
Heightfields for Efficient Scene Reconstruction for AR

Jamie Watson1,2 Sara Vicente1 Oisin Mac Aodha3

Clément Godard4* Gabriel Brostow1,2 Michael Firman1

1Niantic 2UCL 3University of Edinburgh 4Google
https://github.com/nianticlabs/heightfields

Abstract

3D scene reconstruction from a sequence of posed RGB
images is a cornerstone task for computer vision and aug-
mented reality (AR). While depth-based fusion is the foun-
dation of most real-time approaches for 3D reconstruc-
tion, recent learning based methods that operate directly
on RGB images can achieve higher quality reconstruc-
tions, but at the cost of increased runtime and memory re-
quirements, making them unsuitable for AR applications.
We propose an efficient learning-based method that refines
the 3D reconstruction obtained by a traditional fusion ap-
proach. By leveraging a top-down heightfield represen-
tation, our method remains real-time while approaching
the quality of other learning-based methods. Despite be-
ing a simplification, our heightfield is perfectly appropri-
ate for robotic path planning or augmented reality char-
acter placement. We outline several innovations that push
the performance beyond existing top-down prediction base-
lines, and we present an evaluation framework on the chal-
lenging ScanNetV2 dataset, targeting AR tasks.

1. Introduction
Systems for camera tracking are now ubiquitous and

widely available in several augmented reality (AR) frame-
works, e.g. Apple’s ARKit [1] and Google’s ARCore [13].
However, complex AR effects require 3D scene understand-
ing that goes beyond camera poses and sparse points. A
critical AR application is the placement and navigation of
assets such as characters in a real-world scene. To do this
well, an estimate of the 3D geometry is typically required.
This 3D geometry estimate must be (a) cheap to compute,
so it can run on embedded and mobile devices, and (b) accu-
rate, so that AR assets will appear to be standing on objects,
and not below or above the surface.

Although accurate, depth sensors are not standard for the
majority of mobile devices, meaning that a typical approach

*Work done while at Niantic

NEW
Ours in 3DAtlas NeuralRecon

HeightfieldInput Images HeightRecon

0 100 200 300
Time for each 3D update (ms)

0.4

0.5

0.6

0.7

0.8

F1
 sc

or
e

NeuralRecon Atlas

TransformerFusionOurs

Raw TSDF

Mapnet
Real time geometry

Figure 1. Heightfields for reconstruction. By using only 2D con-
volutions, our top-down heightfield prediction system is signifi-
cantly faster than full 3D alternatives (bottom), while predicting
scene shape with comparable accuracy (top).

is to fuse depth maps estimated from posed RGB images
into a global 3D reconstruction [36]. This is fast, but creates
noisy and incomplete 3D volumes. Recent works have pro-
posed alternative learning-based approaches to high-quality
3D reconstruction. However, these tend to rely on expen-
sive operations such as 3D convolutions [30, 48, 6]. In this
work, we posit that these learning-based 3D reconstructions

5850

are unnecessary for many applications such as AR, and pro-
pose our 2½D heightfield of the scene as a practical alter-
native in many indoor environments [14, 32].

A heightfield is a 2D grid aligned with the ground plane,
where each grid cell represents the maximum height of the
scene’s objects occupying that site. This manifests the prior
that the man-made world is more spatially varying in the
ground plane dimensions than it is in the height direction.

We introduce three main contributions: (1) A novel
framework for top-down height estimation which ap-
proaches the performance of learning based full 3D recon-
struction methods, while improving over a raw depth fusion
baseline. (2) A novel blending method which learns when to
trust raw fused geometry and when to use learned top-down
outputs for the final output. (3) A new evaluation protocol
that mimics an AR application, by placing 3D objects in the
scene and measuring how they reproject into the image.

We show that our method is significantly faster and
less memory intensive than other recent learning based full
3D scene reconstruction alternatives, while still remain-
ing competitive in terms of reconstruction fidelity (Fig. 1).
We evaluate on the challenging ScanNetV2 dataset [8] and
show that we achieve state-of-the-art results on top-down
mesh reconstruction and reprojected depth accuracy when
compared to other top-down reconstruction baselines. Our
method is also the best performing real-time method in our
AR-style evaluation.

2. Related Work
Reconstructing 3D scenes. The reconstruction of 3D ge-
ometry from RGB images is a long-standing problem in
computer vision. Structure from Motion (SfM) pipelines
like COLMAP [43, 44] can be used to generate sparse re-
constructions, while for dense reconstructions, traditional
SfM relies on depth maps as an intermediate representa-
tion, e.g. from [36, 10, 6, 21]. Per-frame depths are then
fused into a global representation using e.g. a Truncated
Signed Distance Function (TSDF) [7, 31]. A similar depth
map fusion strategy is used by other reconstruction meth-
ods [31, 36, 42]. Learning-based fusion methods for depth
sensor data that improve on the traditional pipeline have
also been recently proposed [53, 54, 56].

In contrast, more recent learning-based methods attempt
to perform end-to-end reconstruction directly from RGB
images, e.g. [30, 48]. Here, features extracted from each im-
age are backprojected along the camera rays into a 3D fea-
ture volume, followed by expensive 3D convolutions on the
3D volume. The output is an implicit representation of the
scene’s 3D geometry. Unlike Atlas [30], which maintains a
scene-level 3D feature volume, NeuralRecon [48] first per-
forms local surface estimation by chopping the input scene
into fragments which are later fused into a single global vol-
ume. This significantly speeds up processing speed, but still

requires 3D convolutions. TransformerFusion [3] also pro-
poses an incremental transformer-based online approach.

