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Abstract

Different from most existing approaches that require
trimap generation for each frame, we reformulate video ob-
Jject matting (VOM) by introducing improved semantic guid-
ance propagation. The proposed approach can achieve a
higher degree of temporal coherence between frames with
only a single coarse mask as a reference. In this paper,
we adapt the hierarchical memory matching mechanism
into the space-time baseline to build an efficient and robust
framework for semantic guidance propagation and alpha
prediction. To enhance the temporal smoothness, we also
propose a cross-frame attention refinement (CFAR) mod-
ule that can refine the feature representations across mul-
tiple adjacent frames (both historical and current frames)
based on the spatio-temporal correlation among the cross-
frame pixels. Extensive experiments demonstrate the effec-
tiveness of hierarchical spatio-temporal semantic guidance
and the cross-video-frame attention refinement module, and
our model outperforms the state-of-the-art VOM methods.
We also analyze the significance of different components in
our model.

1. Introduction

Video object matting (VOM) aims to identify and pre-
dict alpha mattes of one or multiple target foreground ob-
jects from consecutive video frames. This technology has
been successfully applied in many areas where background
replacement is needed, for example, live video creation, en-
tertainment video creation, and special-effect film-making.
Currently, matting is generally formulated as an image com-
posite problem. It aims to solve the 7 unknown variables per
pixel from only 3 known values, I; = o; F; + (1 — «;)B;,
where 3 dimensional RGB color I; of pixel ¢, while fore-
ground RGB color Fj;, background RGB color B;, and
matte estimation «; are unknown. Compared to image mat-
ting, one of the core challenges in video matting is to main-
tain the spatio-temporal coherence in alpha prediction. And
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Figure 1. Visual comparisons between one state-of-the-art trimap-
based method TCVOM [34] and ours. The trimap propagation
network fails to find the ideal three-partition region distribution
at some certain scenes, which may cause semantic information
propagation failures in matting process. However, our hierarchical
space-time semantic guidance VOM method can effectively main-
tain the integrity of semantic propagation.

for the video object matting (VOM), the target foreground
of interest should be specified in advance before running the
matting models.

The recently proposed algorithms [28, 34] utilize trimaps
(a draft marking foreground, background, and unknown
areas) as constraint information to locate the target area.
This approach divides the matting process into two stages:
trimap generation and trimap-based alpha prediction. It first
generates trimap frame by frame by propagating one or sev-
eral user-annotated trimaps to other target frames. Then the
networks take the video frames and corresponding trimaps
as inputs for alpha prediction. Although such trimap-
based video object matting methods make the problem more
tractable, there still remain two big challenges. First, given
only one or several user-annotated reference frames, current
trimap propagation networks struggle to find the ideal three-
partition region distribution, which may cause semantic in-
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formation propagation failures in the matting process, as
shown in Figure 1. Second, manually checking the propa-
gated trimaps frame by frame or densely interpolating user-
annotated trimaps for reference can be quite burdensome for
users.

To address the above issues, we introduce hierarchical
semantic guidance in spatial-to-temporal space to guide the
alpha prediction instead of the propagated trimaps. We em-
ploy the hierarchical memory matching mechanism on top
of the Space-Time Correspondence Network (STCN) [3]
baseline. Also, we build a novel hierarchical space-time
semantic guidance video object matting (HSTSG) frame-
work to achieve effective semantic guidance propagation
and temporally coherent alpha prediction. Compared to
the previous two-stage VOM methods [28, 34], our algo-
rithm needs the annotated semantic mask of only the first
frame as the target foreground reference. Besides, it com-
bines semantic guidance propagation and alpha prediction
into one unified task. To enhance the temporal smooth-
ness of the predicted results, we propose a cross-frame at-
tention refinement (CFAR) module that refines the feature
representations of multiple adjacent frames (both historical
and current frames) based on the spatio-temporal correla-
tion among the cross-frame pixels. The CFAR can also im-
prove the model’s robustness when dealing with unfavor-
able scenarios such as occlusions, new targets, and so on.

To justify our solutions, we conduct extensive experi-
ments on multiple public datasets. The experimental results
show that our proposed method surpasses all the state-of-
the-art VOM approaches. Overall, the contributions of this
paper are as follows:

e We introduce the hierarchical semantic guidance into
the spatial-to-temporal space to guide alpha prediction
without per-frame trimap generation and achieve better
semantic propagation.

