its own location information in
the feature aggregation process.

In addition, most Transformer-based methods leverage
a multiple layer perception (MLP) head consisting of fully
connected layers to predict the coordinates of hand joints
independently, ignoring the local connections among joints.
We introduce a Topology-aware head based on semantic
graph convolutional layer (SemGConv) [50] which incor-
porates the topology information without increasing model
complexity. With a learned adjacency matrix, SemGConv
is able to capture complex local spatial constraints between
joints guided by hand topology, encouraging the Topology-
aware head to obtain more plausible and accurate poses.

In summary, the contributions of this paper are four-fold:

• We propose a novel HandGCNFormer network for 3D
hand pose estimation. Transformer and GCN layers
are deeply integrated to model both global understand-
ing of the scene and local topology connections of
hand joints.

• A novel NoffGConv layer is proposed to decouple the
node feature mapping and the offset feature mapping,
which outperforms the popular GCNs for 3D hand
pose estimation task.

• A Topology-aware head module is designed to adap-
tively establish the spatial topology constraints, which
outperforms the standard MLP prediction head.

• Our method achieves state-of-the-art performance on
four challenging datasets. In particular, it is superior
to the top-performing approach by a margin of 3.2%
with 7.6% fewer parameters for unseen subjects hand
in Hands2017, revealing its excellent generalization
ability.

2. Related work
2.1. 3D Hand Pose Estimation

3D hand pose estimation methods based on deep neu-
ral networks have exhibited high-quality prediction re-
sults, which can be divided into regression-based meth-
ods, detection-based methods, and hybrid methods accord-
ing to the type of model output. Regression-based mod-
els [2, 4, 14, 13, 15, 26, 33, 32, 46] learn the mapping from
the input image to output joint coordinates or angles di-
rectly. Oberweger et al. proposed DeepPrior [33] and Deep-
Prior++ [32] to learn the pose prior with a bottleneck layer
and regress the pose with fully-connected layers. To better
utilize fine-grained features, Pose-REN [4] applies multi-
level cascade regression to iteratively refine the prediction,
while other methods [13, 26, 14, 46] leverage the feature-
level local ensemble. Despite the excellent performance,
such methods suffer from a large model complexity.

Detection-based methods [30, 11, 37, 36, 31] generally
predict a dense probability map for each joint from a depth
image, point set, or voxel set. DenseReg [44] produces the
3D heatmap and unit vector field with an encoder-decoder
module, maintaining the richer spatial context. However,
since the post-processing of obtaining joint coordinates
from heatmap is not differentiable, detection-based methods
usually cannot be trained end-to-end. Later on, the hybrid
methods [35, 27, 19, 39] are further proposed via combining
the advantages of both methods. AWR [19] transforms the
3D hand joint coordinates as a 3D heatmap and unit vector
field in a differentiable manner, implements direct supervi-
sion of joint position. However, the pure CNN-based meth-
ods fall short in understanding of global context due to their
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Figure 2: The overview of the HandGCNFormer. Our method introduces the prior knowledge of hand kinematic topology
by NoffGConv and SemGConv layers, as well as models global understanding with self-attention mechanism, providing
rich disambiguation evidence. ResNet and Transformer encoder form the image encoder module, capturing the global-local
context of the image (Section 3.1). Graphformer decoder incorporates NoffGConv and attention modules capturing joint
interaction globally without ignoring topological connections of joints (Section 3.2). Finally, the final pose is regressed by
Topology-aware head, which constructs effective topology constraints during regressing (Section 3.3).

limited receptive field, making it difficult to handle severe
self-occlusion and self-similarity cases which are common
in 3D hand pose estimation.

2.2. Transformer in Computer Vision

Lately, the Transformer architecture [43] has been ap-
plied to image classification [7, 24], object detection [3, 51],
and pose estimation [48, 28, 22, 23, 15]. In particular,
PRTR [21] and TFPose [28] visualize the dynamic decod-
ing process in Transformer decoder and demonstrate the ap-
plicability of Transformer to human pose modeling. In a
closely related work, Hand-Transformer [17] applies a non-
autoregressive Transformer decoding mechanism to local-
ize each joint in parallel. Compared with the autoregres-
sive approach, non-autoregressive decoding frees the re-
striction of sequence dependence and fulfills the real-time
speed. However, detecting joints independently ignores the
inherent adjacency relation among joints, leading to inferior
performance, especially on invisible and similar joints.

