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Abstract

The requirement for large labeled datasets is one of the
limiting factors for training accurate deep neural networks.
Unsupervised domain adaptation tackles this problem of
limited training data by transferring knowledge from one
domain, which has many labeled data, to a different do-
main for which little to no labeled data is available. One
common approach is to learn domain-invariant features for
example with an adversarial approach. Previous methods
often train the domain classifier and label classifier network
separately, where both classification networks have little
interaction with each other. In this paper, we introduce a
classifier-based backprop-induced weighting of the feature
space. This approach has two main advantages. Firstly, it
lets the domain classifier focus on features that are impor-
tant for the classification, and, secondly, it couples the clas-
sification and adversarial branch more closely. Further-
more, we introduce an iterative label distribution alignment
method, that employs results of previous runs to approxi-
mate a class-balanced dataloader. We conduct experiments
and ablation studies on three benchmarks Office-31, Office-
Home, and DomainNet to show the effectiveness of our pro-
posed algorithm.

1. Introduction

One of the major problems of deep learning is that a large
amount of labeled training data is required to achieve accu-
rate models. The process to label the training data is tedious
and requires a huge amount of manual labor. One branch of
research to overcome this problem is unsupervised domain
adaptation (UDA). UDA tries to leverage an already exist-
ing labeled (source) dataset to an unlabeled (target) dataset
that shares some similarities with the source dataset. For ex-
ample, computer generated pictures of CAD data could be
used to recognize objects in the real world. However, since
there is a huge difference, also called domain gap, between

Figure 1: Heatmap of the features that are aligned in the ad-
versarial network. The first row shows the original image.
The second row shows the heatmap for DANN [6], while
the last row shows the heatmap for our proposed backprop-
induced weighting method. The network is adapted on the
task Art to RealWorld of the OfficeHome dataset. With-
out using the weighting, the adversarial network focuses on
large parts of the image, including the background. The
weighting lets the adversarial network focus mainly on the
foreground object.

the source and target data, simply training on the source
dataset yields suboptimal results.

One way to overcome the domain gap is to train do-
main invariant features, features that are available both in
the source and the target domain. A common approach is
to employ adversarial training, where a domain classifier is
trained to estimate the specific domain of the samples while
the feature extractor is trained to make the extracted fea-
tures indistinguishable for the domain classifier. However,
this approach usually disregards the classifier in the adap-
tation process. Furthermore, features of the background of
the pictures, that have no influence on the classification also
get adapted, which may result in lower accuracy. To over-
come this problem, we propose a backprop-induced weight-
ing of the feature space. We backpropagate the classifica-
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tion loss back to the feature space and create a weighting
vector based on the backpropagated gradients. The benefits
of this approach are two-fold. Firstly, as shown in [21] the
gradients can be seen as a class attention score for different
features, meaning that important features for the classifi-
cation are emphasized for the adversarial adaptation, while
less important features (i.e. the background) are attenuated.
Secondly, through the backpropagation, the classifier and
domain discriminator are implicitly coupled. In Fig. 1 it can
be seen that the backprop-induced weighting emphasizes
the foreground objects while attenuating the background.

Another problem for domain adaptation is the label dis-
tribution shift (LDS). While a source dataset may be created
in an equally distributed way, some classes may be over-
represented or underrepresented in the target dataset. This
misalignment leads to adaptation errors early on, which can
accumulate over the training. A balanced dataloader that
loads training data for each class equally would mitigate
this problem, but since the labels for the target data are
not known, this is not feasible. One possible solution is to
estimate pseudo-labels for the target dataloader during the
training process and employ them to balance the dataloader.
However, since the pseudo-labels are noisy especially in the
beginning of the training, this strategy may lead to an accu-
mulation of early errors. In contrast, we propose an iterative
adaptation paradigm. We train the network from scratch
for several runs, where each new run uses the predicted
labels from the previous runs to achieve a more balanced
dataloader (with the first run using a random dataloader).
The main benefit of this approach is that relatively accurate
pseudo-labels are available even during the beginning of the
training of a run.

Our main contributions are:

• We introduce a backpropagation-guided weighting of
the feature space. This lets us emphasize the impor-
tant features for classification, and it also couples the
classifier to the adversarial domain adaptation process
more closely.

• We introduce an iterative label shift alignment
paradigm to approximate a balanced target dataloader.
The iterative paradigm allows us to circumvent the ac-
cumulation of early misalignment errors by provid-
ing reliable pseudo-labels even in the beginning of the
training of a run.

