
Meta-OLE: Meta-learned Orthogonal Low-Rank Embedding

Ze Wang†, Yue Lu‡, and Qiang Qiu†

†Electrical and Computer Engineering, Purdue University
‡School of Engineering and Applied Sciences, Harvard University

{zewang, qqiu}@purdue.edu yuelu@seas.harvard.edu

Abstract

We introduce Meta-OLE, a new geometry-regularized
method for fast adaptation to novel tasks in few-shot im-
age classification. The proposed method learns to adapt
for each few-shot classification task a feature space with
simultaneous inter-class orthogonality and intra-class low-
rankness. Specifically, a deep feature extractor is trained
by explicitly imposing orthogonal low-rank subspace struc-
tures among features corresponding to different classes
within a given task. To adapt to novel tasks with unseen
categories, we further meta-learn a light-weight transfor-
mation to enhance the inter-class margins. As an addi-
tional benefit, this light-weight transformation lets us ex-
ploit the query data for label propagation from labeled to
unlabeled data without any auxiliary network components.
The explicitly geometry-regularized feature subspaces al-
low the classifiers on novel tasks to be inferred in a closed
form, with an adaptive subspace truncation that selectively
discards non-discriminative dimensions. We perform ex-
periments on standard few-shot image classification tasks,
and observe performance superior to state-of-the-art meta-
learning methods.

1. Introduction
Meta learning, also referred to as learning to learn, aims

at acquiring knowledge from a distribution of tasks, and
learn to quickly solve novel tasks sampled from the same or
similar underlying task distribution. Meta learning is exten-
sively studied under the context of few-shot learning (FSL),
and realized by models that adapt efficiently when given
only a few labeled samples of novel tasks. The research is
mainly driven by how to design the adaptation for acquiring
task-specified models efficiently and robustly. Prototypical
networks (ProtoNets) [38] adapt to new tasks by computing
the prototype of each class simply as the average of fea-
ture vectors, with all the network parameters shared across
tasks. MAML [9] adapts to new tasks by a few iterations
of gradient descent, and this approach has inspired many
subsequent methods [2, 10, 23, 50]. The adaptation of the

entire network makes it hard to be scaled to large networks,
and many recent efforts focus on adapting the last classifi-
cation layer only [12, 4], while assuming a universal feature
extractor that is shared across all tasks.

In this paper, we attempt to attack few-shot image clas-
sification from a new perspective of geometry regulariza-
tion of the feature space. As observed in [18], training deep
networks with softmax and cross-entropy loss does not si-
multaneously enforce intra-class similarity and inter-class
margins. On the other hand, encouraging features to be
in a low-rank subspace in each class as well as orthogonal
across classes can significantly improve the robustness of
deep classification networks. While such explicit orthogo-
nal low-rank geometry regularization has been proved suc-
cessful in classical classification tasks [18, 29, 19], it re-
mains highly non-trivial to extend this geometry regular-
ization approach to tasks with novel classes involved at
the testing stage. In few-shot image classification, further
challenges arise from the demand of robust generalization
to novel unseen classes. As we will show in this work,
large class margins resulting from explicit geometric regu-
larization can potentially allow novel knowledge to be rep-
resented by a composition of existing knowledge, and can
reduce interference across classes. An illustration is pre-
sented in Figure 1.

Motivated by the maximal-margin feature space geome-
try, we introduce meta-learned orthogonal low-rank embed-
ding (Meta-OLE) to combine the simplicity of the prototype
based methods and the adaptivity of the parameter adapta-
tion based methods. Specifically, we encourage an orthog-
onal low-rank structure to the feature space across classes.
Thus feature vectors of the same class reside in a subspace
with imposed low-rankness, while subspaces across classes
are encouraged to be as orthogonal as possible. While im-
posing geometry-regularization to the feature space over
seen classes has been investigated [18, 19, 48], the induced
feature extractor does not guarantee to generalize well to
novel object classes that are unseen during training. To ex-
tend an orthogonal low-rank embedding to a few-shot learn-
ing scenario, we introduce a meta-learning framework with
a light-weight adaptive orthogonal low-rank transformation
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(a) Feature space trained with standard softmax and cross-entropy
loss. While linear boundaries are learned for the seen classes, the
lack of enforcing intra-class similarity and inter-class separation
leaves little space for novel classes (purple and and yellow dots) to
be well represented in the feature space without interference.

Novel classes
Seen classes

Novel classes
Seen classes

(b) Orthogonal low-rank embedding encourages feature across
classes to collapse to orthogonal subspaces, each of which has
minimum dimensions. This intra-class similarity and inter-class
separation allow novel classes (purple and and yellow dots) to
be represented in the feature space with significantly reduced
interference.