2.3. Graph Convolutional Network

The GCN increasingly gains popularity for skeleton-
based action recognition [29, 42, 47] and 2D-to-3D pose
estimation tasks [34, 20], since it can effectively repre-
sent arbitrary topological data. SemGCN [50] is proposed
to capture complex semantic relationships between neigh-
bor joints of the human body. HOPE-Net [6] proposes
an adaptive Graph U-Net inferring joint locations in 3D
space from 2D keypoints. These works for 2D-to-3D lift-

ing demonstrate that the topology information is essential
to mitigate depth ambiguity. PHG [35] attempts to con-
struct long-range dependencies of hand joints by exploit-
ing a cascaded GCN module, achieving state-of-the-art per-
formance. However, the cascaded GCN module exponen-
tially introduces noisy information from extended neigh-
bor nodes while constructing global relationships, leading
to over-smoothing of the model. In this paper, we leverage
Transformer to directly model global contextual informa-
tion free from the limitations of the receptive field while
incorporating GCN to capture the hand kinematic topology,
which highly improves the representation of spatial struc-
tural features.

3. Methodology

The overview of our proposed HandGCNFormer is il-
lustrated in Figure 2. It takes a depth image as input and
predicts a set of 3D joint coordinates. The entire frame-
work consists of an image encoder formed by a ResNet
and a Transformer encoder, a Graphformer decoder, and a
Topology-aware head.

3.1. Image Encoder

The image encoder extracts both local and global fea-
tures from the input depth image. Our image encoder is
inspired by DETR [3] which consists of a ResNet [16] and
a Transformer encoder. Given a cropped hand depth im-
age I ∈ RH×W , where H and W represent the image
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Figure 3: Illustration of NoffGConv. NoffGConv decouples
the node feature mapping and the offset feature mapping
during aggregating information. The gray lines indicate the
connections between nodes, and the colored lines represent
feature transfer.

height and width respectively, a ResNet is exploited to ex-
tract downsampled features F ∈ RH

32×
W
32×2048. The feature

map is then reduced in channels via a 1 × 1 convolutional
layer and flattened spatially to obtain the sequence feature
T ∈ RHW

1024×256 that will be fed into the standard Trans-
former encoder. For retaining spatial positional informa-
tion, sinusoidal positional embedding is added to the input
sequence. Finally, the context features of input sequence
are captured through a series of self-attentions and feed-
forward networks (FFN).

3.2. Graphformer Decoder

The vanilla Transformer decoder consists of self-
attention layers, cross-attention layers, and feed-forward
networks, which are not aware of the inherent connections
among joints that can be described by the hand kinematic
topology (see lower left of Figure 2). To overcome this
limitation, we design a Graphformer decoder that empha-
sizes the fusion of attention mechanism and GCN tech-
nique, benefiting from both the long-range dependencies
and local topology connection of joints. Specifically, We
build a graph G = {V,E} which consists of a set of nodes
V and edges E. Each node in the graph represents a hand
joint. We incorporate the prior knowledge of hand kine-
matic topology into the model through the adjacency matrix
of G. There exists an edge between node i and j if and only
if the two corresponding joints are connected in the hand
kinematic topology.

In 3D hand pose estimation task, node features contain
rich location information. On the other hand, the neigh-
boring nodes also provide useful features to estimate the
relative offsets which can play a critical role for invisible
and similar joints. Inspired by this observation, we pro-
pose a node-offset graph convolutional layer (NoffGConv).
As shown in Figure 3, NoffGConv decouples node feature
mapping and offset feature mapping. The former depends
on node feature alone, while the latter converges the refine-
ment information flowing to central node from neighbor-

ing nodes and itself. To better complement with the fol-
lowing self-attention layer and to accelerate model conver-
gence speed, NoffGConv applies a fixed adjacency matrix.
Formally, let the input of the l-th layers in NoffGConv is
X(l) ∈ RJ×Dl , J represents the number of nodes and Dl

denotes input dimensions. The NoffGConv at the l-th layers
can be formulated as the following:

X(l+1) = σ
(
W1X

(l) +W2X
(l)Ã

)
(1)

where σ is the activation function and Ã is the normalized
adjacency matrix which is computed by Ã = D̃− 1

2 (A +

I)D̃− 1
2 . D̃ is a diagonal degree matrix. A is an adjacency

matrix covering internal connections of G. I is the identity
matrix. With different weights W1 and W2, NoffGConv
decouples the mapping of the node features and the offset
features. Note that the vanilla GCN only has the second
term in Equation 1, which assigns attention to the current
node and its neighbors based on the degree matrix, weaken-
ing the guidance of its location information.

