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Abstract

We introduce powerful ideas from Hyperdimensional
Computing into the challenging field of Out-of-Distribution
(OOD) detection. In contrast to most existing works that per-
form OOD detection based on only a single layer of a neural
network, we use similarity-preserving semi-orthogonal pro-
jection matrices to project the feature maps from multiple
layers into a common vector space. By repeatedly apply-
ing the bundling operation ⊕, we create expressive class-
specific descriptor vectors for all in-distribution classes. At
test time, a simple and efficient cosine similarity calcula-
tion between descriptor vectors consistently identifies OOD
samples with competitive performance to the current state-
of-the-art whilst being significantly faster. We show that our
method is orthogonal to recent state-of-the-art OOD detec-
tors and can be combined with them to further improve upon
the performance.

1. Introduction
Deep Neural Networks can achieve excellent performance

on many vision tasks when the distribution of training data
closely matches the test data. However, this assumption is
often violated during deployment: especially in embodied
AI application domains such as robotics and autonomous
systems, objects and scenes that were not part of the train-
ing data distribution will inevitably be encountered. When
confronted with such out-of-distribution (OOD) samples,
deep neural networks tend to fail silently, producing over-
confident but erroneous predictions [17, 49] that can pose
severe risks [55]. It is therefore critically important that
OOD samples are identified effectively during deployment.
Previous techniques for OOD detection used softmax proba-
bilities [19, 29] or distances in logit space [18] to distinguish
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Figure 1. Illustration of our HDFF OOD detector. Top: After
training, we extract the feature maps of in-distribution classes
from multiple layers of the DNN and project them into a new
hyperdimensional space with a similarity-preserving projection
matrix. Using the bundling operation ⊕ we create class-specific
hyperdimensional descriptor vectors. Bottom: During testing,
we repeat feature extraction, projection and bundling to obtain a
hyperdimensional image descriptor. OOD samples will produce
descriptors with a large angular distance to all class descriptors (red
vector).

in-distribution (ID) from OOD samples, making the implicit
assumption that the features of a single layer in a Deep
Neural Network (DNN) contain sufficient information to
identify OOD data. However, deeper layers of a DNN can
be more sensitive to OOD samples than the softmax proba-
bilities [44], which are often overconfident in the presence
of OOD samples [17]. Recent work investigating the utility
of multi-scale deep features from a DNN found that mod-
elling ID classes from raw features is difficult without first
reducing the number of dimensions [44, 28, 42] due to the
curse of dimensionality [61].
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In this paper, we introduce the powerful concepts of
similarity-preserving projection, binding and bundling from
Hyper Dimensional Computing (HDC) [53] to OOD detec-
tion. Figure 1 provides a high-level description of our pro-
posed OOD detector. We project the feature maps from mul-
tiple layers of a network into a common high-dimensional
vector space, using similarity-preserving semi-orthogonal
projection matrices. This allows us to effectively fuse the in-
formation contained in multiple layers: a series of bundling
operations ⊕ creates a class-specific high-dimensional vec-
tor representation for each of the in-distribution classes from
the training dataset. During testing, we use the same prin-
ciples of projection and bundling to obtain a single vector
representation for a new input image. OOD samples can then
be efficiently identified through cosine similarity operations
with the class-specific representations.

Our Hyperdimensional Feature Fusion (HDFF) approach
relies on the pseudo-random nature of its projection matri-
ces and the similarity-preserving properties of the bundling
operation ⊕ to effectively fuse information contained in
the feature maps across multiple layers in a deep network.
HDFF avoids the difficulties of estimating densities in high-
dimensional spaces [44, 28], removes the limitation of re-
lying on a single layer [19, 18], does not require to select
informative layers based on example OOD data [22, 58, 31],
and does not necessarily rely on expensive sampling tech-
niques (such as ensembles [26] or Monte Carlo Dropout
[11]) to identify OOD samples. HDFF can be applied to
a trained network and does not require re-training or fine-
tuning. Our HDFF detector competes with or exceeds state-
of-the-art performance for OOD detection in conjunction
with networks trained with standard cross-entropy loss or
more sophisticated logit space shaping approaches [59].
In summary, our contributions are the following:

1. We propose a novel OOD detector based on the princi-
ples of Hyperdimensional Computing that is competi-
tive with state-of-the-art OOD detectors whilst requir-
ing significantly less training and inference time.