• We show the effectiveness of our algorithm on three
datasets (Office-31, Office-Home, and DomainNet)
and further evaluate the contribution of the different
methods in ablation studies.

2. Related Work
A common approach for unsupervised domain adapta-

tion (UDA) is to extract domain invariant features, features
that are shared across the domains. This can be achieved
with an adversarial approach. Domain-adversarial neural
network (DANN) [6] employs a domain classifier to dis-
tinguish whether the image belongs to the source or target
domain. By employing a gradient reversal layer the fea-
ture extractor is trained to extract features that are indis-
tinguishable for the domain classifier, thus extracting do-
main invariant features. Conditional domain adversarial
network (CDAN) [16] extends this method by multilinear
conditioning the domain classifier with the classifier pre-
dictions. Many adversarial methods build up on DANN
or CDAN. [18] introduces a spectral adaptation to CDAN.
[8] adds group- and class-wise domain classifiers to DANN
and synchronizes the gradient between the different domain
classifiers. Moving semantic transfer network [26] extends
DANN with a moving semantic loss. The method creates
class representations for both domains and each class in the
feature space, which are updated with each sample during
the training process. The distance between the source and
target feature representation of a class is used as domain
adaptation loss.
Our method builds up on DANN. Furthermore, we also use
the moving semantic loss of [26] in our paper, however, in-
spired by current clustering methods [10] [23] we further
add a loss to penalize similar representation for different
classes.

Recent research has included attention mechanism of
neural networks to the domain adaptation task. [21] has
shown for general purposes that the gradients of the clas-
sifier can be used to visualize the attention of the net-
work with regard to the classification output. For domain
adaptation, [13] proposed a domain conditioned channel
attention mechanism. Probably most similar to our pro-
posed backprop-induced feature weighting is [11]. In their
work, the authors focused on identifying regions that can
be adopted better. In particular, they backpropagate the do-
main predictive uncertainty to emphasize well-adopted re-
gions for the classifier.
In contrast to that, in our work we backpropagate the clas-
sification error to emphasize features that are important for
the classification while attenuating irrelevant features. This
lets the adversarial branch focus more on the relevant part
of the image.

Besides the domain gap, another problem for the adap-
tation process is that the label distribution of the source
and target dataset can be vastly different. [9] presented
a sampling-based implicit alignment approach. [25] in-
troduced a balance factor to mitigate the difference in the
label distribution. [28] introduced class-specific auxiliary
weights to overcome the varying class prior probability.
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Figure 2: The pipeline of our proposed method. We employ three losses to train the network. For the adversarial loss, we
weigh the feature space based on the importance for the classifier. In particular, we backpropagate the classification loss to
the feature layer, normalize the gradients and employ it as a weighting vector. Furthermore, after training the network for a
single run, the predicted labels of the target domain are used to initialize dataloader of the next run to achieve a class-balanced
dataloader.

[29] proposed a weighting mechanism based on the domain
similarity and the prediction uncertainty of each sample.
However tackling the label and domain shift problem si-
multaneously can lead to an error build-up from early mis-
alignment, especially since it’s hard to robustly estimate
target labels early on in the training. To circumvent this
error build-up, we chose an iterative process where the net-
work is trained for several consecutive runs from scratch.
Each new run employs the pseudo-labels of the previous
runs. This means that the dataloader has access to reliable
pseudo-labels even in the early training stages of a run.

3. Methodology
In unsupervised domain adaptation, the task is to mit-

igate the domain shift between a source and target do-
main. For the source domain Ds a set of ns labeled sam-
ples Ds = (xi,s, yi,s)

ns

i=1 is given, where xi,s donates a
sample with the corresponding label yi,s. For the target
domain Dt only the samples are given without any labels
Dt = (xi,t)

nt

i=1. The goal is to estimate the labels for the tar-
get domain yi,t by exploiting the shared feature space that is
similar, but different. In our work, we tackle the vanilla or
closed-set setting, where the source and target domain have
identical label classes Cs = Ct.

In our work, we employ a combination of three losses,
the classification loss for samples of the source domain Lc,
an adversarial loss Ld, and a moving semantic loss LMS .
For the adversarial loss, we combine the adversarial net-
work introduced in DANN [6] with our proposed backprop-
induced weighting. The moving semantic loss is based on
MSTN [26], however, we expand it with an inter-class loss
that enlarges the distance between different classes.