The Graphformer decoder contains N decoder blocks.
Each block is composed of a NoffGConv layer followed by
the standard self-attention layer and cross-attention layer.
Our decoder takes learned joint queries as input, which rep-
resents positional embedding of joints. There is one-to-
one matching between joint queries and hand joints, thus
the Hungarian matching [3] is unnecessary. Additionally,
since NoffGConv implements the nonlinear mapping of
joint queries, we are able to remove the feed-forward net-
work that usually follows the attention module.

3.3. Topology-Aware Head

The topological hand joints structure plays an essential
role in predicting accurate hand pose especially in heavily
self-occlusion and self-similarity cases. To overcome the
lack of spatial structure cues in the existing an MLP head,
we propose a Topology-aware head with the GCN tech-
nique. As mentioned above, GCN naturally provides a way
to introduce the prior of hand kinematic topology. Then, the
GCN aggregates information about the nodes and their cor-
responding neighbor nodes under the guidance of topology.
However, the vanilla GCN has fixed attention to the connec-
tion between joints, which ignores the complex semantic
relationship of neighboring nodes. Thus, we configure our
Topology-aware head based on three semantic graph convo-
lution layers (SemGConv) and a 1 × 1 convolution projec-
tion layer. Compared with vanilla GCN, SemGConv adds a
learned weighting matrix M ∈ RJ×J to adaptively model
connection strength between joints, which is written as:

X(l+1) = σ
(
WX(l)ρi(M⊙ (A+ I))

)
(2)

where W is a transformation matrix; ρi is the Softmax non-
linearity which normalizes the weight of connections be-
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Method NYU ICVL MSRA Hands2017 FPS
AVG SEEN UNSEEN

DenseReg [44] 10.21 7.24 7.23∗ - - - 27.8
Pose-REN [4] 11.81 6.79 8.65 - - - -
HandPointNet [10] 10.54 6.94 8.51 - - - 48
Point-to-Point [11] 9.05 6.33 7.71 - - - 41.8
V2V-PoseNet [30] 8.41 6.28 7.59 9.95 6.97 12.43 3.5
CrossInfoNet [8] 10.08 6.73 7.86 9.68 7.30 11.67 124.5
A2J [46] 8.61 6.46 - 8.57 6.92 9.95 105.6
SRN [37] 7.79 6.27 7.17 8.39 6.06 10.33 263.1
AWR [19] 7.48 5.98 7.20 7.48 5.21 9.36 -
PHG [35] 7.39 5.97 6.94 7.14 5.06 8.87 58.8
HandGCNFormer 7.43 5.48 6.73 6.80 4.64 8.59 72.8

PHG∗ [35] 6.75 5.94 5.82 - - - 58.8
HandGCNFormer∗ 6.74 4.72 5.57 5.53 3.74 7.02 72.8

Table 1: Comparisons with state-of-the-art methods on NYU, ICVL, MSRA, and Hands2017 using the mean of 3D distance
error in millimeter. The “∗” represents that the method adopts the average of the ground truth joints as hand region center for
cropping images. “SEEN” and “UNSEEN” indicate the cases whether the test subjects are involved in training set. “AVG”
denotes the mean of 3D distance error over all test frames. Best in bold.

tween a node i and the neighboring nodes j ∈ N (i); ⊙
denotes elementwise multiplication.

Following the previous work [50], we leverage the resid-
ual connection to alleviate the over-smoothing problem dur-
ing stacking multiple SemGConv layers. Furthermore, we
stack the output embedding of all Graphformer decoder lay-
ers and fed them into our head module together, encourag-
ing the network to implicitly extract the semantic informa-
tion contained in different decoder layers. With excellent
properties of SemGConv, our regression head constrains the
pose to a more precise space guided by hand topology.