Figure 1: Illustration of the advantages with explicit orthogonal low-rank geometry regularization.

that is able to adapt efficiently to novel classes with very
few examples. We then show that, given the imposed low-
rank orthogonal geometry, the final classification of query
samples can be performed by subspace projections, where
the projection matrices are directly inferred from the few
labeled examples in a closed form. And we show that, to
adaptively adjust the dimension of the projections based on
the compactness of the feature subspace, the robustness of
the classifier to outlier examples can be further improved.
The closed-form inference of class labels allows unlabeled
samples to be easily involved in the learning of the adaptive
orthogonal low-rank transformation for label propagation,
and improved performance is observed without any auxil-
iary parametric components to infer the pseudo labels.

Despite being simple and geometry-motivated, the pro-
posed method achieves on public FSL datasets superior
performance to state-of-the-art methods that often involve
more sophisticated components.

In summary, our contributions are as follows:

• We propose to impose low-rank orthogonal geometry
in feature space for few-shot learning.

• We introduce meta-learned adaptive orthogonal low-
rank transformations for efficient adaptations to novel
tasks with unseen classes.

• Geometry-motivated classifier based on subspace pro-
jections with adaptive dimension selection is intro-
duced for fast and robust class inference.

• The effectiveness of the proposed Meta-OLE is vali-
dated with extensive experiments on few-shot image
classification.

2. Method
In this section, we start with the basic formulation of

FSL, and then we introduce each of the components of the

proposed Meta-OLE framework in detail.

2.1. Preliminary

Scalars, vectors and tensors are denoted as lower-case,
bold lower-case, and bold upper-case letters, e.g., n, x, X,
respectively. For example, we denote an image as a vector
x, and use X = [x1,x2, . . . ] to denote a collection of im-
ages. Xc denotes the collection of images within X with
label c.

Few-shot image classification with episodic training. A
few-shot learning (FSL) task is usually defined as a K-way
N -shot learning problem, where N is usually a small num-
ber, e.g., N = 5. FSL with meta-learning is usually for-
mulated as a series of episodic training. Typically, in each
episode, one FSL task is generated by first sampling K cat-
egories from the training data, each of which contains N
samples to form the support set St = {x1, . . . ,xK×N}.
An adaptation to the FSL model is then performed on St,
by, e.g., computing prototypes [38], or updating the net-
work parameters [9]. After adaptation, samples from the
same categories of each episodic, referred as the query set
Qt = {x′

1, . . . ,x
′
K×M}, are sampled to evaluate the up-

dated model, and the error is propagated back to update the
parameters.

Orthogonal low-rank embedding. The idea of learn-
ing a linear transformation to recover the orthogonal low-
dimensional intrinsic structures in data is originally pro-
posed in [30]. In [30], a linear transformation is learned
to restore a low-rank structure for data from the same sub-
space, and, at the same time, force a maximally separated
structure for data from different subspaces. This idea is fur-
ther generalized to deep learning in [18], where orthogonal
low-rank embedding (OLE) is introduced as a regulariza-
tion term to the training of deep classification networks for
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Figure 2: An illustration of the proposed meta-learned orthogonal low-rank embedding. The input images of both support set
(blue, yellow, and green boxes) and query set (red box) are all first mapped to feature vectors by a universal feature extractor,
where an orthogonal low-rank geometry is imposed. The features at each task then go through the adaptive orthogonal low-
rank transformation, whose parameters are adapted by samples of each task, and achieve higher intra-class similarity and
inter-class orthogonality. Finally, an adaptive subspace projection is used for each class, where the projection matrices are
inferred directly in a closed form.

improved performance. Given a collection of N samples
in Rd for a K-way classification task, the transformation in
[30] is computed as

min
T:Rd→Rd

K∑
c=1

||TXc||∗ − ||TX||∗, (1)

where ||·||∗ denotes the nuclear norm and serves as a convex
lower bound of the rank function on the unit ball in the op-
erator norm, and T is a linear transformation to be learned.
Specifically, the first term in (1) encourages the transformed
representations within each of the K classes to reside in a
low-rank subspace. The second term in (1) promotes or-
thogonality of the subspaces across classes.

Theorem 1 [30] ||A,B||∗ ≤ ||A||∗ + ||B||∗, with equality
satisfied if and only if the column spaces of A and B are
orthogonal.

According to Theorem 1, the cost value of (1) is always
nonnegative. Moreover, it achieves the minimum at zero
if and only if different classes become orthogonal after the
transform. See [30] for more details of this formulation.