Our approach combines the best of both perspectives.
We first predict a depth map for each image and fuse them
using a TSDF. This raw TSDF is used to aggregate depths
and features into a top-down grid. A lightweight network
(i.e. no 3D convolutions) processes this grid and outputs a
heightfield, addressing the speed and memory limitations of
end-to-end methods like [30].
Top-down semantic reasoning. Top-down (or ‘birds-eye-
view’) representations exploit the fact that objects and struc-
tures in the man-made world can often be approximated by
their 2D locations on a planar surface. They can be effec-
tive in applications such as semantic segmentation of road
scenes [40, 39, 35] and overhead view synthesis [58]. Dif-
ferent strategies have been proposed to convert from 2D im-
age observations (e.g. captured by a camera approximately
parallel to the ground) to the top-down space, both where
depth is [5, 16] and isn’t [27, 35, 40, 39] available. These
methods are predominately concerned with top-down se-
mantics. Instead, we show that similar 2½D representations
can be used for lightweight 3D reconstruction.
Top-down geometric reasoning. Top-down representa-
tions have also been used for geometry-based reasoning.
For example, height estimation from aerial monocular im-
ages is a common problem in remote sensing [47, 28]. Be-
fore deep learning, [11] fused estimated depth maps into
a 2D grid from which a heightfield can be extracted. In
our experiments, we show that a similar depth-only fusion
baseline is inferior to our full method. In the context of
SLAM, [59] perform dense reconstruction via a mesh-based
heightfield representation. Their approach does not include
a learning component, so the mesh is fitted at inference time
via nonlinear optimization. [9] use a heightmap for effi-
ciency, but do not attempt to improve upon the 3D recon-
struction given as input. Stixels [2] model free space us-
ing a height-based representation, but represent the scene
in camera-centric coordinates, unlike our fused coherent
world-based representation.

In the context of learning-based approaches, [29] model
the relationship between indoor walking trajectories and
free space in indoor scenes, estimating a small number of
discrete occupancy bins for each 2D location on the floor
grid. This is related to the binary occupancy reasoning
used in the neural SLAM method of [37]. [51] estimate
free space and object ‘footprints’ in scenes, but do not es-
timate geometry. [45] perform single-view 3D scene re-
construction using an overhead height estimation network.
However, the training supervision needed is non-trivial as
it needs the occluded depth behind and beneath objects,
thus synthetic data [46] is used. Finally, the convolutional
single-plane decoder from [33] is related to our heightfield
decoder, but we predict height directly rather than evalu-

5851

ating multiple different 3D locations for each 2D position,
resulting in less computation for our method.

Finally, there is also a large body of work that esti-
mates floorplans for indoor environments from single im-
ages [22, 26], sequences [34], or 3D data [25, 17, 24]. While
related, these methods are mostly concerned with estimat-
ing the shape of rooms, ignoring ‘things,’ e.g. furniture.

3. Problem Setup
Our goal is to convert successive posed color images into

a height-based representation of the 3D world, while also
minimizing the computation and memory footprint. The
heightfield H is defined on a 2D grid C and assigns to each
cell c ∈ C a height Hc ∈ [0, hmax], which corresponds to the
maximum height of objects in the scene over the cell.

In practice, for navigation and augmented reality, we
only care about heights up to a certain maximum height;
we set this as a user-defined parameter hmax (e.g. in all our
experiments we set hmax = 1.5m). This ensures we ig-
nore the ceiling and top portions of walls in both training
and evaluation for indoor scenes, but include furniture and
other ‘stuff’. Our 2D grid C is divided into cells of size
4cm× 4cm in all experiments.

At both training and test time we assume access to a se-
quence of RGB images {Ii}Ni=1, each of size (H,W) and
with known camera poses {Ωi}Ni=1 and intrinsics, all in a
common 3D coordinate system roughly aligned relative to
gravity. Poses can be estimated e.g. with [55, 57]. For
our ScanNetV2 experiments we follow [30, 48, 3] in using
ScanNet’s pre-aligned poses. In the supplementary video,
we show qualitative results of using HeightRecon for scenes
with poses obtained using a visual-inertial odometry tech-
nique (Apple’s ARKit [1]). At training time we also as-
sume access to per-frame ground truth depth maps and to a
ground truth heightfield of the scene.

4. Method
We estimate the heightfield H in four steps: (1) Estimate

depth and deep features for each RGB input image; (2) In-
tegrate estimated depths into a noisy, incomplete 3D voxel
grid V; (3) Integrate the deep features into a top-down 2D
feature grid F ; (4) Create the final output H via a trained 2D
CNN. A visual overview of these steps is shown in Fig. 2.

4.1. Per-image depth and feature estimation

We bootstrap our heightfield method with an unrefined
estimate of the scene geometry. We do this via a pipeline
of depth estimation followed by fusion of these depth maps
into a common voxel volume. For each frame in the input
sequence, we estimate a per-frame depth image D, of size
(H,W). We estimate this using a supervised multi-view
stereo (MVS) system, similar in spirit to [18, 52].