3.4. Overall Loss Function

For the pose estimation task, the distribution of predic-
tion results is relatively sparse. Since the Laplace distribu-
tion is a more appropriate assumption for sparse data, the
model is trained with a smooth L1 [19] loss to minimize the
error between the estimated and ground truth poses. Both
2D and 3D poses are considered. Let y2D ∈ RJ×2 and
y3D ∈ RJ×3 be the ground truth poses. The regression loss
can be formulated as:

Lreg =

N∑
n=1

smoothL1 (ŷ
n
2D, y2D) + smoothL1 (ŷ

n
3D, y3D)

(3)
where ŷn3D denotes the predicted 3D pose from the output
of the n-th decoder layer. ŷn2D is calculated by projecting
ŷn3D with camera intrinsics.

In addition, we apply an MLP on top of the ResNet back-
bone to predict a 3D initial pose, where the MLP is made

of three fully connected layers. An auxiliary loss is em-
ployed to guide the backbone to learn stronger features and
improve the overall performance, which is calculated as:

Laux = smoothL1 (p̂2D, y2D) + smoothL1 (p̂3D, y3D)
(4)

where p̂2D and p̂3D represent the 2D/3D coordinates corre-
sponding to the initial pose, respectively.

Finally, the overall loss is the summation of the regres-
sion loss and auxiliary loss:

Loverall = Lreg + Laux (5)

4. Experiments

4.1. Datasets

Hands2017 dataset [49] contains 957K training and 295K
testing images. 21 hand joints are annotated.
NYU dataset [41] contains 72K training and 8.2K testing
images labeled with 36 joint locations. Following the com-
mon convention [35, 30], we pick a subset of 14 joints from
the frontal view for evaluation.
ICVL dataset [40] contains 22K training images and 1.6K
testing images. The training data is augmented to 330K
samples by leveraging in-plane rotation operations. The an-
notation of the pose contains 16 joints.
MSRA dataset [38] contains 76.5K images with 17 ges-
tures. The ground truth pose annotates 21 joints. We eval-
uate this dataset with the common leave-one-subject-out
cross-validation strategy [4, 19].

5679



Figure 4: Comparison of our framework with the state-of-the-art works on NYU (left column), ICVL (middle column), and
MSRA (right column) datasets. Top: The mean of 3D distance error for each joint. Bottom: The percentage of successful
frames over different thresholds.

4.2. Experimental Settings

Implementation Details: We implement our model in an
end-to-end fashion on one NVIDIA A100 Tensor Core
GPU. Our method is trained with PyTorch framework us-
ing AdamW optimizer [25] with an initial learning rate of
0.0001. The training process covers 40 epochs. We lever-
age the multi-step learning rate schedule, which decays the
learning rate by 0.1 at the 30th and 37th epoch respectively.
The ResNet-50 is adopted as our backbone, which is pre-
trained on ImageNet and the rest of weights are initialized
with Xavier init [12]. We adopt 8 heads for self-attention
and four layers of Transformer encoder and Graphformer
decoder. During inference, we utilize the prediction from
the last decoder layer as the final result. Following the for-
mer works [37, 35, 19], we leverage the localization net-
work proposed in V2V-poseNet [30] to get the center coor-
dinates of the hand region in 3D space. The cropped images
are resized to 256 × 256 and the depth value is normalized
to [−1, 1]. We employ random scaling, random rotation and
random translation for data augmentation in the world coor-
dinate system. According to standard practice, we train one
model for each benchmark with its own training set.
Evaluation Metrics: We evaluate our model with the same
metrics adopted in former works: 1) the mean of 3D dis-
tance error and 2) the percentage of successful frames. The
former is the average Euclidean distance error of per-joint
between ground truth and predictions computed on the over-
all test set. The later represents the ratio of the number of
successful frames in which all joint errors are below the
threshold to the number of all test frames.
Baseline: Our baseline follows the DETR [3] framework

without the Hungarian matching algorithm. The input
queries of decoder correspond one by one to the hand joints.
In addition, the baseline applies the same loss function as
our method. Its architecture is detailed in supplementary
material.