Furthermore, we introduce an iterative strategy to tackle
the label distribution shift. In particular, the network is
trained from scratch for several runs, where each run em-
ploys the predictions for the target data of the previous runs

in order to achieve a class-balanced dataloader. The pipeline
of our method can be seen in Fig. 2. Furthermore, the
pseudo-algorithm for our method can be seen in Alg. 1.

3.1. Backpropagation induced importance weight-
ing

Our network consists of a feature extractor Gf that maps
an input xi into features space fi

fi = Gf (xi) (1)

From the feature space fi, the network splits into two
branches. The first branch, the classification branch Gc,
estimates the class label probability p(yi) for the given fea-
tures fi.

p(yi) = Gc(fi) (2)

For the second branch, we employ a domain classifier net-
work Gd introduced by DANN [6]. Gd aims to distinguish
the respective domain based on the feature space. The loss
is calculated as the binary cross entropy loss between the
prediction and the ground truth:

Ld = LBCE(Gd(fi), di) (3)

In the backpropagation step, the domain loss is inverted in
a gradient reversal layer, so that the feature extractor Gf is
trained to extract features that are indistinguishable for the
domain classifier, thus extracting domain-invariant features.
Our approach targets the input of this branch. We argue that
not all features within the feature space fi are equally im-
portant for the classification task. Therefore we propose to
weigh the feature space based on its importance for the clas-
sifier. In this way, the adversarial domain classifier network
prioritizes adapting features that are of importance for the
classification. To estimate the importance of the features
for the classification task, we first calculate the classifier
loss Lc for the current sample.

Lc = LCE(p(yi), ŷi) (4)
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Where LCE depicts the cross entropy loss and ŷi depicts
the ground truth label in case of the source domain and a
pseudo label in case of the target domain. For the pseudo
labels of the target domain, we simply select the class with
the highest probability based on the classification score of
the classifier.

ŷi = argmax(p(yi)) (5)

In the next step, the loss is backpropagated to the feature
layer. And the gradients ∇ for the layer are estimated.

∇i =
∂Lc

∂fi
(6)

We normalize the gradients and use them as an importance
weighting for the features space. To approximately preserve
the norm of the feature space, we introduce a scaling factor
λ.

f ′
i = λ · fi ◦

∇i

||∇i||
(7)

The main point of our proposed method is, that instead of
aligning the distributions based on the feature space fi gen-
erated by the feature extractor Gf , we align the weighted
feature space f ′

i . The domain adaptation loss Ld is calcu-
lated based on f ′

i instead of fi.

Ld = LBCE(Gd(f
′
i), di)) (8)

3.2. MSTN

For the third loss of our method, we use a moving seman-
tic transfer loss LMS . This loss is based on MSTN [26]:

LMSTN =

K∑
k=1

Φ(Ck
s , C

k
t ) (9)

where Ck
s and Ck

t are the moving centroids of the classes
in feature space for source and target data respectively. Φ
is a distance measure. LMSTN aligns the class represen-
tations of source and target data within the feature space.
For the calculation of the centroids, we do not use the
importance weighted features space. Inspired by current
deep-clustering-based methods [10] [23] we extend the loss
to also enlarge the distance between centroids of different
class

LMS =

K∑
k=1

Φ(Ck
s , C

k
t )+

K∑
k=1

K∑
j ̸=k

Θ(Ck
s , C

j
s) + Θ(Ck

s , C
j
t ) + Θ(Ck

t , C
j
t ) (10)

The cosine similarity between the centroids is used as func-
tion Θ and the L2-distance is used for Φ.

Algorithm 1: Algorithm of our method.
Input: Source and target dataset: Ds,Dt

/* Iteratively train network from
scratch for rmax runs */

1 for ri = 0; ri < rmax do
2 Initialize class-balanced dataloader Ds and Dt

3 Initialize network
/* Train network */

4 for j = 0; j < jmax do
/* Load samples and insert in

network */
5 Get samples xs, ys, xt, p(ŷt,a)
6 fs, p(ys), ft, p(yt) � Gc(Gf (x))

/* Aggregate and bootstrap
target probability */

7 p(yt,a) = (r − 1)p(yt,a) + r · p(yt)
8 p(yt,b) = u(n)p(yt,a) + (1− u(n))p(ŷt,a)
9 ỹt = argmax(p(yt,b))