Low-level features are extracted from image I , as well as
from nearby keyframe images. The geometric compatibility
between the features of the reference and target images is
computed in a cost volume [19] for depths between dmin
and dmax. The cost volume is then convolved by a network
to estimate a per-image depth D.
Depth estimation architecture. Our architecture is based
on [52] but is trained with supervised data rather than self-
supervision. We train with an l1-based loss and a gradi-
ent loss from [38]. More details of the architecture, hyper-
parameters, and how we select keyframes are given in the
supplementary material.
Feature maps. Additionally, a feature map F is computed
for each I . Similar to [30], we compute F as the sum of
four residual blocks, each upsampled to (H,W). F has
dimensionality K, where K = 32 in all our experiments.

4.2. Creating a noisy and incomplete raw TSDF V

As a starting point for our final heightfield, we cre-
ate an unrefined ‘raw’ fused volume, integrating the esti-
mated depth maps from each image into a common refer-
ence frame. Following traditional depth fusion-based meth-
ods (e.g. [7, 31]), we integrate all depth maps into a voxel
TSDF V , using the known pose of each image. We set the
bounds of this TSDF to a region around the camera center
of the input image. At both training and test time, the center
of this TSDF is the camera center of Ω1. This TSDF would
typically be voxel-hashed, making it extremely memory ef-
ficient. For ease of implementation, though, our implemen-
tation uses a dense tensor; this is still far more lightweight
than learning-based baselines (see Sec. 5.6).

4.3. Creating the top-down feature map F

As mentioned, prior works in deep 3D reconstruction
(e.g. [30, 48]) project deep image features into a 3D feature
volume. However, building and processing such a volume
is very expensive. Instead, we create a top-down feature
map F , where each cell contains image-level features cor-
responding to that grid location. This raises the questions
of (i) how to best map features from images captured from
arbitrary camera poses onto a 2D grid of the ground, and
(ii) how to accumulate features from multiple such images?
Previous works in semantic reasoning have proposed differ-
ent approaches to this, e.g. [40, 35]. These approaches are
better suited to automotive applications where the camera
pose relative to the ground plane is more well behaved, i.e.
at a constant height and angle to the ground plane. In our
experiments, we show that these methods are inferior to our
approach in the context of indoor scene reconstruction.

Naively, we could use our depths to project features from
image space into 3D world space, before collapsing down
to 2D (similar to [4], which we compare to as a baseline).
However, this has the key limitation that it needs ground

5852

2EVHUYHG�6FHQH

6KDUHG
/D\HUV

)HDWXUH�1HW

'HSWK�1HW

ȍ�

ȍ� ȍ1�

,PDJHV

���

3HU�,PDJH�'HSWK

3HU�,PDJH�)HDWXUHV

76')
)XVLRQ

���

,�

,�

,1

5DZ�76')

5D\�
&DVWLQJ

5DZ�+HLJKWILHOG

7RS�'RZQ�
$JJUHJDWLRQ

7RS�'RZQ�1HW
)LQDO�

+HLJKWILHOG
7RS�'RZQ

$JJUHJDWHG�)HDWXUHV
6HFWLRQ���� 6HFWLRQ����

6HFWLRQ����

6HFWLRQ����

�'�,PDJH�
6SDFH �'�

7RS�'RZQ�
6SDFH

%OHQG

&DPHUD�SRVHV
ȍ� ȍ�

��� ȍ1�

Figure 2. Overview of our HeightRecon model. Our method predicts a heightfield from a sequence of posed images. It starts by extracting
depth maps and features maps for all the images in the sequence so far. The depth maps are then fused into a TSDF volume that is converted
to a raw heightfield by raycasting from a virtual orthographic camera. This raw heightfield is used in our top-down feature aggregation step
to convert the per-frame feature maps into a top-down aggregated feature map F . The aggregated feature map and the raw heightfield are
further processed by our top-down network to produce the final heightfield.

truth depths, without which noisy depth estimates will place
features in the wrong grid cells. To better cope with the
noise of depth estimates, we exploit the already-computed
raw TSDF volume V , which enables us to efficiently and ac-
curately grab appropriate image-level features for each grid
cell. First we convert the raw TSDF into a heightfield by
raycasting the raw TSDF V from above, using a virtual or-
thographic camera. This gives a raw heightfield Hraw. The
height Hraw

c at each cell c is converted to a 3D point Pc.
Gathering features from a single image. For each cell c in
the 2D grid, we want to populate the top-down feature map
Fi with features from Fi, the feature map for image Ii. To
do this, we project each Pc into camera Ωi using the known
camera extrinsics and intrinsics. We determine if the point
is occluded by comparing its coordinates with the estimated
depth map. For the unoccluded points, we then sample the
input image feature map Fi at the reprojected image coor-
dinates, to obtain Fi. We also maintain a visibility mask
Ti, where Tic is 1 if Pc is directly visible and unoccluded
in camera Ωi, and 0 otherwise. This depth-based sampling
is in contrast to methods like [30] which project image fea-
tures to all voxels along the ray for a given pixel.
Aggregating a sequence of images into the grid. Hav-
ing obtained a Fi and visibility mask Ti from each im-
age i, the final feature map F is the average of the fea-

)HDWXUH�ORRNXS

+LGGHQ�SRLQWV��� ��
9LVLEOH�SRLQWV��� ��

&DPHUD�ȍL

�
UHQGHUHG�
IURP�5DZ�76')�

Figure 3. Computation of F and T . Each 3D point in Hraw is
projected into camera i, so image-level features can be sampled.
T records if each point is visible (1) or hidden (0) in the camera.