2. We show that fusing features from multiple layers is
critical for general OOD detection performance, as dif-
ferent layers vary in sensitivity to different OOD data,
but fusion results in OOD performance that is approxi-
mately on par or even better than the best single layer.

3. We show that the angles between HDFF vectors can be
interpreted as visual similarity between inputs allowing
for failure diagnosis.

We release a publicly available code repository to repli-
cate our experiments at: https://github.com/
SamWilso/HDFF_Official

2. Related Work
Out-of-distribution (OOD) detection has been addressed

in the context of image classification [29, 31, 59, 19] and

semantic segmentation [18, 9, 1, 2] with a diverse set of
solutions to each of the problems. In this section, we high-
light overarching concepts and most relevant contributions in
three areas: i) Many approaches try to extrapolate the prop-
erties of the distribution of OOD data by utilising a small
subset of the data to fine-tune on. ii) When this information
is unavailable (OOD agnostic), distances or densities in the
softmax probabilities and logit spaces are used. iii) Com-
paratively few bodies of work exist that use multiple feature
maps for OOD detection.

OOD Fine-tuning Some prior work [48, 22, 58, 31, 29,
1] requires the availability of an OOD dataset to train or
fine-tune the network or adjust the OOD detection process.
However, such approaches are problematic. By definition,
the OOD dataset has to always be incomplete: during deploy-
ment, samples that do not match the assumptions embedded
in the OOD dataset can still be encountered, leaving such
methods exposed to high OOD risk. In contrast, we do not
require prior knowledge about the characteristics of OOD
data, instead we directly model the in-distribution data and
measure deviations from this set.

OOD Agnostic Most approaches that do not rely on
the availability of OOD data during training or validation
analyse the model outputs to identify OOD data during
deployment. Early work [19] showed the maximum of a
model’s softmax output to be a good baseline. Expanding
on this idea, [18] proposed using the maximum of the unnor-
malised output logits. Additional methods focus on extract-
ing more information from the outputs [41, 54] or learning
calibrated confidence estimates [7, 27]. Model averaging
techniques such as Deep Ensembles [26], Monte Carlo (MC)
Dropout [11, 18] and SWA-G [32, 59] often improve the
OOD detection performance. Training networks with spe-
cialised losses that impose a beneficial structure on the fea-
ture space has been growing in popularity [34, 59, 35, 21, 8].
E.g. the recent 1D Subspaces [59] OOD estimator encour-
ages the network to learn orthogonal features in the layer
before the logits. The approaches discussed above attempt
OOD detection based on only a single layer in the network.
In contrast, we show that utilising multiple layers is benefi-
cial for OOD detection.

Multi-Feature OOD Detection Newer approaches incor-
porate and analyse multi-scale feature maps extracted from
a DNN to detect OOD samples. The use of feature maps and
additional information extracted from a network has been
shown to set a new state-of-the-art in both OOD segmenta-
tion [9, 1] and classification [10] when used as input to an
auxiliary OOD detection network. The requirement on an
auxiliary network necessarily entails training on OOD, or
proxy-OOD, data that is strongly representative of the OOD
samples likely to be drawn from target distribution. Related
work with auxiliary networks in online performance monitor-
ing demonstrates that this class of networks can be robust to
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failures of the primary network without prior knowledge of
the exact failures that are likely to be encountered [46, 47].
Avoiding these problems altogether, recent works have tried
to model in-distribution classes without an auxiliary network
[44, 28, 42]. However, the curse of dimensionality requires
these methods to rely on PCA reductions [44, 28] or ran-
dom projections [42], losing information from the feature
maps. By contrast, we use techniques from Hyperdimen-
sional Computing to model our in-distribution data without
the need for an auxiliary network. We seek to build upon
evidence in the literature [44, 50, 30, 10] that multi-scale
features benefit OOD detection performance.

3. Hyperdimensional Computing
Hyperdimensional Computing (HDC), also known as Vec-

tor Symbolic Architectures, is the field of computation with
vectors in hyperdimensional, very large, spaces. HDC tech-
niques leverage the large amount of expressive power in
the hyperdimensional (HD) space to model associations be-
tween data points using redundant HD vector encodings.
Redundant means that in spaces of 104 dimensionality it
can be seen that two random vectors are almost guaranteed
to be within 5 degrees of orthogonal [52] known as quasi-
orthogonality. The associations between data points are
represented as vectors, and the set of the representative vec-
tors is known as the associative memory [14]. Construction
of the associative memory is done through the structured
combination of HD vectors using a set of standard opera-
tions. For our application we are primarily interested in
the bundling ⊕ and binding ⊗ operation for combining fea-
ture vectors, and the encoding operation for projecting low
dimensional representations into our target HD space.