4.3. Comparison with the State-of-the-Art

We compare our HandGCNFormer with various existing
methods [44, 4, 11, 10, 30, 8, 46, 37, 19, 35] on standard
NYU, ICVL, MSRA and Hands2017 benchmarks. Table
1 shows the comparison results with the mean of 3D dis-
tance error as the metric. For a fair comparison, the results
of previous work can be divided into two groups. The top
group results adopt center coordinates provided by V2V-
PoseNet as hand region center to crop images. The bottom
group reports the results utilizing the average of the ground
truth joints as hand region center, which is indicated by “∗”.
Moreover, Figure 4 reports the per-joint mean error and the
percentage of successful frames over different thresholds on
NYU, ICVL, and MSRA datasets. The experimental results
show that HandGCNFormer obtains comparable or superior
performance to other methods achieving a real-time speed
on a single GPU with 72.8 FPS. Note that the number of pa-
rameters in our model are also reduced by 7.6% compared
to PHG which has 35.71M parameters.

Specifically, on Hands2017 dataset, our method outper-
forms other methods with the mean joint error of 6.80 mm.
For unseen subjects hand, our method achieves the mini-
mum mean joint error of 8.59 mm, essentially demonstrat-
ing the excellent generalization ability of our method. In
addition, HandGCNFormer∗ improves 1.27mm compared
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Method AVG SEEN UNSEEN Params(Flops)

Baseline 7.35 5.09 9.24 37.37M(5.81G)
+ Graphformer Decoder 6.94 4.77 8.74 33.18M(5.72G)
+ Topology-aware Head 6.90 4.67 8.77 37.24M(5.80G)

HandGCNFormer (+ both) 6.80 4.64 8.59 33.04M(5.71G)

Table 2: Ablation study for the effectiveness of different modules in HandGCNFormer.

Method AVG SEEN UNSEEN

Vanilla GCN [45] 6.95 4.83 8.73
ChebGConv(K=1) [5] 6.96 4.77 8.87
ChebGConv(K=2) [5] 6.94 4.83 8.69
SemGConv [50] 6.93 4.78 8.72

NoffGConv(Ours) 6.80 4.64 8.59

Table 3: Ablation study for the effectiveness of different
GCN mothods in Graphformer decoder. K represents the
order of convolution kernel in ChebGConv.

with HandGCNFormer in the “AVG” test case, reflecting
the fact that the accuracy of hand region center coordi-
nates limits the performance of model. On NYU dataset,
the results of our method are comparable to PHG. This
is mainly because the annotations of the NYU dataset are
noisy, which limits the performance of our method in terms
of all-joint mean error. Even though, our method still ob-
tains the best performance in terms of the percentage of
successful frames as shown in lower left of Figure 4. On
ICVL dataset, HandGCNFormer and HandGCNFormer∗

outperform the previous best results by a margin of 8.2%
and 20.5%. In fact, HandGCNFormer achieves better ac-
curacy than PHG∗. For the per-joint error and the per-
centage of successful frames, our method significantly sur-
passes other methods under all the joints and thresholds. On
MSRA dataset, our method is superior to PHG and PHG∗

by a margin of 3.0% and 4.3%, respectively. Our method
reduces the per-joint error and achieves the optimal per-
centage of successful frames under 15mm threshold. Over-
all, HandGCNFormer is inherently superior to state-of-the-
art methods, with a suitable trade-off between effectiveness
and efficiency.

4.4. Ablation Study

In this section, we carry out extensive ablations to eval-
uate HandGCNFormer on Hands2017.
HandGCNFormer Modules: As shown in Table 2, we
carry out experiments to quantify the contribution of our
proposed modules (Graphformer decoder and Topology-
aware head). Our baseline achieves a mean error of 7.35
mm on the “AVG” test item that denotes the mean of 3D dis-

Method AVG SEEN UNSEEN

N-S-C 6.80 4.64 8.59
S-N-C 6.86 4.67 8.69
S-C-N 6.86 4.68 8.68

Table 4: Ablation study for the effectiveness of different
connection orders between three components in the Graph-
former decoder. N, S, and C denote NoffGConv, self-
attention and cross-attention, respectively.