(d) Ours:
Complete ✔ and sharp ✔

(b) Raw TSDF heightmap :
Sharp ✔ but incomplete ✖

(a) Example input image

(c) Naive regression :
Complete ✔ but smooth ✖

Figure 4. Naive TSDF volumes give sharp but incomplete geome-
try, while naive top-down network outputs are complete but blurry.
Our novel blending approach (Sec. 4.4) borrows from both.

ture maps from each image, taking visibility into account,
Fc =

∑
i TicFic/

∑
i Tic. For online applications we com-

pute this as a rolling average [31].

4.4. Top-down heightfield regression

The next step is to regress the heightfield of the surround-
ing environment from the top-down feature map, derived
thus far from N cameras and averaged into per-cell features
Fc. Our top-down network takes as input the 2D feature
map F , and the top-down render of the raw TSDF, Hraw.
These are stacked together to make a (K + 1)-channel ten-
sor, where K is the number of feature channels in F . Our
top-down network is a 2D convolutional network which out-
puts a single-channel tensor representing the heightfield H.
H is predicted in an absolute scale in meters.
Learned blending for improved heightfields. A naive ver-
sion of heightfield regression, given F and Hraw as input,
would be to use a model similar to our depth regression net-
work, i.e. a standard regression CNN, comprising an en-
coder, decoder, and skip connections. We found that com-

5853

pared to the raw heightfield Hraw, the final prediction from
such a naive model would be more complete, but also far
less sharp. Such a network learns to make sensible predic-
tions, but at the expense of smoothing over discontinuities.
We therefore form our final prediction H from a blend of
the rendered Hraw and the network prediction Hnet. This
blend is adjusted on a per-cell basis, modulated by a blend
map Φ which is predicted as a second output channel from
our top-down network. During training, we supervise Φ by
asking the network to predict where Hnet is closer to the
ground truth than Hraw. At inference time, we threshold Φ
to make Φ̄ and take the final height value for a cell c to be

Hc = Φ̄c Hnet
c + (1− Φ̄c) Hraw

c . (1)

Our experiments show that blending results in qualitative
and quantitative improvements over using just Hraw or Hnet

on their own; see Table 2 and Fig. 4.
Top-down losses. We use standard losses from depth esti-
mation to predict accurate and sharp heightfields. We only
apply the top-down loss on cells inside the convex hull of
valid ground truth regions, to avoid supervising in regions
where the training data is unreliable. Our loss is then

Lheightfield =

∑
c Mc|Hnet

c −Hgt
c |∑

c Mc
, (2)

where M is a binary mask, which is 1 for cells inside the
convex hull of the ground truth mask and 0 otherwise. We
also use a gradient matching loss [23, 38], to improve the
sharpness of the top-down prediction, so

Lgrad =
∑
c∈C

|∇x(Hnet
c −Hgt

c)|+ |∇y(Hnet
c −Hgt

c)|, (3)

where ∇x and ∇y are 2D gradients. Our blending map Φ is
supervised with a binary cross entropy loss,

Lblend =
∑
c∈C

BCE(Φc, |Hnet
c −Hgt

c | < |Hraw
c −Hgt

c |). (4)

We train with 256 × 256 crops, but at test time we use the
network’s fully convolutional capability to predict for arbi-
trary size scenes. Our final loss is L = Lheightfield + Lgrad +
Lblend, which we average over four output scales [12, 38].
We refer to our combined depth and heightfield regression
model as ‘HeightRecon’.

4.5. Online operation

For real-time operation, HeightRecon can be used to give
always-on ‘live’ updates of the current estimate of the 3D
scene. We keep three structures in memory during online
processing: a set of keyframe feature maps for depth estima-
tion, the raw TSDF volume, and the top-down aggregated

feature map. When a new image frame is captured, we run
the depth and feature extraction networks. The depth of this
new frame is fused into the raw TSDF volume. The raw
TSDF volume is converted into a raw heightfield, which is
used to gather features for this new frame. The aggregated
feature map F is updated with the features from the new
frame and processed together with the raw heightfield by
the top-down network, returning the final heightfield. We
use fixed size grids in our experiments, but for very large
scenes, V and F can easily be extended dynamically.

5. Experiments
We train and evaluate on the challenging ScanNetv2

dataset [8], which comprises 1,201 training, 312 valida-
tion, and 100 testing scans of indoor scenes, captured with
a handheld RGBD sensor. At test time, HeightRecon does
not have access to the depth channel, i.e. we use RGBD data
for training and RGB for evaluation.

5.1. Implementation details

Our depth network is based on [52], which uses a
ResNet-18 [15] backbone and decoder similar to [12, 50],
and is trained using depth supervision. Depths in the cost
volume are spaced linearly between dmin = 0.1m and
dmax = 10m. See supplementary material for network
specifics. At training time we use a TSDF V of dimen-
sions 256 × 256 × 50. For all our experiments we use
voxels of size (4cm)3, and for our TSDFs we use a trun-
cation parameter of τ = 20cm. We train with a learning
rate of 10−4 for 150k steps, using a batch size of 4, with
the Adam optimizer [20]. RGB training images have the
same augmentations as [12]. The residual blocks of the fea-
ture extractor are shared with the depth network. For faster
training, we pretrain the depth network. When optimizing
the heightfield loss L we keep the depth network fixed (and
thus also the residual layers shared by the feature network),
but the remaining layers of the feature network are trained
end-to-end. Unless otherwise stated, our networks use Im-
ageNet [41] pretrained weights for faster convergence. We
create ground truth training and testing heightfields by ray-
casting the ground truth meshes from above, using an ortho-
graphic camera. At inference time we threshold the blend
map Φ at 0.6.