Based on (1), [18] introduces a generalization to the
training of deep neural networks, where an orthogonal low-
rank embedding (OLE) loss is proposed as a regularization
term to facilitate the learning of typical image classification
networks with the cross-entropy loss. Specifically, the OLE
loss is defined as

LOLE =

K∑
c=1

||Zc||∗ − ||Z||∗ =

K∑
c=1

||Φ(Xc)||∗ − ||Φ(X)||∗,

(2)
where Φ denotes the nonlinear transformation associated
with a deep network. When Φ is a network that ends with a
ReLU activation, training with the OLE loss leads to orthog-
onal inter-class subspaces, which is equivalent to explicitly

pushing feature from different classes to the maximum co-
sine distance [18].

2.2. Adaptive Orthogonal Low-rank Subspace Pro-
jections

In the proposed method, samples within a FSL task is
first mapped by a universal feature extractor, parametrized
by a deep CNN in our setting, to a feature space, where
we explicitly encourage low-rank subspace for each class as
well as orthogonality among different classes. To adaptively
promote higher intra-class compactness and inter-class or-
thogonality in each task, we then meta-learn a light-weight
orthogonal low-rank transformation, that learns on the sam-
ples of each task and adapts the parameters for task-specific
feature transformations. After learning the task-specific
transformations for better low-rank orthogonal embeddings,
the classification of unlabeled samples in query set is ac-
complished by adaptive subspace projections, with the pro-
jection matrices inferred directly from feature vectors of the
support set in a closed form. We further introduce adaptive
subspace projections by selecting principal dimensions for
projections, and truncating non-discriminative dimensions
for improved robustness. All components are detailed next.

Universal feature extractor. Following standard prac-
tice, we train a universal feature extractor Φ, which is typi-
cally a CNN that is shared across tasks. Specifically, given
an image x, the feature extractor maps it to a d-dimensional
feature vector z ∈ Rd = Φ(x). Different from the common
practice that the feature extractor Φ is solely learned us-
ing the gradient propagated back from the error at tasks, we
explicitly encourage orthogonal low-rank feature geometry
across classes in each training episode. This is achieved by
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supervising the parameters in Φ with an OLE loss as:

LOLE =

K∑
c=1

||Φ(Xc)||∗ − ||Φ(X)||∗. (3)

The same feature extraction is applied to both support
set and query set to obtain the respective features Z =
{zi}K×N

i=1 , Z′ = {z′j}
K×M
j=1 .

Meta-learned adaptive transformation. Training a uni-
versal feature extractor Φ on limited training classes can
hardly guarantee that the orthogonal low-rank feature ge-
ometry to be perfectly generalized to novel tasks in practice.
To fully exploit the support set samples, we therefore pro-
pose to meta-learn a light weight adaptive transformation
Ψ, parametrized by a tiny network with parameters θ, to
adaptively transform the feature vectors of novel tasks for
more compact intra-class and orthogonal inter-space sub-
spaces. The parameters θ in Ψ is adapted to the new task
given features from the support set iteratively, and an ini-
tialization is learned across the episodic training.

Specifically, given a collection of the features from the
support set Zt, we perform P iterations of parameter up-
dating to θ, in order to project the features to a space
that better presents the low-rank orthogonal geometry. At
each iteration p, the transformed features are computed as
Zp = Ψ(Z, θp−1), and the parameters θ are then updated
by

θp = θp−1 − β∇θ(LOLE(Zp)), p = 1, . . . , P , (4)

where θ0 = θ, which serves as the universal parameter
initialization for all tasks and to be optimized by tasks in
episodic training. The updated parameters at the last itera-
tion θP are returned as the final parameter of Ψ for a spe-
cific task, and transform both the support set and query set
features,

Z̃ = {z̃i = Ψ(zi; θP )}K×N
i=1 , Z̃′ = {z̃′i = Ψ(z′i; θP )}K×M

i=1 .
(5)

Adaptive subspace projections as classifiers. The im-
posed geometry regularization of the orthogonal low-rank
subspaces naturally leads to a subspace projection-based
classifier that fully utilizes the obtained feature geometry.
Since now the desirable features of each class reside in a
low-rank subspace, the inference of class labels of query
samples can then be effectively computed by projecting the
feature vectors to each subspace of classes, and observing
the norm of the projected vectors. Specifically, in K-way
N -shot FSL, given a collection of support set feature vec-
tors of a class Zc ∈ RK×d, the subspace, i.e. span(Zc), can
be directly inferred in a closed-form. Let Zc = UcΣcVc

be the singular value decomposition of the Zc, the rows of
Uc = [b1, . . . ,bN ] form an orthogonal bases of Zc. Then

any feature vector z in the query set can be projected onto
the subspace span(Zc) by projc(z) = UcU