Figure 5: (a): The attention map of self-attention in decoder,
dynamically models the global dependencies of joints. (b):
Normalized adjacency matrix of NofGConv, focus on lo-
cal topology perception with fixed connection strength be-
tween joints. (c): Learned weight matrix of SemGConv,
adaptively models complex dependencies among neighbor-
ing joints.

tance error over all test frames, which is only slightly worse
than PHG, reflecting that the Transformer framework can
better capture long-range context information for hand pose
estimation. Then, we replace the decoder of baseline with
our Graphformer decoder. Benefiting from the synergy of
NoffGConv and self-attention mechanism, the model with
Graphformer decoder reduces the mean joint error by 0.41
mm and improves by 5.4% in terms of unseen subjects hand.
Next, we only incorporate the Topology-aware head into
baseline. The performance has significant gains, showing
that spatial structure perception is essential to regress an ac-
curate and robust pose. Additionally, it can be seen that our
head achieves excellent performance without increasing the
model parameters. Finally, HandGCNFormer, combining
our decoder and regression head, achieves the best perfor-
mance with the smallest model size. Particularly, HandGC-
NFormer outperforms baseline with a margin of 0.69 mm
for unseen subjects hand, which shows that our method has
advantages in generalization.
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Figure 6: Qualitative comparison among AWR, our baseline, and our HandGCNFormer on Hands2017 dataset. Left: Quali-
tative results of images with self-occlusion. Right: Qualitative results of images with self-similarity. Red pose represents the
ground truth. Green pose is predicted result.

NoffGConv: We compare NoffGConv with other GCN
variations, including vanilla GCN [45], ChebGConv [5]
and SemGConv [50]. Table 3 reports the comparison re-
sults, where K represents the order of convolution kernel
in ChebGConv. Our method achieves superior performance
than other methods, demonstrating the effectiveness of our
NoffGConv in collaborating with self-attention. In addi-
tion, we compare three different connection orders between
three components in the Graphformer decoder and report
results in Table 4, where N, S, and C denote NoffGConv,
self-attention, and cross-attention, respectively. “N-S-C”
represents the structure of our decoder shown in Figure 2.
“S-N-C” means NoffGConv is in the middle, and “S-C-N”
means NoffGConv is following cross-attention. The exper-
imental results show that “N-S-C” is the optimal order for
fusing NoffGConv and attention modules.

4.5. Visualization

We visualize the weight matrices of self-attention in de-
coder, NoffGConv, and SemGConv during information ag-
gregation. As illustrated in Figure 5, self-attention mech-
anism dynamically captures long-range dependencies be-
tween joints, but ignore inherent topology information of
hand. NoffGConv and SemGConv focus on local con-
nection relation of hand kinematic topology. Since self-
attention learns the degree of dependencies between joints
dynamically and flexibly, our NoffGConv assigns fixed at-
tention to neighboring joints through a normalized adjacent
matrix. In contrast, SemGConv exploits a learned weight
matrix to adaptively extract complex relationships among
neighboring joints, which provides richer spatial constraints
for pose regression.

Figure 6 exhibits some qualitative results of self-

occlusion and self-similarity samples on Hands2017. For a
fair comparison, the results of AWR are reported at the same
input size and the same hand region center as our method. It
can be seen that HandGCNFormer achieves more accurate
and plausible poses compared to AWR [19] and our strong
baseline. Particularly, AWR will fail for the extreme self-
occlusion case, whereas HandGCNFormer can successfully
identify the location of joints and obtain a more plausible
pose guided by global understanding of input data and the
prior knowledge of hand topology.

5. Conclusion
In this paper, we propose a novel Topology-aware Trans-

former network named HandGCNFormer to infer plausible
and accurate 3D hand poses. In HandGCNFormer, we de-
sign a Graphformer decoder and a Topology-aware head
to maximize the synergy of Transformer and GCN. Our
method comprehensively models the global understanding
of image and joints as well as the intrinsic hand kinematic
topology, effectively reducing ambiguities caused by in-
visible and similar joints. Extensive experimental results
demonstrate that HandGCNFormer achieves state-of-the-art
performances on four public datasets and significantly re-
duces the prediction error in complex scenarios. Benefiting
GCN incorporated Transformer network, our method can
also be easily generalized to other regression tasks of struc-
tured data.
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