/* Moving semantic loss */
10 Update moving semantics
11 Ck

s,t � fs, ys, ft, ỹt
12 Calculate semantic loss LMS

/* Adversarial loss */
13 Calculate Lc,s = LCE(p(ys), ys)
14 Calculate Lc,t = LCE(p(yt), ỹt)
15 Backpropagate Lc,s and Lc,t

16 Normalize gradients and weight features
17 f ′

s,t = λ · fs,t ◦ ∇s,t

||∇s,t||
18 Calculate adversarial loss Ld

19 Ld = LBC(Gd((f
′
s,t), ds,t)

/* Total loss */
20 L = Lc,s + σ(i) · Ld + σ(i) · LMS

21 Backpropagate L and update

/* Update predictions for
dataloader */

22 Calculate predictions for target data
23 p̂(yT ) � Gc(Gf (xT ))
24 p(ŷT,a) = (q − 1) · p(ŷT,a) + q · p̂(yT )

3.3. Iterative label distribution shift alignment

In order to tackle the label distribution shift, we propose
an iterative process, where we train our network for several
runs from scratch. Each run uses the results of the previ-
ous runs to initialize a class-balanced dataloader. As we do
not have any label estimates for the target dataset during the
first run, the first run employs a random dataloader. This
means that the dataloader loads data of the target dataset
randomly regardless of their respective class. In consecu-
tive runs, the class-balanced dataloader loads iteratively one
sample for each class in random order. The classes are de-
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Table 1: Accuracy results on Office-31 dataset. The best results are displayed in bold and the runner-up results are underlined.
BIWAA displays the results of our method after the first run and BIWAA-I the results after 10 runs.

Method A�W D�W W�D A�D D�A W�A Avg

ResNet-50 [7] 68.4 96.7 99.3 68.9 62.5 60.7 76.1

DAN [15] 68.5 96.0 99.0 67.0 54.0 53.1 72.9
DANN [6] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
MCD [20] 88.6 98.5 100. 92.2 69.5 69.7 86.5
MSTN [26] 91.3 98.9 100. 90.4 72.7 65.6 86.5
CDAN+E [16] 94.1 98.6 100. 92.9 71.0 69.3 87.7
MDD [30] 94.5 98.4 100. 93.5 74.6 72.2 88.9
GVB-GD [5] 94.8 98.7 100. 95.0 73.4 73.7 89.3
DCAN [13] 95.0 97.5 100. 92.6 77.2 74.9 89.5
GSDA [8] 95.7 99.1 100. 94.8 73.5 74.9 89.7
ASAN [18] 95.6 98.8 100. 94.4 74.7 74.0 90.0

BIWAA 94.8 99.0 100. 94.6 74.8 75.0 89.7
BIWAA-I 95.6 99.0 100. 95.4 75.9 77.3 90.5

termined based on the predictions of the previous runs.

3.4. Bootstrap and aggregating label

To further improve the accuracy we also employ an ag-
gregating label strategy and bootstrap the training. Aggre-
gating labels means that not only the current prediction is
used to estimate the pseudo-label, but also previous predic-
tions of the same sample. Each time the label probability
for a sample i is estimated p(yi) we update an aggregate
version p(yi,a) of it. This increases the reliability of the
prediction for the target data. The strategy is used within a
single run, but also between runs to update the predictions
for the dataloader DT . Within a single run, the aggregate
label is updated by a factor r each time the respective target
data is loaded:

p(yi,a) = (r − 1) · p(yi,a) + r · p(yi) (11)

Similarly, the predictions for the dataloader DT are updated
by a factor q after each run:

p(ŷi,a) = (q − 1) · p(ŷi,a) + q · p(ŷi) (12)

Furthermore, we use the predictions of the previous runs
to bootstrap the training. While the predictions gained from
previous runs are noisy, they still provide relatively accu-
rate labels, particularly compared to label estimates during
the early stages of the training. Therefore, we exploit the
predictions of previous runs to bootstrap the training. How-
ever, overly relying on the label predictions of the previous
runs would limit the possible progress of the current train-
ing. Therefore the bootstrap strategy is only used in the
early stages of the training and fades out in later stages. In
particular, we employ an exponential function combines the

labels prediction from the previous runs p(ŷi,a) with the la-
bel prediction of the aggregate label p(yi,a) of the current
run to a bootstrapped version p(yi,b).

p(yi,b) = u(j) · p(yi,a) + (1− u(j)) · p(ŷi,a) (13)

where j is the iteration of the current run, and u is the ex-
ponential function, which is as follows:

u(j) =

{
2/(1 + e−10 j

jt )− 1 if j ≤ jt

1, otherwise
(14)

jt depicts the number of iterations with the bootstrap func-
tion active. The bootstrapped prediction p(yi,b) is used to
estimate the pseudo label for the backpropagation-induced
weighting and for updating the class representations.