* We propose an STCN-based spatio-temporal network
with a hierarchical memory matching mechanism to
establish stronger temporal coherence for alpha pre-
diction. We also merge the semantic guidance propa-
gation and alpha prediction into one task without rely-
ing on redundant trimap generation.

e We propose a cross-frame attention refinement
(CFAR) module to improve the temporal smoothness
across multiple adjacent frames.

» Extensive experiments demonstrate the effectiveness
of our methods, outperforming the state-of-the-art
(SOTA) approaches on multiple VOM benchmarks.

2. Related works
2.1. Image matting.

Trimap-based methods. Traditionally, most matting
methods require a trimap as auxiliary information to com-
pensate for the ill-posed nature of the matting equation.
The trimap is annotated by humans and contains fore-
ground, background, and unknown regions. Traditionally,
[4,7,8,25] utilize the sampled pixels color from foreground
and background to estimate the alpha value in unknown
region. Similarly, [27, 13, 1] determine the alpha matte
by propagating it from foreground and background pixels.
More recently, deep learning methods have been proposed
to solve the matting problem end-to-end. [30, 10, 18, 6]
concatenate input image together with its trimap and ap-
ply encoder-decoder networks to obtain matting result. [30]
also introduce a large matting dataset called Adobe Image
Matting (AIM). Despite their great success, these methods
are still hard to be deployed in practice because of the high
cost to get accurate trimaps for every image.

Background-based methods. Some other approaches
try to replace trimap with a relatively inexpensive alterna-
tive. [22, 16] propose to determine the foreground through
the combination of an image and its background. The back-
ground image is fed as a green screen to the network, so
it can easily distinguish the foreground. This approach
achieves good results but suffers low computational effi-
ciency, and thus can work only on low resolution. [16]
reduce its complexity to perform high-resolution and real-
time matting. However, both methods have limits when the
camera is shaking or the background changes.

Trimap-free methods. Since the trimap is hard to pro-
duce, efforts have been made to get rid of it. [21, 33] di-
rectly output the matting result from arbitrary images. But
due to the lack of prior information, sometimes they would
perform below expectation. [35, 26] is designed specifically
for human portrait matting, so they can use the semantic in-
formation of human portrait. But they may fail in detail
regions such as hair.

2.2. Video matting.

Although image-based matting has shown significant
success and can be naively applied to videos frame by
frame, there are several attempts to make advantage of the
temporal correlation of video to improve the matting qual-
ity.

Video portrait/human matting. Some video-based
methods are specifically designed for human matting. [12]
first performs single frame matting, then reinforces the con-
sistency of contiguous results by post-processing. How-
ever, it cannot handle cases when the human is moving too
fast. [17] uses a recurrent neural network to acquire tempo-
ral information. With the help of temporal information, it
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Figure 2. The architecture of our hierarchical space-time semantic guidance video object matting (HSTSG) model. The HSTSG first
extracts the hierarchical key features before comparing them with the historical keys. Then a hierarchical memory matching is proposed to
retrieve the value features from the memory bank. The cross-video-frame attention refinement network is followed to integrate the feature
representations of the spatio-temporal neighborhoods from multiple adjacent frames.

achieves state-of-the-art results in human video matting.

Video object matting. Since the large and robust dataset
is hard to obtain, deep learning methods for video object
matting haven’t been proposed until recent years. [34] re-
lease a large benchmark dataset together with its two-stage
video matting algorithm. It first generates the trimap for
each frame, then aggregates the temporal features using the
attention mechanism to predict alpha matte frame by frame.
[28] also propagates trimaps across different frames. For
matting modules, [28] extracts different spatial and tempo-
ral features from multiple frames, which produces spatially
and temporally coherent results. Additionally, it also pro-
posed a video object matting dataset. Our work is also eval-
uated on these two datasets.

3. Architecture

The network of our hierarchical space-time semantic
guidance video object matting (HSTSG) is designed to au-
tomatically predict the accurate alpha mattes and corre-
sponding semantic masks given only the annotated semantic
mask of the first frame as a reference. It can perform both
semantic propagation and alpha prediction in the same task
without redundant trimap generation. The architecture of
the HSTSG network is shown in Figure 2, we first extract
the hierarchical key features before comparing them with
the historical keys. Then a hierarchical memory match-
ing module is followed to query the value features from the
memory bank. We also propose a cross-video-frame atten-
tion refinement network to integrate the feature representa-
tions of the spatio-temporal neighborhoods across multiple
adjacent frames.