5.2. Evaluation

We evaluate HeightRecon in three separate scenarios, re-
flecting our desire for a fast, accurate reconstruction which
is suitable for AR character placement and navigation:
Heightfield mesh quality. We evaluate the heightfield-
derived mesh quality of HeightRecon and compare it to 2D
and 3D baselines using the 3D metrics from [30]. For the
full 3D methods (e.g. [30, 48]), we first convert their 3D
output to a heightfield by raycasting from above the meshes

5854

Example inputs Ground truth HeightRecon (Ours) Atlas NeuralRecon

Figure 5. Qualitative comparisons with full 3D reconstructions. Our reconstructions are more complete than NeuralRecon [48] and are
qualitatively comparable to Atlas [30], despite the fact that we only estimate 2D heightfields. Example input images are shown on the left.

obtained from their predicted TSDFs, or raycasting from the
provided meshes directly for [3]. For all methods, at infer-
ence time we remove any geometry more than 1.5m above
the minimum predicted height.
Augmented reality evaluation. To evaluate HeightRecon’s
effectiveness in an AR setting, we construct an evaluation
protocol that measures two important aspects of AR: (1) re-
projection error of 3D assets placed on predicted height-
fields, and (2) IoU between estimated and ground truth
heightfield derived navigation maps. This is described and
evaluated in Sec. 5.5.
Full 3D evaluation and depth reprojection metrics. In
the supplementary material, we evaluate our HeightRecon
method using the full 3D mesh evaluation of [3], as well as
their depth reprojection metrics.

5.3. Comparison to 2D and 3D baselines

We compare to three recent state-of-the-art methods that
reason in 3D: Atlas [30], NeuralRecon [48] and Trans-
formerFusion [3]. All use 3D convolutions and are not real-
time. We also compare to methods which, like us, use a
2D top-down representation [35, 40, 5]. These are designed
for semantic segmentation rather than heightfields, so we
use their approaches for projecting from camera space to
top-down space, but predict heights using our top-down net-
work, trained using Lheightfield+Lgrad. We provide a detailed
description of how we implemented these baselines in the
supplementary material.

Heightfield mesh quality prediction results in Table 1

Comp↓ Acc↓ Precision↑ Recall↑ F1↑
Non real-time methods

Atlas [30] .056 .060 .767 .735 .750
NeuralRecon [48] .039 .075 .768 .657 .706
TransformerFusion [3] .041 .062 .748 .695 .720

Real-time methods
Lift splat shoot [35] .137 .193 .243 .232 .237
OFT single [40] .111 .183 .357 .340 .348
OFT multi [40] .085 .118 .453 .446 .450
Mapnet [5] .091 .105 .478 .471 .474
Mapnet [5] + Hraw .093 .106 .481 .475 .478
Raw TSDF (Hraw) .065 .066 .604 .592 .598
HeightRecon (Ours) .052 .057 .684 .677 .680

Table 1. Reconstruction evaluation of heightfield meshes. We
outperform other real-time baselines, and are competitive with non
real-time full-3D methods, for the task of top-down mesh evalua-
tion, where the ground truth heightfield is computed from the full
3D volume. See Sec. 5.3 for details.

show that our approach outperforms alternative 2D top-
down methods, and is competitive with more expensive
methods that do full 3D reasoning. We also compare with
the raw TSDF, which for this evaluation is converted into a
heightfield and thus corresponds to Hraw, one of the inputs
to our top-down network. HeightRecon improves over this
baseline demonstrating the value of our top-down network
in refining the noisy and incomplete raw TSDF. Qualitative
results in Fig. 5 show that HeightRecon produces similar,
and sometimes even superior results relative to expensive
3D baselines.

5855

0 10 20 30 40 50 60 70

Scene size (m2)

0

2

4

6

8

10

M
em

or
y

us
ag

e
(G

B
)

iPhone7
iPhoneX
iPhone12

Atlas
Neural Recon
HeightRecon (Ours)

Mean (MB) Max (MB) Min (MB)
Atlas [30] 3221 10900 896
Neural Recon [48] 2077 4184 910
HeightRecon (Ours) 475 724 386

Figure 6. Our memory usage is significantly lower than full
3D methods. (Top) Each dot represents a single ScanNetV2 test
scene. The x-axis is the size of the scene in m2, as measured by
occupied 2D cells in the ground truth volume. Horizontal lines
indicate the maximum available memory for some popular mobile
devices. However, memory allocation is at the discretion of the
OS and some will also be reserved for application logic. (Below)
The memory usage in megabytes on the ScanNetv2 test set.

5.4. Ablation

We validate our contributions by turning them on and
off in Table 2. We note that our full HeightRecon method
performs better than all the following variants:

Hnet: The heightfield directly regressed by our network,
without our learned blending.

Ours w/o Hraw: HeightRecon, but the top-down network
only gets access to F and not Hraw.

Ours w/o F: HeightRecon, but the top-down network only
gets access to Hraw and not F .

Ours w/o V: HeightRecon, without the raw TSDF step,
where the raw heightfield is computed directly from
depths projected to the top-down space.

The effect of depth estimation. We also report in Ta-
ble 2 the performance of HeightRecon when using depth
maps obtained with the computationally more expensive
DVMVS [10]. For this experiment, we do not retrain the
top-down model, and instead we just evaluate our model
using different depth maps as input. Our performance is
improved when using these higher quality depth maps, at
the cost of increased computational time (Fig. 8). More im-
portantly, our top-down network still leads to improvements
over the TSDF mesh computed using [10]. For further eval-
uation using depth from a monocular network and ground
truth sensor depths, please see the supplementary material.