Bundling The bundling ⊕ operation is used to store a
representation of multiple input vectors that retains similarity
to all of the input vectors [43]. Concretely, given random
vectors a, b and c, the vector a will be similar to the bundles
a ⊕ b, a ⊕ c and a ⊕ b ⊕ c, although in the final case it
will be less similar as the bundled vector needs to be similar
to all 3 input vectors. Typically, the bundling operation is
implemented as element-wise addition with some form of
normalisation to the required space for the architecture [52].
Normalisation steps that are commonly seen are normalisa-
tion to a magnitude of one [15, 12] or cutting/thresholding
to a range of desired values [13]. Without normalisation, the
bundling operation is commutative and associative; when
normalisation steps are added the associative aspect of the
operation is approximate, (a⊕ b)⊕ c ≈ a⊕ (b⊕ c) [52].

Binding The binding ⊗ operation is used to combine a
set of vectors into one representation that is dissimilar to
all of the input vectors [43]. Given the quasi-orthogonality
property of HD spaces, this entails that in all likelihood, the
binding operation will generate a vector orthogonal to all of
the input vectors in the cosine similarity space. The second

core trait of the binding operation is that it approximately pre-
serves the similarity of two vectors before and after binding
if they are bound to the same target vector. More precisely,
for a set of vectors in the same hyperdimensional space a, b
and c, that sim(a,b) ≈ sim(a⊗ c,b⊗ c).

Encoding The format of the original data will not always
be in the hyperdimensional space that is required. Encoding
addresses this by projecting each data point from the original
space into the new HD space. The selection of data encod-
ing into a HD space depends on the type of the original data
[45, 20]. An important principle of encoding is that distances
in the input are preserved in the output [20], much like the
binding operation. Examples of encoding include multipli-
cation with a projection matrix [36], fractional binding [24]
that preserves real numbered differences, or the encoding
proposed in [20] that preserves similarities of vectors over
time and spatial coordinates.

We provided only a brief introduction to HDC, for more
in-depth discussions and comparisons between known archi-
tectures we encourage the reader to consider [52, 39, 23].

4. Hyperdimensional Feature Fusion
We propose Hyperdimensional Feature Fusion (HDFF), a

novel OOD detection method that applies the HDC concepts
of Encoding and Bundling to the features from multiple lay-
ers in a deep neural network, without requiring re-training
or any prior knowledge of the OOD data. Our core idea is to
project the feature maps from multiple layers into a common
vector space, using similarity-preserving semi-orthogonal
projection matrices. Through a series of bundling operations,
we create a class-specific vector-shaped representation for
each of the classes in the training dataset. During deploy-
ment, we repeat the projection and bundling steps for a new
input image, and use the cosine similarity to the class repre-
sentatives to identify OOD samples. We provide pseudo code
to assist with describing our HDFF detector in Algorithm 1.

Preliminaries From a pretrained network f , we can ex-
tract feature maps ml from different layers l ∈ {1, . . . , L}
in the the network. We apply a pooling operation across the
spatial dimensions to reduce the tensor-shaped (height ×
width × channels) feature maps to vector representations vl

of length (channels) for each layer; we ablate the effects of
different pooling in the Supplementary Material. Since the
feature maps of different layers have a different number of
channels cl, we need to project the vectors vl into a common
m-dimensional vector space Rm in order to combine them.
Conventional sizes for HD spaces range around 103 - 104

[40, 36, 20], meaning that typically our HD space will be
much larger than our original space m >> c.

Feature Encoding Any m × c matrix P projects a c-
dimensional vector v into a m-dimensional space by left-
multiplying: Pv. However, preserving the cosine similarity
of the projected vectors is a crucial consideration for our
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Algorithm 1 Computation of the model-wise class descrip-
tors and ensemble descriptor vectors from training set.