3.1. Hierarchical Key and Value Encoders

We design the hierarchical key encoder and value de-
coder based on STCN [3]. The hierarchical key encoder
takes each query frame as input and extracts the hierar-
chical key features to generate hierarchical spatio-temporal
correspondences between the query and memory frames.
While trimap propagation struggles to learn the true distri-
bution under certain scenarios (e.g. self-occlusion, perspec-
tive change), the semantic mask however can provide robust
binary estimation (i.e. foreground or background) during
the propagation process [3]. Inspired by this, we utilize the
binary semantic mask as the semantic guidance and perform
the mask prediction along with the alpha prediction. The
hierarchical value encoder is designed to embed the previ-
ously predicted alpha mattes and semantic masks into the
value features, with hierarchical semantic guidance.

Without loss of generality, We employ ResNet50[9] and
ResNet18[9] as the backbones of the hierarchical key en-
coder and value encoder separately. The hierarchical key
features (query key K ZQ and memory key K) and value
feature V; are extracted from the i —th Res block with the
output scale of {1/4,1/8,1/16} with respect to the query
frame, where 7 € {4, 3,2}. Compared to previous memory-
based approaches, we maintain a memory bank of hierarchi-
cal features to retrieve corresponding multi-scale value fea-
tures that can enforce stronger spatio-temporal coherence at
both global and local levels.

3.2. Hierarchical Memory Matching Module

Considering the robust temporal coherence both in the
global and details, we design a hierarchical top—F filter-
ing memory matching module to exploit complementary se-
mantic information at multiple feature levels.

Memory read operation with Top-k filtering.
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Figure 3. Implenmention of our our hierarchical memory matching
module as described in Section 3.2.

As in recent memory read methods [3, 19, 2, 23, 15, 11],
the affinity matching between each query and memory
pixel is first computed by the memory matching mod-
ule. However, the hierarchical pixel-to-pixel dense attention
map generation comes with highly expensive computational
cost.

To address this issue, we introduce top-k filtering in our
hierarchical memory matching module and Figure 3 illus-
trates the detailed implementation of our memory read op-
eration. Given a query frame and 7" memory frames, we first
compute the key and value features of each memory frame.
And then the key and value features of different memory
frames are concatenated separately along the temporal di-
mension at each feature level to generate hierarchical mem-

ory key and value maps.

At the beginning of our memory read operation, we com-
pute the affinity between each query pixel and memory pixel
in s-th features, the pairwise affinity matrix Af f at the s
level (s € {1/4,1/8,1/16}) is computed by the dot product
as follows:

ALTG = kM ke (M
where Af f7; denotes the affinity score between the feature
vectors - k; and k; at the 4, j-th position. Then we define
the top-k filtering guided softmax-normalized affinity ma-
trix W* at the s-th feature level as follows:

s _ exp(AffY)
Wi = 5, eotarr)
exp(AfF5) e Tonk (A
Wi = Ei€Top§<Aff5>eXp(Afffj)’ZfZ € Topj(Af[*)
0, else
2
VQS — V]\/Isws (3)

where Top? (Af f®) denotes the set of indices that are
top-k in the j-th column of Af f* at s-th level. The aggre-
gated readout hierarchical feature V' 9* for the query frame
can be computed as a weighted sum of the memory features
with W2,

We follow [24] to utilize the selected k& best matching
memory pixels in the coarser level (low-resolution, e.g.
1/16) attention maps to guide 4k pixels in the finer level
(higher-resolution, e.g. 1/8)) attention maps for signifi-
cantly lower computational costs. The retrieved value VtQS
for the current frame are concatenated with the historical
adjacent query values to produce the cross-frame retrieved
value KZQS and then fed into the cross-frame attention re-
finement module for temporal smoothness improvement.