⊤
c z. In prac-

tice, based on the rank of the features, there can be non-
discriminative dimensions contained in U (in the most op-
timal case, only a single dimension is sufficient to repre-
sent the subspace of a class). Given the singular values
Σc = [s1, . . . , sN ], the non-discriminative dimensions are
bases in Uc that correspond to low singular values. When
the singular values Σc are sorted in a descending order, we
can easily truncate non-discriminative dimensions by dis-
carding bases in Uc whose associated singular values are
lower than a threshold. In practice, we introduce a non-
negative hyperparameter τ < 1.0, and truncate bases in Uc

with singular values lower than τ × s1. Formally, we obtain
the projections

projc(z) = Uc[1 : r]Uc[1 : r]⊤z, (6)

where sr ≥ τ × s1, and sr+1 < τ × s1. Ideally, each query
sample will lie in the subspace of its class, thus the projec-
tion will mostly preserve the norm of the feature vector. For
each zj , we then define the norm of the projected vector of
zj to the subspace of class c as the unnormalized probability
of sample xj belonging to class c, i.e.,

ŷc(z̃j) = P (z̃j ∈ c) =
exp(||projc(z̃j)||

2)∑K
c′=1 exp(||projc′(z̃j)||2)

, (7)

and standard cross-entropy loss is then used for comput-
ing and back-propagating errors. The advantages are further
validated with real-world experiments in Section 3.

Leveraging query samples. While meta-learning the
adaptive orthogonal low-rank transformation Ψ, we can fur-
ther leverage the query samples with no labels. In each it-
eration of updating θ in Ψ, we can augment the data by
assigning a pseudo label to each query sample. This can
be efficiently implemented by projecting each query sam-
ple to each subspace inferred from the support set as in (6),
and finding the label maximum probability as in (7). This
achieves transductive learning in FSL without introducing
any auxiliary components to the network. And we introduce
a non-negative hyperparameter α < 1.0 as the weight of the
contribution from the query set with pseudo labels. In this
transductive setting, the updating to θ in Ψ becomes:

θp = θp−1 − β∇θ

(
LOLE(Zp)+αLOLE([Zp,Z

′
p])

)
,

(8)

for p = 1, . . . , P , and [Zp,Z
′
p] here denotes concatenation

of the transformed support and query features.
In summary, the proposed method consists of a uni-

versal feature extractor Φ for projecting high-dimensional
image inputs to feature vectors. Iterative updating to the
adaptive orthogonal low-rank transformation Ψ adapts the
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model to the task at hand. The final classification is per-
formed by subspace projections obtained in a closed form.

x
Φ−→ z

Ψ(·;θ)−−−−→ z̃
projc−−−→ yc. All the parameters are jointly

updated by the loss

L = Lsoftmax(ŷ, y) + λLOLE([Z,Z
′]), (9)

with ŷ being the inferred label from (7) and y the true label.
We summarize the training of the proposed meta-learned

adaptive orthogonal low-rank subspace transformations in
Algorithm 1

Algorithm 1 Meta-learned adaptive orthogonal low-rank
subspace transformations.

1: Given: A description of the tasks as K-way S-shot
with M query samples in each class.

2: Given: β for truncating subspace dimensions, λ for the
weight of OLE loss, α for transductive weight if appli-
cable.

3: Initialize Φ and θ in Ψ.
4: repeat
5: Sample task with support set S = {xi}K×S

i=1 and
query set Q = {x′

j}
K×M
j=1 in each task.

6: Extract feature vectors for both S and Q, zi =
Φ(xi), zj = Φ(xj).

7: for Inner iterations p do
8: Compute adapted features z̃ = Ψ(z, θp)
9: Compute OLE loss LOLE(z̃).

10: Update θ with (4) for inductive setting, or with (8)
for transductive setting with pseudo labels inferred
by (6).

11: end for
12: Obtain transformed features z̃ = Ψ(z; θP ) for both

support and query samples.
13: Obtain adaptive subspace projection for each class as

in (6).
14: Compute class probability of query sample as in (7).

15: Update parameters with the loss in (9).
16: until Converge
17: Return Φ, Ψ with parameter θ.

3. Experiments
Datasets. We perform experiments on FSL benchmarks
including miniImageNet, tieredImageNet, and Caltech-
UCSD Birds dataset [47] (CUB). In miniImageNet [45],
there are 100 image classes from a subset of ImageNet
[8], with 600 images for each class. We follow the
standard practice [9] to split the training, validation, and
testing sets with 64, 16, and 20 classes, respectively.
tieredImageNet [32] is a large subset of ImageNet that con-
tains 608 classes with 1,300 samples in each class. Specifi-
cally, in tieredImageNet, there are 351 classes from 20 cat-

Table 1: 5-way few-shot image classification comparisons
on miniImageNet and tieredImageNet with 95% confi-
dence intervals. We conduct experiments with both shallow
(Conv-4) and deep (ResNet-12) networks and compare the
performance with various state-of-the-art methods. † de-
notes performance obtained with leveraging query samples.