4. Experiments
We evaluate our proposed method on three different do-

main adaptation benchmarks, Office-31, Office-Home, and
DomainNet. We show that we can improve the baselines
significantly. In ablation studies, we further investigate the
contribution of the different parts of our proposed algo-
rithm.

4.1. Setups

Office-31 [19] is the most popular dataset for real-world
domain adaptation. It contains 4,110 images of 31 cate-
gories. The domains are Amazon (A), Webcam (W), and
DSLR (D). We evaluate all six possible adaptation tasks.

Office-Home [24] is a more challenging benchmark than
Office-31. It contains 15,500 images of 65 categories. The
domains are Art (A), Clipart (C), Product (P), and Real-
World (R). We evaluate all twelve possible adaptation tasks.
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Table 2: Accuracy results on Office-Home dataset. The best results are displayed in bold and the runner-up results are
underlined. BIWAA displays the results of our method after the first run and BIWAA-I the results after 10 runs.

Method A�C A�P A�R C�A C�P C�R P�A P�C P�R R�A R�C R�P Avg

ResNet-50 [7] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [15] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [6] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
MCD [20] 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
MSTN [26] 49.8 70.3 76.3 60.4 68.5 69.6 61.4 48.9 75.7 70.9 55.0 81.1 65.7
CDAN+E [16] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD [30] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
ASAN [18] 53.6 73.0 77.0 62.1 73.9 72.6 61.6 52.8 79.8 73.3 60.2 83.6 68.6
GSDA [8] 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3
GVB-GD [5] 57 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
DCAN [13] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5

BIWAA 54.2 76.3 79.5 66.2 73.1 74.1 66.1 54.2 80.1 74.4 58.4 83.2 70.0
BIWAA-I 56.3 78.4 81.2 68.0 74.5 75.7 67.9 56.1 81.2 75.2 60.1 83.8 71.5

Class ID
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m
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es

 [%
]

Art
RealWorld

(a) Label histogram for Office-Home: Art�Realworld

Class ID

Sa
m

pl
es

 [%
]

Domain
Clipart
Painting

(b) Label histogram for DomainNet: Clipart�Painting

Figure 3: Example of label distribution for different
datasets.

In Fig. 3a the label distribution for the domains Art and
Real-World can be seen.

DomainNet [17] is a large scale dataset with about
600.000 images from 6 different domains and 345 differ-
ent classes. However, as some domains and classes have
a considerable amount of mislabeled data, we follow [22]
and only use a subset of 40 commonly seen classes from
the four domains of Real World (R), Clipart (C), Painting
(P), and Sketch (S). We evaluate all twelve possible adapta-
tion tasks. DomainNet consists of the largest label distribu-
tion shift of the three datasets. An example for the domains
Clipart and Painting can be seen in Fig. 3b.

Implementation details: We built up our implementa-
tion on the DANN implementation of [16]. We use the
ResNet-50 [7] architecture as backbone for all of our ex-

periments. Same as in [16] we increase the learning rate
by a factor of 10 for all layers that are trained from scratch.
We further adopt the learning rate annealing strategy and
the progressive discriminator learning strategy σ(i). For the
aggregate label functions we use t = 0.8 and s = 0.9, we
employ the bootstrap function for the first 500 iterations:
nt = 500. A normalization factor of λ = 10 was employed
for all experiments.