3.3. Cross-frame attention refinement.

To enhance the temporal smoothness, we propose a
transformer-based [29] cross-frame attention refinement
(CFAR) module that leverages the spatio-temporal neigh-
borhoods from the multiple adjacent frames (both histori-
cal and current frames) to refine VtQS based on the spatio-
temporal correlation. We concatenate the current query key
K2° with K2*, and K%, along the temporal dimension to
produce cross-frame query key K tQ . We first compute the
spatio-temporal affinity among the pixels of adjacent query
key maps at the s-th feature level:

AffS s = Attn (K9, K9%) 4)

Cross

Then the cross-frame retrieved value VtQS can be enhanced
as follows:

;ttn = ‘71‘,@5 + softmax (Affgross) © Ll (‘ZfQé) (5)

5123



VMD

Method Trimap Setting

MSE MAD SSDA dtSSD MESSDdt
DIM [30] full-trimap 999 4438 61.85 34.55 2.82
IndexNet [18] full-trimap 9.37 4353 58.83 33.03 2.33
GCA [14] full-trimap 820 40.85 5582 31.64 2.15
TCVOM(GCA) [34] full-trimap 7.07 37.65 5041 27.28 1.48
TCVOM [34] 1-trimap 22.15 5740 7723 32.18 2.97
HSTSG(Ours) 1-mask 1248 3797 56.09 28.03 1.86

Table 1. Results of our HSTSG versus state-of-the-art methods on VideoMatting108 test set with the medium trimap setting. “full-trimap”

means frame-by-frame user-annotated trimaps. TCVOM(GCA) means TCVOM]34] utilizes GCA [14] as backbone.

. . DVM

Method Trimap/Mask Setting  \/or10-3) MAD  Grad Conn diSSD  MESSDdt
DIM[30] Full-trimap 30 5455 3533 5516 2348 053
IndexNet[18] full-trimap 28 5368 2752 54.44 195 0.49
Context-Aware[10] full-trimap 27 5178 2857 4946 1937 0.5
GCA[14] full-trimap 2 4749 2637 4523 1836 033
DVMI28] full-trimap 14 4091 1902 4058 1511 025
MG Mating[32] full-mask 19 4328 2514 4396 1941 042
DVMI28] 20-trimap 16 1366 2639 4223 1634 028
HSTSG(Ours) 1-mask 5 2674 1111 22.68 1392 026

Table 2. Results of our HSTSG versus state-of-the-art methods on DVM test set. “full-trimap” and “20-trimap” means user-annotated

trimaps are provided frame-by-frame and every 20 frames respectively.

where © indicates an element-wise multiplication, L(-)
is the L1 normalization which normalizes along the mem-
ory dimension. Finally, we adopt the standard F'F'N to
strengthen the feature representation ability of the attention
value:

‘/S

attn

Vs

Cross

= FEN (Vi) + ©)

These processes impose the locality constraint on global
frames by applying an attention mechanism. The enhanced
retrieved value V.5, are then fed into the decoder through
shortcut connections at the corresponding scale to predict
the refined semantic masks and alpha mattes of current and
adjacent query frames. The corresponding results are also

updated in the memory bank.

4. Experiments

In this section, we first describe the datasets used for
training and testing. Subsequently, we compare our results
with existing state-of-the-art (SOTA) foreground matting
algorithms. Finally, we analyze the effectiveness of each
component in our hierarchical space-time semantic guid-
ance video object matting (HSTSG).

4.1. Datasets and experimental settings.

VideoMatting108. The VideoMatting108 dataset [34]
consists of 108 video clips with 1080p resolution. The

dataset relies on green-screen video footage to extract
ground-truth alpha mattes, where 68 high-quality (1080p
and 4K) ones from the Internet and 40 green-screen ones by
self-collection to supplement the object types such as fur,
hair, and semi-transparent. The dataset is split into 80 clips
in the training set and 28 clips in the validation set. The
ground truth trimaps of VideoMatting108 are generated and
dilated on the fly with the random-sized kernel (from 1 x 1
to 51 x 51) during training. DVM. DVM [28] collects over

6500 various real-life videos of natural scenarios as back-
ground. Also, it includes green screen video clips from the
Internet to serve as targets for foreground color and alpha
matte generation. The training set contains 6400 videos by
compositing foregrounds from 325 images plus 75 green
screen videos, with 16 natural background videos. The test
set contains 248 videos by compositing foreground from 50
images plus 12 green screen videos, with 4 natural back-
ground videos.