Methods miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

Conv-4 backbone
ABML 37.65 ± 0.22 56.08 ± 0.29 - -
MatchingNets [44] 43.56 ± 0.84 55.31 ± 0.73 - -
MAML [9] 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75

Reptile [23] 49.97 ± 0.32 65.99 ± 0.58

ProtoNets [38] 44.53 ± 0.76 65.77 ± 0.66 53.31 ± 0.89 72.69 ± 0.74

R2-D2 [4] 48.70 ± 0.60 65.50 ± 0.60 - -
VERSA [12] 53.31 ± 1.80 67.30 ± 0.91 - -
RelationNets [41] 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 65.32 ± 0.70

Bayesian MAML [50] 44.46 ± 0.30 62.60 ± 0.25

VSM [51] 54.73 ± 1.60 68.01 ± 0.90 56.88 ± 1.71 74.65 ± 0.81

DKT [27] 49.73 ± 0.07 64.00 ± 0.09 - -
OVE PG GP (ML) [39] 50.02 ± 0.35 64.58 ± 0.31 - -
OVE PG GP (PL) [39] 48.00 ± 0.24 67.14 ± 0.23 - -
Meta-OLE 54.45 ± 0.80 71.23 ± 0.72 57.87 ± 0.90 74.97 ± 0.85

Meta-OLE† 56.82 ± 0.84 73.87 ± 0.67 58.82 ± 0.88 75.85 ± 0.87

ResNet-12 backbone
Meta-Nets [21] 57.10 ± 0.70 70.04 ± 0.63 - -
SNAIL [20] 55.71 ± 0.99 68.88 ± 0.92 - -
ProtoNets [38] 59.25 ± 0.64 75.60 ± 0.48 61.74 ± 0.77 80.00 ± 0.55

AdaResNet [22] 56.88 ± 0.62 71.94 ± 0.57 - -
TADAM [25] 58.50 ± 0.30 76.70 ± 0.30 - -
ConstellationNet [49] 63.85 ± 0.81 81.57 ± 0.56 - -
Meta-OLE 65.28 ± 0.64 81.96 ± 0.62 67.72 ± 0.72 84.20 ± 0.56

Meta-OLE† 67.04 ± 0.72 82.23 ± 0.67 68.82 ± 0.71 85.51 ± 0.59

egories for training, 97 classes from 6 categories for vali-
dation, and 160 classes from 8 different categories for test-
ing. Samples for both miniImageNet and tieredImageNet
are randomly cropped and resized to 84 × 84 for training,
and standard center cropping is performed to the testing im-
ages. The 200 classes in the CUB dataset is divided into
100, 50, and 50 classes, for training, validation, and testing,
respectively. Following standard practice, we report results
with both 5-way 1-shot and 5-way 5-shot. Note that in the
case of 5-way 1-shot learning, the inference of the projec-
tion of each class projc(·) is reduced to using the normal-
ized feature vector of the single support sample only with-
out adaptations based on the intra-class similarity.

Implementation details. All experiments are conducted
on a server with 8 Nvidia RTX 3090 graphic cards, and
each has 24GB memory. Every experiment we report can
be trained and tested on a single card. The machine is also
equipped with 512GB memory and two AMD EPYC 7502
CPUs. We use PyTorch [26] for the implementations of all
experiments. We train the networks using stochastic gradi-
ent descent with a Nesterov momentum [42] of 0.9, for a
total of 80 epochs and 1000 random sampled tasks within
each epoch. The initial learning rate is set to be 0.025,
which decays by a factor of 0.1 at epoch 50 and epoch 60.
Following common practice, we use random resized crop
and random horizontal flip as the data augmentation trans-
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formations.
For the hyperparameters, we set the weight of the OLE

loss in (9) to λ = 0.1. We use P = 10 to adapt the adaptive
orthogonal low-rank transformation for 10 iterations. The
weight of the transductive OLE loss is set to α = 0.25. The
truncation threshold of the adaptive subspace projection τ is
set to 0.9. All hyperparameters selections will be discussed
later in Section 3.3.

Following the common practice, two network structures
are included in the discussion of performance. Conv-4 is
constructed by stacking 4 Conv-BN-ReLU-pooling block,
with 64 channels in each layer, and the output feature is
flattened into a feature vector that is fed to the adaptive or-
thogonal low-rank transformation. ResNet-10 and ResNet-
12 are 10-layer and 12-layer deep residual networks [16],
with 4 residual blocks, and each block has 64, 128, 256,
and 512 channels, respectively. We use a global average
pooling to convert the 3D feature maps for each sample into
a 512-dim feature vector. We use a small scale network with
3-layer fully connected (FC) layers as the adaptive orthog-
onal low-rank transformation Ψ. Batch normalization (BN)
and ReLU activation are adopted after each FC layer. All
parameters in Ψ are allowed to adapt at each task, includ-
ing the parameters in BN layers.