5.5. Augmented reality-style evaluation

HeightRecon enables real-time prediction of 3D recon-
structions in AR-style applications. We evaluate this in two

Comp↓ Acc↓ Prec. ↑ Recall↑ F1↑
Hnet .058 .072 .637 .622 .629
Ours w/o Hraw .065 .071 .611 .606 .609
Ours w/o F .070 .084 .531 .520 .526
Ours w/o V .069 .079 .544 .539 .541
HeightRecon .052 .057 .684 .677 .680
DVMVS [10] .051 .062 .680 .657 .668
HeightRecon (DVMVS depth) .049 .053 .720 .718 .719

Table 2. Our contributions lead to better results, as evaluated on
our ‘heightfield mesh quality’ task. Turning off each of our con-
tributions in turn degrades performance; see Sec. 5.4 for details.
In the bottom section we show that better depths (e.g. here from
DVMVS) can increase scores, even without retraining our model.

ways. First, we simulate the placement of 3D objects in
our reconstructed 3D scenes and quantify how closely the
reprojected visible object masks match the ones resulting
from placing the same object in the ground truth 3D re-
constructions. The metric takes into account the quality of
placement, as well as occlusion. For every tenth frame, we
randomly select a valid top-down position on the ground
truth mesh, place a cuboid there, and place one at the same
location in the predicted mesh. Performance is measured in
image space, using the 2D IoU between the reprojected vis-
ibility mask of the cuboid from the estimated reconstruction
versus the ground truth reprojection, taking scene occluders
into account. We refer to this as Rendering IoU.

Second, we convert the predicted heightfield into an AR
navigation map by comparing the heights of nearby cells in
a sliding window. We then compute the 2D IoU between the
ground truth navigation map and the predicted navigation
map; which we refer to as Placement IoU.

Full details for this protocol are provided in the supple-
mentary material. In Fig. 8 we observe that HeightRecon
greatly improves over the raw TSDF, and is close to 3D rea-
soning methods, while only requiring a fraction of the com-
putation resources. Additionally, Fig. 7 shows that the nav-
igation maps for HeightRecon are far more complete and
noise free than the raw TSDF, coming very close to the qual-
ity of the far more computationally expensive Atlas [30].

5.6. Run-time efficiency

Fig. 6 shows how much less memory our 2½D HeightRe-
con uses when compared to full 3D deep reconstruction
methods. Atlas [30] has the highest peak memory usage,
as it needs a full 3D feature grid spanning the whole scene
size. NeuralRecon [48] computes voxel reconstructions in
fragments, which saves memory. However our 2D feature
map and lightweight 2D convolutions mean that ours is the
most memory efficient of the three. See the supplementary
material for how we computed the memory.

For real-time applications, we need quick updating of the
scene shape as new frames come in. While some 3D base-
lines take several hundred milliseconds to integrate a new
RGB frame and produce the updated 3D reconstruction, in

5856

䘠� $FFXUDWH�KHLJKWV��EXW«
䘢�6ORZ�WR�XSGDWH

䘢�&KDUDFWHU�VWXFN�RQ�LVRODWHG�UHJLRQ
䘢� ,QDFFXUDWH�KHLJKWV

䘠� &KDUDFWHU�FDQ�H[SORUH�HQWLUH�VSDFH
䘠� $FFXUDWH��UHDOWLPH�KHLJKWV

+HLJKW5HFRQ��2XUV�$WODV5DZ�76')*URXQG�7UXWK([DPSOH�5*%V

Figure 7. Heightfields allows for usable character placement and navigation. (Top) Navigation meshes, in blue, are computed from the
3D reconstructions. The raw TSDF is noisy and incomplete, so the character cannot explore the whole room. Atlas [30] is high quality, but
not suitable for real-time use. Our Heightfields can be predicted in real time, and they allow for good navigation and placement, including
recovery of walkable regions which are missing in the ground truth. (Bottom) Our predictions enable AR character navigation.

Rendering Placement
IoU↑ IoU↑ Time↓

Non real-time methods
Atlas [30] 0.889 0.768 382
NeuralRecon [48] 0.887 0.673 196∗

TransformerFusion [3] 0.872 0.678 304∗

Real-time methods
Raw TSDF 0.799 0.628 20
DVMVS [10] 0.817 0.621 40∗

HeightRecon (Ours) 0.838 0.727 33
HeightRecon (DVMVS depth) 0.866 0.740 53

Ground truth render Our render

Figure 8. HeightRecon allows for accurate AR object place-
ment and rendering in realtime. We evaluate the quality of aug-
mented object rendering and placement, in terms of 2D IoU, on
ScanNetv2. An example evaluation render is on the bottom. See
Sec. 5.5 for details. We also show the time taken per update in
milliseconds running on a NVIDIA GTX 1080Ti; time estimates
marked with * are taken from the original papers. See Sec. 5.6.

Fig. 8 we see that HeightRecon is fast (∼33ms to make an
updated 3D reconstruction or ∼30 fps, on an NVIDIA GTX

1080Ti), and can thus be run in real-time with low memory
overhead. See also Fig. 1 for a graph of update time vs. ac-
curacy, showing we are more accurate than competing real-
time methods. In the supplementary material, we include a
video showing online reconstructions using our method.