Evaluation metrics. To numerically evaluate the al-
gorithm, we employ SSDA(average sum of squared dif-
ference), MESSDdt (mean squared difference between the
warped temporal gradient), and dtSSD(mean squared dif-
ference of direct temporal gradients) as the temporal co-
herency metrics [5]. In addition, we adopt MAD (mean
absolute difference), MSE (mean squared error), Grad (gra-
dient error), and Conn (connectivity error) to evaluate the
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Figure 4. Comparison of alpha predictions with state-of-the-art methods on VideoMatting108 dataset. GCA and CAM take frame-by-frame

trimaps as inputs, and MG takes frame-by-frame masks as inputs.

Pretrained Module VMD
HMMM CFAR MSE MAD SSDA dtSSD MESSDdt

32.14 7248 7236 43.96 3.34

v 2843 6488 70.15 36.49 291

v v 18.20 53.15 68.11 35.46 2.82

v v 1941 52.65 6428 33.50 2.43

v v 1596 30.17 64.67 33.31 2.46

v v v 12.48 37.97 56.09 28.03 1.86

Table 3. Ablation on modules and training stages. “Pretrained” means model is initilized with the pretrained weights on the DIM dataset.
HMMM and CFAR represents our hierarchical memory matching module and cross-frame attention refinement.

per-pixel accuracy [30].

Implementation details. The training of our video mat-
ting network consists of two stages. Before Stage 1, we
initialize our baseline model with the weights of STCN [3]
trained on the segmentation datasets [20, 31]. In the first
stage, we pretrain our model on the DIM dataset [30].
Then we proceed to train our model on the video matting
datasets [34, 28] in Stage 2. We re-scale all video frames to
512 x 512 pixel patches in training. For inference, we utilize
full-resolution as inputs. To properly manage the duration
of training samples and memory bank, we mainly follow the
implementation details of STCN [3]. More implementation
details are provided in the supplementary material.

4.2. Comparison with State-of-the-Art Methods.

To evaluate the performance of our video matting
method, we compare our HSTSG with the state-of-the-
art trimap-based or mask-guided image matting methods:
DIM[30], IndexNet[18], Context-Aware[10], GCA[14],
and MG Mating[32], all of which need user-annotated
trimaps or masks frame-by-frame; trimap-based video
object matting: DVM][28] and TCVOM [34] that need
trimap propagation after given one or several user-annotated
trimaps. We follow the trimap propagation strategy in
TCVOM [34] to generate trimaps when such annotation
is provided. We report MSE, MAD, SSDA, dtSSD, and
MESSDdt, and Grad and Conn between predicted and
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Figure 5. Visual comparisons with the state-of-the-art methods on the DVM [28] dataset.

Feature Stride(m) VMD
16 8 4 MSE MAD SSDA dtSSD MESSDdt
v 7823 11433 110.68 46.15 3.60
v 52.14  89.37 86.54  37.17 2.88
v 24.82  67.41 79.78  32.00 2.58
v oV 3943  74.03 79.83  30.59 2.46
v v 19.69 5856  70.20  29.12 2.18
v v 17.35 41.10 64.17  28.96 1.91
v oV v 1248 3797 56.09  28.03 1.86

Table 4. Performance comparison of Hierarchical Memory with different scales.

ground truth alpha mattes. To fairly compare, we fine-tune
these image-based methods on the VideoMatting108 [34]
and DVM [28] benchmarks. For trimap-based methods, we
measure errors only on the unknown regions, while we mea-
sure the global errors for our trimap-free HSTSG.

VideoMatting108. Table 1 shows the quantitative re-
sults of our HSTSG and other SOTA models on the Video-
Matting108 dataset with medium trimap setting for trimap-
based methods. We observe that our HSTSG shows
superiority over DIM [30] and IndexNet [18] on 4/5
metrics, and over GCA on 3/5 metrics. Our HSTSG

only under-performs by a small margin compared to
TCVOM(GCA) [34] with a full-trimap setting that re-
quires expensive manual annotation. While given only one
user-annotated trimap or mask, our HSTSG outperforms
the state-of-the-art VOM method (TCVOM(GCA) [34]) by
a large margin, which demonstrates that our hierarchical
space-time semantic guidance mechanism can effectively
maintain the completeness and temporal coherence of the
semantic propagation. Some visualizations on VideoMat-
ting108 [34] are provided in Figure 4.