3.1. Few-Shot Image Classification

Following the common practice, we first report standard
5-way 1-shot and 5-way 5-shot experiments on all three
datasets. The results on miniImageNet and tieredImageNet
are presented in Table 1. Two standard backbones, Conv-
4 and ResNet-12 are included for comprehensive compar-
isons. The comparison results on CUB are presented in Ta-
ble 2. We adopt two backbones, Conv-4 and ResNet-10
for comprehensive comparisons following common prac-
tice. The proposed method achieves significant improve-
ments over state-of-the-art methods on all datasets.

3.2. Cross-Domain Generalization

The proposed orthogonal low-rank adaptation allows the
model to fit to novel tasks rapidly and effectively, even in the
presence of domain shifts between tasks. To validate this,
we include the Caltech-UCSD Birds dataset [47] (CUB)
and present cross-domain generalization experiments on
mimiImageNet → CUB. As a dataset specialized for bird
species, CUB poses significant challenge to the few-shot
learners due to its weak intra-class discrepancy. We fol-
low the standard practice [7] and perform experiments with
the Conv-4 backbone and both 5-way 1-shot and 5-way 5-
shot experiments. The quantitative results and comparisons
are presented in Table 2. Our method achieves high per-
formance for cross-domain few-shot classification, which
surpasses counterparts considerably.

3.3. Discussions

In this section, we perform ablation study to verify the
hyperparameter selections, and provide further visualiza-
tions to show the effectiveness of the proposed components.
All experiments are performed on the 5-way 5-shot task
with the CUB dataset and Conv-4 as feature extractor.

Compatibility with deeper feature extractors. As a
general framework of incorporating feature geometry in
few-shot classification, the proposed Meta-OLE is agnos-
tic to feature extractors, and can consistently deliver higher
performance with more powerful featture extractors. We
present further results with deeper ResNet-18 and wide
ResNet (WRN-28-10) in Table 3.

Feature extractor. The only hyperparameter introduced
in the feature extractor is the weight of the OLE loss λ in
(9). We present in Table 4 comparisons of performance
with different λ. Imposing orthogonal low-rank geometry
to the feature extractor can remarkably improve the gener-
alization. Higher values of λ consistently improve the accu-
racy on training categories, while the testing accuracy sat-
urates at λ = 0.1. This observation is consistent with our
intuition shown in Figure 1: Enforcing an orthogonal low-
rank geometry promotes better generalization to novel un-
seen classes, as the improved intra-class compactness pre-
serves more “open” space so that novel classes can be added
to the feature space without causing significant interference
with previously seen classes.

Meta-learned orthogonal low-rank transformation.
We show in Figure 3 the accuracy of the model when per-
forming task-specific adaptations to θ in Ψ. We perform
10 steps of inner-loop adaptation and visualize the moving
accuracy at step 1, step 5, and step 10. The network perfor-
mance is improving substantially w.r.t. the steps of inner-
loop adaptation. We further visualize the feature space in
Figure 4, showing how the features in a task are progres-
sively refined to orthogonal low-rank geometry when θ is
being updated iteratively. It is clearly shown that this task-
specific adaptation is crucial when learning novel tasks.

Adaptive subspace projections. The adaptive subspace
projection allows extra flexibility by adjusting τ , the thresh-
old that controls the truncation of non-discriminative di-
mensions in the projections. We show in Table 5 how the
values of τ affect the results. It is shown that high τ values
like τ = 0.9 result in truncating nearly all but the first basis
after the singular value decomposition for projection. The
compactness of the transformed intra-class features allow a
single basis to well represent the subspace of a class, and
achieve the best performance by removing all other dimen-
sions that potentially contain noise.
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Table 2: Results on cross-domain few-shot image classification with the Conv-4 backbone, and 5-way few-shot image clas-
sification on the CUB dataset with both shallow and deep backbones. † denotes performance obtained with leveraging query
samples.