6. Conclusion

We presented HeightRecon, a novel method for predict-
ing heightfields from a series of posed color images. We
compared to multiple baselines and showed that we outper-
form all baselines which predict in top-down space, includ-
ing our target applications of AR character placement and
rendering. We produce comparable results to full 3D meth-
ods, but run at a fraction of both memory and compute, en-
abling real-time interactive applications.

Limitations. By definition, heightfields are unable to re-
construct the undersides of objects such as tables, or over-
hanging structures such as kitchen cupboards or wall lights.
This could potentially be addressed using a layer represen-
tation (e.g. [49, 45]), but we leave this for future work. We
are also limited by the diversity of the training data. Scan-
Net [8] mostly comprises western-style homes, and thus
HeightRecon may perform poorly in other environments.

5857

References
[1] Apple: ARKit, https://developer.apple.

com/documentation/arkit, Accessed: 12 July
2022

[2] Badino, H., Franke, U., Pfeiffer, D.: The stixel world
— a compact medium level representation of the
3D-world. In: Joint Pattern Recognition Symposium
(2009)

[3] Božič, A., Palafox, P., Thies, J., Dai, A., Nießner,
M.: Transformerfusion: Monocular RGB scene recon-
struction using transformers. In: NeurIPS (2021)

[4] Brahmbhatt, S., Gu, J., Kim, K., Hays, J., Kautz, J.:
Geometry-aware learning of maps for camera local-
ization. In: CVPR (2018)

[5] Cartillier, V., Ren, Z., Jain, N., Lee, S., Essa, I., Ba-
tra, D.: Semantic mapnet: Building allocentric seman-
ticmaps and representations from egocentric views. In:
AAAI (2021)

[6] Choe, J., Im, S., Rameau, F., Kang, M., Kweon, I.S.:
VolumeFusion: Deep depth fusion for 3D scene recon-
struction. In: ICCV (2021)

[7] Curless, B., Levoy, M.: A volumetric method for
building complex models from range images. In:
Computer graphics and interactive techniques (1996)

[8] Dai, A., Chang, A.X., Savva, M., Halber, M.,
Funkhouser, T., Nießner, M.: ScanNet: Richly-
annotated 3D reconstructions of indoor scenes. In:
CVPR (2017)

[9] De Gregorio, D., Di Stefano, L.: SkiMap: An efficient
mapping framework for robot navigation. In: ICRA
(2017)

[10] Duzceker, A., Galliani, S., Vogel, C., Speciale, P.,
Dusmanu, M., Pollefeys, M.: DeepVideoMVS: Multi-
view stereo on video with recurrent spatio-temporal
fusion. In: CVPR (2021)

[11] Gallup, D., Frahm, J.M., Pollefeys, M., Zuerich, E.: A
heightmap model for efficient 3D reconstruction from
street-level video. In: 3DPVT (2010)

[12] Godard, C., Mac Aodha, O., Firman, M., Brostow,
G.J.: Digging into self-supervised monocular depth
estimation. In: ICCV (2019)

[13] Google: ARCore, https://developers.
google.com/ar, Accessed: 12 July 2022

[14] Häne, C., Zach, C., Lim, J., Ranganathan, A., Polle-
feys, M.: Stereo depth map fusion for robot naviga-
tion. In: IROS (2011)

[15] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual
learning for image recognition. In: CVPR (2016)

[16] Henriques, J.F., Vedaldi, A.: MapNet: An allocentric
spatial memory for mapping environments. In: CVPR
(2018)

[17] Ikehata, S., Yang, H., Furukawa, Y.: Structured indoor
modeling. In: ICCV (2015)

[18] Im, S., Jeon, H.G., Lin, S., Kweon, I.S.: DPSNet:
End-to-end deep plane sweep stereo. In: ICLR (2019)

[19] Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P.,
Kennedy, R., Bachrach, A., Bry, A.: End-to-end learn-
ing of geometry and context for deep stereo regres-
sion. In: ICCV (2017)

[20] Kingma, D.P., Ba, J.: Adam: A method for stochastic
optimization. arXiv:1412.6980 (2014)

[21] Koestler, L., Yang, N., Zeller, N., Cremers, D.: Tan-
dem: Tracking and dense mapping in real-time using
deep multi-view stereo. In: CoRL (2021)

[22] Kruzhilov, I., Romanov, M., Babichev, D., Konushin,
A.: Double refinement network for room layout esti-
mation. In: ACCV (2019)

[23] Li, Z., Snavely, N.: Megadepth: Learning single-
view depth prediction from internet photos. In: CVPR
(2018)

[24] Lin, C., Li, C., Wang, W.: Floorplan-jigsaw: Jointly
estimating scene layout and aligning partial scans. In:
ICCV (2019)

[25] Liu, C., Wu, J., Furukawa, Y.: FloorNet: A uni-
fied framework for floorplan reconstruction from 3D
scans. In: ECCV (2018)

[26] Liu, C., Schwing, A.G., Kundu, K., Urtasun, R., Fi-
dler, S.: Rent3D: Floor-plan priors for monocular lay-
out estimation. In: CVPR (2015)

[27] Mani, K., Daga, S., Garg, S., Narasimhan, S.S.,
Krishna, M., Jatavallabhula, K.M.: MonoLayout:
Amodal scene layout from a single image. In: WACV
(2020)

[28] Mou, L., Zhu, X.X.: Im2height: Height esti-
mation from single monocular imagery via fully
residual convolutional-deconvolutional network.
arXiv:1802.10249 (2018)