Inputs: Set of images from the training set x{1,...,I} with
corresponding labels j{1,...,I}. Set of models in an ensem-
ble f{1,...,E} that produces a set of feature maps m{1,...,L}
given an input x(i).
Outputs: Set of class descriptor vectors per input model
d
(e)
{1,...,c} and a set of ensemble class descriptor vectors d∗

for e ∈ {1,. . . ,E} do
for i ∈ {1,. . . ,I} do

m
(i)
{1,...,L} ← fe(x

(i))

for l ∈ {1,. . . ,L} do
v
(i)
l ← Pool(m

(i)
l )

h
(i)
l ← Pl · v(i)l

end for
y(i) ← h

(i)
1 ⊕ h

(i)
2 ⊕ ...⊕ h

(i)
L

d
(e)

j(i)
← d

(e)

j(i)
⊕ y(i)

end for
end for
d∗ ← (d(1) ⊗ z(1))⊕ ...⊕ (d(E) ⊗ z(E))

application in OOD detection. We therefore impose that the
projection matrices Pl preserve the inner product of any two
vectors a and b in their original and their projected vector
spaces. Formally, this means that

(P · a)T · (P · b) = aT · b (1)
aT ·PT ·P · b = aT · b (2)

Above condition is satisfied by any matrix that fulfils the
requirement PTP = I, which is the defining property of
a semi-orthogonal matrix. Using the approach of [51], we
therefore create a unique, pseudo-random, semi-orthogonal
projection matrix Pl for each of the considered layers l.
These project the feature vectors vl into a common m-
dimensional vector space:

hl = Plvl so that hl ∈ Rm ∀l ∈ {1, . . . , L} (3)

Feature Bundling Following the previous steps, we ob-
tain a set of L high-dimensional vectors h

(i)
l for an input

image x(i). Since all h(i)
l are elements of the same vec-

tor space, we can use the bundling operation ⊕ to combine
them into a single vector y(i) that serves as an expressive
descriptor for the input image x(i):

y(i) =

L⊕
l=1

h
(i)
l =

L⊕
l=1

Pl · v(i)
l (4)

As explained in Section 3, the resulting vector y(i) will be
cosine-similar to all contributing vectors h(i)

l , but dissimilar

to vectors from Rm that were not part of the bundle. Essen-
tially, y(i) provides a summary of the feature vectors v(i)

l of
the entire network for a single image x(i).

By bundling the descriptors of all images from the train-
ing set belonging to class c, we obtain a class-specific de-
scriptor dc:

dc =
⊕
j∈Ic

y(j) (5)

where Ic denotes the set of indices of the training images
belonging to class c.

As discussed in Section 3, the bundling operation ⊕ can
be implemented in various ways. We implement ⊕ to be an
element-wise sum, without truncation.

Out-of-Distribution Detection During testing or deploy-
ment, an image x can be identified as OOD by obtaining
its image descriptor y according to (4), and calculating the
cosine similarity to each of the class-specific descriptors dc.
Let θ be the angle to the class descriptor dc that is most
similar to y

θ = min
c

cos−1

(
yTdc

∥y∥ · ∥dc∥

)
, c ∈ {1, . . . , C}, (6)

The input x is then treated as OOD if θ is bigger than a
threshold: θ > θ∗.

Ensembling While HDFF does not rely on ensembling,
we briefly show that our method is amenable to ensembling
to further boost performance (however at the cost of added
compute). When using a set of pretrained networks fe in an
ensemble e ∈ {1, . . . , E} we collect inputs from all models
and fuse them into singular image and class descriptors y∗
and d∗ respectively. For each model f{1,...,E} the same pro-
cess using equations (4) and (5) is used to compute the set of
class descriptors for each model in the ensemble d{1,...,E}.
To ensure that each class descriptor is sufficiently distinct
from all other descriptors, a set of random hyperdimensional
vectors z(e) are generated and bound ⊗ to the class descrip-
tor. By bundling the bound class descriptors, we obtain the
ensemble class descriptor d∗:

d∗ =

E⊕
e=1

d(e) ⊗ z(e) (7)

When new input samples arrive y∗ is computed according
to (7) by substituting d for y. OOD detection is done ac-
cording to (6) using d∗ and y∗.