DVM. Table 2 shows the quantitative results of our
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Memory management

VMD

MSE MAD SSDA dtSSD MESSDdt
Every 5 frames 57.19 7731 8435 3431 297
Every 3 frames 56.54 78.16 82.63 332 2.62
First + Every 3 frames 38.62 5246 68.17 28.64 2.18
prev 2 frames 2538 42.13 65.64 28.72 1.95

First+ prev 2 frames  12.48

3797 56.09 28.03 1.86

Table 5. Comparison of different memory management strategies.

Top-k VMD
katl/16level MSE MAD SSDA dtSSD MESSDdt
16 2434 4178 6254 2951 2.11
8 12.48 3797 56.09 28.03 1.86
4 31.05 4562 56.76 29.82 2.08

Table 6. Performance comparison of different & in top-k filtering
of memory bank at the 1/16 feature level.

HSTSG and other SOTA models on the DVM dataset with
a medium trimap setting for trimap-based methods. Our
method shows significant superiority over all competing
methods, on both trimap-based or mask-based cases includ-
ing full-trimap or full-mask settings and VOM ones with
1-trimap setting. The quantitative results also demonstrate
that our HSTSG can achieve more accurate alpha prediction
and stronger temporal coherence, thanks to the hierarchi-
cal space-time semantic guidance and cross-frame attention
refinement. We provide some comparisons in Figure 5 to
illustrate the smoothness improvement of our HSTSG com-
pared to other VOM methods.

4.3. Ablation study.

Module ablation. We conduct an ablation study on our
proposed hierarchical memory matching module (HMMM)
and analyze the significance of different components. As
shown in Table 3, we observe that pretraining on the im-
age matting dataset can reach faster convergence than the
random initialization, because pretraining can accelerate the
learning process to quickly find more meaningful semantic
features. When applying our designed hierarchical memory
matching module on the STCN baseline, the matting per-
formance is significantly improved. Our HMMM-+baseline
outperforms the baseline by 36% on MSE and 18.1% on
MAD, which demonstrates that our proposed hierarchical
memory matching mechanism can contribute to establish-
ing stronger temporal coherence. After adding the CFAR
module, the performance is improved further and our model
surpasses the baseline by 56.1% and 41.5% on MSE and
MAD. The CFAR module can benefit the feature repre-
sentations across multiple adjacent frames, meanwhile, it
can also enhance the temporal smoothness of the predicted
frames.

Different settings of HMMM. We investigate the effec-

tiveness of the hierarchical memory matching nodule under
two factors: 1) the selection of feature scales, 2) memory
management, and the top-k guidance setting. We set the
memory read at certain scales and select different hierar-
chical combinations as ablation. The experiments are con-
ducted on the VideoMatting 108 validation set. As shown in
Table 4, for the single-scale memory read settings, the finer
scale achieves better performance, where the best setting is
stride 4. Note that the performance is further improved after
applying the hierarchical memory reading, which demon-
strates that the hierarchical feature representations are ben-
eficial to combine both global semantic information on a
coarse scale and object details on a fine scale. Table 5 shows
the performance difference under different memory man-
agement settings in the reference stage, we observe that the
setting of taking the first user-annotated frame and its most
recent two previous frames in the memory bank can achieve
the best performance. Table 6 shows the ablation results of
different top-k settings. We observe that the dense mem-
ory reads may not always bring performance gain, likely
because denser memory matching may introduce an unnec-
essary semantic noise. Conclusively, adjusting the appro-
priate k value (e.g., setting k = 8 at the 1/16 scale) can
effectively improve the model performance.

5. Conclusion

In this paper, we adapt the hierarchical memory match-
ing mechanism into the space-time baseline to build an effi-
cient and robust framework for semantic guidance propaga-
tion and alpha prediction. To enhance the temporal smooth-
ness, we also propose a cross-frame attention refinement
(CFAR) module that can refine the feature representations
across multiple adjacent frames (both historical and current
frames) based on the spatio-temporal correlation among the
cross-frame pixels. Extensive experiments demonstrate the
effectiveness of hierarchical spatio-temporal semantic guid-
ance and the cross-video-frame attention refinement mod-
ule, and our model outperforms the state-of-the-art VOM
methods. For future work, it may be possible to extend the
video object matting method to video 3D object reconstruc-
tion.
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