Methods miniImageNet → CUB CUB (Conv-4) CUB (ResNet-10)
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Feature Transfer 32.77 ± 0.35 50.34 ± 0.27 46.19 ± 0.64 68.40 ± 0.79 63.64 ± 0.91 81.27 ± 0.57

ABML 29.35 ± 0.26 45.74 ± 0.33 49.57 ± 0.42 68.94 ± 0.16 - -
Baseline ++ [7] 39.19 ± 0.12 57.31 ± 0.11 61.75 ± 0.95 78.51 ± 0.59 69.55 ± 0.89 85.17 ± 0.50

MatchingNet [44] 36.98 ± 0.06 50.72 ± 0.36 60.19 ± 1.02 75.11 ± 0.35 71.29 ± 0.87 83.47 ± 0.58

ProtoNets [38] 33.27 ± 1.09 52.16 ± 0.17 52.52 ± 1.90 75.93 ± 0.46 73.22 ± 0.92 85.01 ± 0.52

RelationNet [41] 37.13 ± 0.20 51.76 ± 1.48 62.52 ± 0.34 78.22 ± 0.07 70.47 ± 0.99 83.70 ± 0.55

MAML [9] 34.01 ± 1.25 48.83 ± 0.62 56.11 ± 0.69 74.84 ± 0.62 70.32 ± 0.99 80.93 ± 0.71

Bayesian MAML [50] 33.52 ± 0.36 51.35 ± 0.16 55.93 ± 0.71 72.87 ± 0.26 - -
DKT [27] 40.14 ± 0.18 56.40 ± 1.34 62.96 ± 0.62 77.76 ± 0.62 72.27 ± 0.30 85.64 ± 0.29

OVE (ML) [39] 39.66 ± 0.18 55.71 ± 0.31 63.98 ± 0.43 77.44 ± 0.18 - -
OVE (PL) [39] 37.49 ± 0.11 57.23 ± 0.31 60.11 ± 0.26 79.07 ± 0.05 - -
Meta-OLE 40.66 ± 0.21 58.23 ± 0.26 68.75 ± 0.31 84.74 ± 0.21 79.76 ± 0.40 88.82 ± 0.32

Meta-OLE† 41.40 ± 0.20 60.82 ± 0.28 71.32 ± 0.32 86.11 ± 0.23 81.10 ± 0.42 90.04 ± 0.36

Table 3: Results with deeper feature extractors.

Extractors ResNet-18 ResNet-18 WRN-28-10 WRN-28-10
miniImageNet 1-shot 5-shot 1-shot 5-shot

DAE-GNN [11] - - 62.96± 0.15 78.85± 0.10

LaplacianShot [52] 72.11± 0.19 82.31± 0.14 74.86± 0.19 84.13± 0.14

TIM-ADM [5] 73.6 85.0 77.5 87.2
TIM-GD [5] 73.9 85.0 77.8 87.4
AWGIM [13] - - 63.12± 0.08 78.40±0.11
Meta-OLE 71.46± 0.33 85.21± 0.34 75.22± 0.30 86.12± 0.28

Table 4: Comparisons with different values of λ.

λ = 0.00 0.01 0.05 0.1 0.2 0.5

Training 85.13 86.24 86.50 86.89 87.21 87.33
Testing 82.25 84.10 85.45 86.11 86.12 86.11
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Figure 3: Moving average of the accuracy at different p
when updating the adaptive orthogonal low-rank transfor-
mation.

Table 5: Comparisons with different values of τ . We present
both test accuracy and the average numbers of dimensions
that are preserved after truncation.

τ = 0 0.1 0.3 0.5 0.7 0.9

Accuracy 85.33 85.46 85.62 85.88 86.07 86.11
Dimension 3.14 2.43 1.73 1.30 1.12 1.08

Leveraging unlabeled samples. Our framework of meta-
learned orthogonal low-rank transformations allows unla-

Table 6: Comparisons with different values of α.

α = 0.05 0.15 0.25 0.35 0.45 0.55

Accuracy 84.81 85.25 86.11 86.02 85.42 83.25

beled query samples to be easily leveraged without intro-
ducing any auxiliary network components. The only ad-
ditional hyperparameter introduced is α that controls the
weight of the inner-loop learning with pseudo labeled query
samples. We perform additional experiments shown in Ta-
ble 6. Leveraging unlabeled samples in the inner-loop adap-
tation is able to improve the performance. However, impos-
ing a large value of α close to 1 can decrease final accuracy,
as higher values of α might cause the wrong assignments of
the pseudo labels to overwhelm the inner-loop adaptation.
We therefore use consistently α = 0.25 across all experi-
ments.