4.2. Results

Results for Office-31: The results are shown in Tab.
1. Our method outperforms all compared methods in most
tasks. Only in the case of D�W and A�W GSDA performs
slightly better than our method. The overall average ac-
curacy is 0.5%pts higher than the runner-up method. Even
without using the iterative label shift alignment, our method
already achieves state-of-the-art results with the same aver-
age accuracy as GSDA and is only being outperformed by
ASAN.
Results for Office-Home: As shown in Tab. 2 our algo-
rithm achieves higher average accuracy than all other meth-
ods, performing 1.0%pts better than the runner-up method.
We achieve in 8 out of 12 tasks the best highest accuracy,
and for 3 tasks the second highest accuracy.
Results for DomainNet: In Tab. 3 the results for Domain-
Net can be seen. Even without the iterative training strategy,
our method already outperforms the other methods. Us-
ing the iterative strategy our method improves to an aver-
age score of 79.88%, just below 80%. Our method outper-
forms other methods in most of the tasks, only for the tasks
R�C, C�R and P�R InstaPBM [12] performs slightly bet-
ter. However, overall we achieve about 2%pts increase in
the average score.
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Table 3: Per class accuracy results on DomainNet dataset. The best results are displayed in bold and the runner-up results are
underlined. BIWAA displays the results of our method after the first run and BIWAA-I the results after 10 runs.

Method R�C R�P R�S C�R C�P C�S P�R P�C P�S S�R S�C S�P Avg

ResNet-50 [7] 58.84 67.89 53.08 76.70 53.55 53.06 84.39 55.55 60.19 74.62 54.60 57.78 62.52

BBSE [14] 55.38 63.62 47.44 64.58 42.18 42.36 81.55 49.04 54.10 68.54 48.19 46.07 55.25
PADA [1] 65.91 67.13 58.43 74.69 53.09 52.86 79.84 59.33 57.87 76.52 66.97 61.08 64.48
MCD [20] 61.97 69.33 56.26 79.78 56.61 53.66 83.38 58.31 60.98 81.74 56.27 66.78 65.42
DAN [15] 64.36 70.65 58.44 79.44 56.78 60.05 84.56 61.62 62.21 79.69 65.01 62.04 67.07
ETN [2] 69.22 72.14 63.63 86.54 65.33 63.34 85.04 65.69 68.78 84.93 72.17 68.99 73.99
BSP [4] 67.29 73.47 69.31 86.50 67.52 70.90 86.83 70.33 68.75 84.34 72.40 71.47 74.09
DANN [6] 63.37 73.56 72.63 86.47 65.73 70.58 86.94 73.19 70.15 85.73 75.16 70.04 74.46
COAL [22] 73.85 75.37 70.50 89.63 69.98 71.29 89.81 68.01 70.49 87.97 73.21 70.53 75.89
InstaPBM [12] 80.10 75.87 70.84 89.67 70.21 72.76 89.60 74.41 72.19 87.00 79.66 71.75 77.84

BIWAA 77.17 73.20 73.01 88.06 70.73 72.84 88.38 77.31 74.67 87.01 80.57 71.94 77.91
BIWAA-I 79.93 75.24 75.35 87.93 72.07 75.71 88.87 77.81 76.66 88.78 80.49 74.49 79.44

Table 4: Effect of backprop-induced feature weighting. The
average accuracy over all tasks is displayed for the Office-
31 (O31) and the Office-Home (OH) dataset. BG stands for
the proposed backprop-induced weighting.

Method O31 OH

AFN [27] 85.7 67.3
AFN+BG 87.5 (+1.8) 69.6 (+2.3)

DANN [6] 82.2 57.6
DANN+BG 87.7 (+5.5) 67.3 (+9.7)

CDAN+E [16] 87.7 65.8

5. Ablation studies

Effect of backprop induced weighting:
In this part, we examine the effect of the backprop-induced

weighting. For the evaluation, we use the original code of
the respective methods and only introduce the backprop-
induced weighting to it. We applied the modification to
DANN [6] and AFN [27]. AFN is based on the observa-
tion that the feature norms of the target domain are much
smaller than for the source domain. The algorithm progres-
sively adapts the feature norms of the two domains.

The results can be seen in Tab. 4. In the case of AFN,
the weighting improves the accuracy by 1.8%pts for the
Office-31 and 2.3%pts for the Office-Home dataset. In
the case of DANN, the results are improved by 5.5%pts
and 9.7%pts respectively. We would like to further point
out that our method achieves similar results as CDAN+E
[16] on Office-31 and outperforms it on Office-Home by
1.5%pts. As many methods build up on CDAN+E we think
it worth noticing that our method performs better. Compar-
ing DANN, CDAN, and our method to each other, DANN
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Figure 4: Influence of the normalization factor λ on the ac-
curacy for the Office-31 dataset. We ran the experiment for
three different seeds for all factors.