5. Experiments
We conduct a series of experiments to demonstrate the

efficacy of Hyperdimensional Feature Fusion for OOD detec-
tion. We compare HDFF to the current state-of-the-art in the
typical far-OOD settings, where the distributions of the of
ID and OOD are very dissimilar (e.g. CIFAR10→ SVHN),
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and the more challenging near-OOD where the ID and OOD
datasets are drawn from similar distributions (e.g. CIFAR10
→ CIFAR100). Further, we report the results of some criti-
cal ablation studies, in particular, we identify which layers
are most sensitive to OOD data and how sensitive HDFF is
to the decision parameter θ∗ during deployment.

5.1. Experimental Setup

Datasets For our comparisons to existing OOD detectors
we use a wide array of popular datasets composed from
multiple recent state-of-the-art OOD detectors. We construct
our evaluation suite as the combination of datasets from [29,
50, 30]. For our comparison to existing OOD detectors, we
use the popular dataset splits for near- and far-OOD detection
using CIFAR10 and CIFAR100 [25] as the ID datasets. For
our ID sets, we use the 50,000 training examples for training
and computation of the class bundles, whilst the 10,000
testing images are used as our unseen ID data. For the
near-OOD configurations, the test set of whichever CIFAR
dataset is not being used for training will be used as the
OOD set. For the far-OOD detection settings, we use a
suite of benchmarks: iSUN, TinyImageNet [5] (cropped
and resized: TINc and TINr), LSUN [57] (cropped and
resized: LSUNc and LSUNr)1, SVHN [38], MNIST [6],
KMNIST [4], FashionMNIST [56], and Textures [3]. In the
interest of brevity, we only show the settings where CIFAR10
is the ID set, the settings of CIFAR100 as ID are provided in
the Supplementary Material.

Evaluation Metrics We consider the standard met-
rics [59, 50] for our comparison to existing OOD literature.
AUROC: The Area Under The Receiver Operating Charac-
teristic curve corresponds to the area under the ROC curve
with true positive rate (TPR) on the y-axis and false posi-
tive rate (FPR) on the x-axis. AUROC can be interpreted as
the probability that an OOD sample will be given a higher
score than an ID sample [18]. FPR95: The FPR95 metric
reports the FPR at a critical threshold which achieves a min-
imum of 95% in TPR. Detection Error: Detection Error
indicates the minimum misclassification probability with
respect to the critical threshold. F1: F1-score corresponds
to the harmonic mean of precision and recall. We make use
of F1-score to evaluate the general binarisation performance
in our ablations. In the interests of brevity, we only evaluate
using the AUROC metric for our evaluations. We provide
additional evaluations with FPR95 and Detection Error in
the Supplementary Material.

Baselines We divide our selected baselines and SOTA
comparisons into two evaluation streams, these being; statis-
tics and training. The statistics stream contains methods
that are generally applied post-hoc to a pretrained network,
requiring no training and only minimal calibration to repre-

1Download links for OOD datasets can be found in the following repos-
itory: https://github.com/facebookresearch/odin

sent in-distribution data. The training stream contains meth-
ods that allow for the retraining of the base network or the
training of an auxiliary monitoring network. The distinction
between the two streams is important for a fair comparison
as the methods in the training stream have a significantly
longer calibration (training) time as well as biases towards
the OOD data, either explicitly through proxy-OOD training
or implicitly through assumptions about the formation of
OOD data with a custom loss.

In the statistics stream we compare against: maxi-
mum softmax probability [19] (MSP), max logit [18] (ML),
gramian matrices [50] (Gram) and energy-based model [31]
without calibration on OOD data. For the training stream we
compare against: NMD [10], Spectral Discrepancy trained
with the 1D Subspaces methodology [59] (1DS), Deep De-
terministic Uncertainty [37] (DDU) and MOOD [30].

Implementation We follow the evaluation procedure
defined in [59, 29], implementing the standard WideRes-
Net [60] network with a depth of 28 and a width of 10. In
the statistics stream, this model is trained to convergence
with standard cross-entropy loss. Custom loss objectives are
restricted to the training stream.

As HDFF is a post-hoc statistics-based method, it is in-
nately orthogonal to the methods contained within the train-
ing stream and can be combined with many of them in a
post-hoc fashion. To demonstrate the robustness of HDFF
we combine it with two other state-of-the-art detectors, 1D
Subspaces [59] and NMD [10]. The HDFF-1DS method ap-
plies as described in Section 4 but the base model has been
trained with the 1D Subspaces custom objective. The HDFF-
MLP model trains an auxiliary MLP as a binary ID/OOD
classifier using the generated HDFF image descriptor vectors
y(i) of perturbed (proxy-OOD) and normal (ID) images from
the ID training set as input into the MLP alike NMD [10].