4. Related Work

Feature geometry in deep learning. The idea of explic-
itly imposing intra-class similarity and intra-class separa-
tion is extensively studied in metric learning [46, 6, 15, 35,
40, 48, 24]. As in the most representative loss functions for
metric learning, pairwise loss [15] and triplet loss [35], ef-
fective training of metric learning requires careful sampling
of samples, especially negative ones for the most informa-
tive training. The basic assumption of metric learning is
that a common metric space is shared across related tasks.
Such idea has also been extended to few-shot learning as in
Matching Networks [45] and ProtoNets [38], where the net-
works remain shared across all tasks. Relational Networks
[41] further extend to a learnable metric, parametrized by a
network trained across tasks.
Meta-learning. Meta learning, also referred to as learning
to learn [43], trains the models to leverage shared knowl-
edge among tasks within a distribution to solve novel task
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Iteration 1
OLE: 26.18 Acc: 78.0%

Iteration 2
OLE: 18.17 Acc: 80.4%

Iteration 3
OLE: 13.82 Acc: 81.6%

Iteration 4
OLE: 12.20 Acc: 83.2%

Iteration 5
OLE: 10.50 Acc: 85.2%

Iteration 10
OLE: 4.35 Acc: 92.0%

Iteration 9
OLE: 5.60 Acc: 91.6%

Iteration 8
OLE: 6.48 Acc: 91.2%

Iteration 7
OLE: 9.27 Acc: 90.4%

Iteration 6
OLE: 8.93 Acc: 87.6%

Figure 4: Visualization of the feature space of zp while updating θ in Ψ for 10 iterations. Feature vectors from three
classes in a 5-way FSL task are embedded with PCA, and visualized in three colors. Viewing angles are adjusted for better
visualizations. The value of the OLE loss and the accuracy at each iteration are noted in the figure.

efficiently and effectively [1, 33, 9, 12, 1, 31, 33]. It has
attracted increasing attention in recent years, and recent ad-
vantages are driving the development of meta learning with
different directions. Early efforts focus on training a feature
extractor that is compatible with certain metric, in massive
training episodes. ProtoNets [38] learn feature projection
that is robust to feature comparisons in Euclidean space.
DSN [37] allows high-order statistics of the subspace for
each class to be considered. And R2-D2 [4] learns the fea-
ture extractor that adapts well to closed-formed linear clas-
sifiers. Gradient-descent based methods [9, 33, 10, 50] learn
an initialization that allows the network to adapt efficiently
to new tasks given supervisions from a few samples. Pa-
rameter prediction based models [12, 28, 11] generate task-
dependent network parameters, typically linear classifiers,
given observations on novel tasks. Recently, leveraging
unlabeled samples in query sets further boosts the perfor-
mance of FSL, where the pseudo labels of the query samples
are inferred either directly from comparing features [37], or
by a labeling network [17]. Finally, in addition to its suc-
cessful application in few-shot learning, the idea of meta-
learning has also been proved to be effective at diverse tasks
such as memory [3] and reinforcement learning [36, 14, 34].

5. Conclusion

In this paper, we introduced meta-learned orthogonal
low-rank embedding (Meta-OLE) for effective generaliza-

tion to novel few-shot classification tasks by meta-learning
with geometry regularization to feature space. We imposed
orthogonal low-rank geometry in feature space across cate-
gories to promote maximum intra-class similarity and inter-
class separation simultaneously. To further allow effective
generalization to novels tasks with unseen categories, we
meta-learned an orthogonal low-rank transformation that
can fully utilize both labeled support set and the unlabeled
query set to update the task-specific transformations. This
explicit geometry regularization allowed us to formulate the
final classification layer as class projections, with projec-
tion matrices directly obtained from the feature vectors in
closed-form. Determined by the intra-class similarity of
each class, an adaptive dimension truncation is further intro-
duced to selectively discard non-discriminative dimensions
in the subspace projections for improved robustness. The
idea of orthogonal low-rank geometric regulation is a cen-
tral theme that motivates every component in the proposed
Meta-OLE. We performed both comparisons against state-
of-the-art methods and ablation study, to fully validate the
effectiveness of each proposed component.
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[19] José Lezama, Qiang Qiu, and Guillermo Sapiro. Not afraid
of the dark: Nir-vis face recognition via cross-spectral hal-
lucination and low-rank embedding. In CVPR, pages 6628–
6637, 2017.

[20] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter
Abbeel. A simple neural attentive meta-learner. In ICLR,
2018.

[21] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In
ICML, 2017.

[22] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and
Adam Trischler. Rapid adaptation with conditionally shifted
neurons. In International Conference on Machine Learning,
pages 3664–3673. PMLR, 2018.

[23] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[24] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured feature
embedding. In CVPR, pages 4004–4012, 2016.

[25] Boris Oreshkin, Pau Rodrı́guez López, and Alexandre La-
coste. Tadam: Task dependent adaptive metric for improved
few-shot learning. In NeurIPS, 2018.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019.

[27] Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley,
and Amos Storkey. Bayesian meta-learning for the few-shot
setting via deep kernels. In NeurIPS, 2020.

[28] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-
shot image recognition by predicting parameters from activa-
tions. In CVPR, 2018.
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