tries to match the distribution of fi which ignores discrimi-
native information of the classifier. CDAN tries to match the
distribution of (fi⊗pi) which is discriminative but requires
many dimensions. In contrast our proposed method tries to
match the distribution of λ · fi ◦ ∇i

||∇i|| , with ∇i = ∂Lc

∂fi
,

which is both discriminative and compact.
Influence of normalization factor λ:

In this part, we investigated the influence of the normal-
ization factor λ on the adaptation task. We only employed
the backprop-induced weighting strategy and did not use the
semantic loss LMS nor other optimizations. We ran 3 ex-
periments for each λ in a range between 0 and 20, where 0
means that the backprop-induced weighting was not used.
The results are plotted in Fig. 4. It can be seen that the ac-
curacy improves steeply until a factor of about λ = 6, and
is relatively stable for higher values. In our experiments, a
value of λ = 10 is used for all of our experiments.

Accuracy over runs:
In this part, we show how the accuracy increases over it-

erative runs. Fig. 5 displays the average accuracy for the
three datasets over 10 iterative runs. The lower bound in
the figure employs a random data loader (same as the first
run of our method), and the upper bound employs an oracle
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Figure 5: Accuracy over consecutive runs on the three
datasets. The random dataloader serves as baseline, while
the oracle version serves as upper bound. We ran our ex-
periment for 10 iterative runs each time with three different
random seeds. The average accuracy and the standard devi-
ation are plotted.

data loader that employs the ground truth data to load data
class-balanced. It should be noted that the oracle dataloader
does not use the ground truth data during the estimation of
the pseudo labels within the main code. It can be seen that
during the first few runs the accuracy increases significantly
and slowly for further runs. Currently, our method improves
the baseline of a random dataloader by about 0.8%pts for
Office-31, 1.5%pts for Office-Home, and 1.41%pts for Do-
mainNet. It can be clearly seen that the oracle dataloader
achieves higher accuracies, meaning there is still a large
potential for further improvements. So far our algorithm
achieves about 1/3 of the potential improvement of the or-
acle dataloader. It has to be stated that the problem of over-
coming a domain shift and label shift at the same time is a
difficult problem and it is therefore unclear how close it is
possible to come close to the results of the oracle version.

Bootstrap and label aggregation:
In this part, we examine the contribution of the different op-
timization strategies. Tab. 5 shows the contribution of the
bootstrap and label aggregation strategies. The bootstrap
strategy has arguably the highest impact, improving the ac-
curacy by about 0.25%pts on its own. Using all three strate-
gies achieves the best results with an increase of 0.31%pts
over not using any of these strategies.

6. Discussion and Limitations

In this work, we introduced a backprop-induced feature
weighting. We combined the method with a moving seman-

Table 5: Effect of the bootstrap and label aggregation strat-
egy. We report the average score over all tasks of the Office-
31 dataset. For each configuration, three seeds are trained
for 10 consecutive runs. Ar depicts whether the aggrega-
tion is active during a single training, Ai the aggregation
for iterative runs, and B bootstrap strategy.

Ar Ai B Accuracy

90.23
✓ 90.31

✓ 90.30
✓ ✓ 90.30

✓ 90.48
✓ ✓ 90.49

✓ ✓ 90.38
✓ ✓ ✓ 90.54

tic transfer loss, that aligns the semantics for the same class
while disentangling semantics between different classes.
We further introduced an iterative label distribution align-
ment paradigm. Our results show that we outperform the
baselines and achieve top results on three different datasets,
namely Office-31, Office-Home, and DomainNet.

The backprop-induced feature weighting allows the
adaptation network to focus on the important foreground
objects. However, this process makes use of pseudo-labels
which are inherently noisy. While we presented some
strategies (aggregate labels and bootstrap) to overcome this
problem, it would be interesting to see how an approach [3]
that progressively extends the target data from easy to hard
samples would influence the algorithm.

We showed that our iterative label distribution align-
ment strategy increases performance significantly. How-
ever, there is still a large potential for improvement when
compared to the oracle data-loader. We believe that this
potential gives a valuable hint on where domain adaptation
methods can still be improved.

The advantage of our iterative label distribution align-
ment strategy is that it can rely on relatively robust pseudo-
labels even early in the training. However, this comes at a
computational cost as the network is trained for several runs
from scratch. One future direction of study is to overcome
the domain shift and label distribution shift simultaneously.
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