5858

[29] Mura, C., Pajarola, R., Schindler, K., Mitra, N.:
Walk2Map: Extracting floor plans from indoor walk
trajectories. In: Computer Graphics Forum (2021)

[30] Murez, Z., van As, T., Bartolozzi, J., Sinha, A., Badri-
narayanan, V., Rabinovich, A.: Atlas: End-to-end 3D
scene reconstruction from posed images. In: ECCV
(2020)

[31] Newcombe, R.A., Izadi, S., Hilliges, O.: Kinectfu-
sion: Real-time dense surface mapping and tracking.
In: UIST (2011)

[32] Oda, O., Lister, L.J., White, S., Feiner, S.: Develop-
ing an augmented reality racing game. In: INtelligent
TEchnologies for interactive enterTAINment (2008)

[33] Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M.,
Geiger, A.: Convolutional occupancy networks. In:
ECCV (2020)

[34] Phalak, A., Chen, Z., Yi, D., Gupta, K., Badri-
narayanan, V., Rabinovich, A.: DeepPerimeter: In-
door boundary estimation from posed monocular se-
quences. arXiv:1904.11595 (2019)

[35] Philion, J., Fidler, S.: Lift, splat, shoot: Encoding im-
ages from arbitrary camera rigs by implicitly unpro-
jecting to 3D. In: ECCV (2020)

[36] Pradeep, V., Rhemann, C., Izadi, S., Zach, C., Bleyer,
M., Bathiche, S.: MonoFusion: Real-time 3D recon-
struction of small scenes with a single web camera. In:
ISMAR (2013)

[37] Ramakrishnan, S.K., Al-Halah, Z., Grauman, K.: Oc-
cupancy anticipation for efficient exploration and nav-
igation. In: ECCV (2020)

[38] Ranftl, R., Lasinger, K., Hafner, D., Schindler, K.,
Koltun, V.: Towards robust monocular depth estima-
tion: Mixing datasets for zero-shot cross-dataset trans-
fer. TPAMI (2020)

[39] Roddick, T., Cipolla, R.: Predicting semantic map
representations from images using pyramid occupancy
networks. In: CVPR (2020)

[40] Roddick, T., Kendall, A., Cipolla, R.: Orthographic
feature transform for monocular 3D object detection.
In: BMVC (2019)

[41] Russakovsky, O., Deng, J., Su, H., Krause, J.,
Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., et al.: Imagenet large scale visual
recognition challenge. IJCV (2015)

[42] Sayed, M., Gibson, J., Watson, J., Prisacariu, V., Fir-
man, M., Godard, C.: SimpleRecon: 3D reconstruc-
tion without 3D convolutions. In: CVPR (2022)

[43] Schonberger, J.L., Frahm, J.M.: Structure-from-
motion revisited. In: CVPR (2016)

[44] Schönberger, J.L., Zheng, E., Frahm, J.M., Pollefeys,
M.: Pixelwise view selection for unstructured multi-
view stereo. In: ECCV (2016)

[45] Shin, D., Ren, Z., Sudderth, E.B., Fowlkes, C.C.: 3D
scene reconstruction with multi-layer depth and epipo-
lar transformers. In: ICCV (2019)

[46] Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M.,
Funkhouser, T.: Semantic scene completion from a
single depth image. In: CVPR (2017)

[47] Srivastava, S., Volpi, M., Tuia, D.: Joint height estima-
tion and semantic labeling of monocular aerial images
with CNNs. In: International Geoscience and Remote
Sensing Symposium (2017)

[48] Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H.: Neu-
ralRecon: Real-time coherent 3d reconstruction from
monocular video. In: CVPR (2021)

[49] Tulsiani, S., Tucker, R., Snavely, N.: Layer-structured
3D scene inference via view synthesis. In: ECCV
(2018)

[50] Watson, J., Firman, M., Brostow, G.J., Turmukham-
betov, D.: Self-supervised monocular depth hints. In:
ICCV (2019)

[51] Watson, J., Firman, M., Monszpart, A., Brostow, G.J.:
Footprints and free space from a single color image.
In: CVPR (2020)

[52] Watson, J., Mac Aodha, O., Prisacariu, V., Brostow,
G.J., Firman, M.: The temporal opportunist: Self-
supervised multi-frame monocular depth. In: CVPR
(2021)

[53] Weder, S., Schonberger, J., Pollefeys, M., Oswald,
M.R.: Routedfusion: Learning real-time depth map
fusion. In: CVPR (2020)

[54] Weder, S., Schonberger, J.L., Pollefeys, M., Oswald,
M.R.: Neuralfusion: Online depth fusion in latent
space. In: CVPR (2021)

[55] Xian, W., Li, Z., Fisher, M., Eisenmann, J., Shecht-
man, E., Snavely, N.: UprightNet: Geometry-aware
camera orientation estimation from single images. In:
ICCV (2019)

5859

[56] Yan, Z., Tian, Y., Shi, X., Guo, P., Wang, P., Zha, H.:
Continual neural mapping: Learning an implicit scene
representation from sequential observations. In: ICCV
(2021)

[57] Zhao, Y., Kong, S., Fowlkes, C.: Camera pose mat-
ters: Improving depth prediction by mitigating pose
distribution bias. In: CVPR (2021)

[58] Zhu, X., Yin, Z., Shi, J., Li, H., Lin, D.: Generative ad-
versarial frontal view to bird view synthesis. In: 3DV
(2018)

[59] Zienkiewicz, J., Davison, A., Leutenegger, S.: Real-
time height map fusion using differentiable rendering.
In: IROS (2016)

5860