We re-implement the MSP, ML and Gram detectors for
the WideResNet architecture, for all other methods, exclud-
ing NMD [10] and MOOD [30], we report the published
results on the same architecture. At the time of writing, a
publicly available implementation of NMD [10] is unavail-
able and as such we utilise their published results in the
zero-shot OOD scenario on ResNet34 [16]. MOOD [30] is
built upon a custom network architecture that enables early
exits during inference, we report the published results on
this custom architecture due to the unclear applicability of
the method to other network architectures.

When applying HDFF and Gram [50] to the WideResNet
model we attempt to faithfully recreate the hook locations of
Gram from the original architecture. Specifically, features
are recorded from the outputs of almost all of the following
modules within the network: Conv2d, ReLU, BasicBlock,
NetworkBlock and shortcut connections. In total, there are
76 features extracted per sample and hence the same number
of semi-orthogonal projection matrices P are generated for
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Statistics Stream - CIFAR10
OOD HDFF HDFF-Ens Gram MSP ML Energy

Dataset (Ours) (Ours) [50] [19] [18] [31]
iSun 99.2 99.3 99.9 96.4 97.8 92.6
TINc 98.3 98.4 99.4 95.4 96.8 -
TINr 99.2 99.4 99.8 95.0 96.5 -
LSUNc 96.2 96.8 98.1 95.7 97.1 98.4
LSUNr 99.2 99.4 99.9 96.5 98.0 94.2
SVHN 99.4 99.5 99.4 96.0 97.2 91.0
MNIST 99.6 99.7 99.97 89.4 90.6 -
KMNIST 99.0 99.1 99.98 92.7 93.4 -
FMNIST 98.7 99.1 99.8 93.6 95.2 -
Textures 94.5 94.8 98.2 92.7 93.5 85.2
CIFAR100 75.4 75.8 79.4 87.8 87.3 -
Average 96.2 96.5 97.6 93.7 94.9 93.2

Table 1. OOD detection results for the against the methods con-
tained belonging to the statistics stream. Comparison metric is
AUROC, higher is better. Best results are shown in blue and bold,
second best results are shown in green and italics. The ensemble
in HDFF-Ens always consists of 5 models. HDFF and Gram are
consistently the top two performers across the significant majority
of the far-OOD detection settings.

Training Stream - CIFAR10
OOD HDFF-MLP HDFF-1DS 1DS NMD DDU MOOD

Dataset (Ours) (Ours) [59] [10] [37] [30]
iSun 99.99 99.9 - 99.9 - 93.0
TINc 99.9 99.7 98.1 99.2* 91.1* -
TINr 99.96 99.8 98.5 - 91.1* -
LSUNc 98.2 99.1 99.4 98.8 - 99.2
LSUNr 99.99 99.9 99.3 - - 93.3
SVHN 84.8 99.2 - 99.6 97.9 96.5
MNIST 99.4 99.3 - - - 99.8
KMNIST 98.6 99.3 - - - 99.9
FMNIST 99.6 99.3 - - - 99.9
Textures 97.4 97.3 - 98.9 - 93.3
CIFAR100 69.9 90.7 - 90.1 91.3 -
Average 95.2 98.5 98.8 97.8 94.6 95.0

Table 2. OOD detection results for the against the methods con-
tained belonging to the training stream. Comparison metric is
AUROC, higher is better. Best results are shown in blue and bold,
second best results are shown in green and italics. Published re-
sults that are unclear which variant of TIN they correspond to are
identified with a *. The incorporation of HDFF into pre-existing
pipelines leads to consistently improving or comparable results,
demonstrating the robust nature of HDFF.

HDFF.
Unless otherwise stated, we operate in a hyperdimen-

sional space of 104 dimensions, we ablate this hyperparam-
eter in the Supplementary Material. Before projecting fea-
ture maps into the hyperdimensional space as per (5), we
apply mean-centering by subtracting the layer-wise mean
activations (obtained from the training set) from all ml. For
pooling we apply max pooling over the spatial dimensions
to reduce our feature maps ml to a vector representation,
we ablate the effect of this choice in the Supplementary
Material.

5.2. Results and Discussion

Table 1 compares the results of our HDFF OOD detector
on the AUROC metric to all of the methods in the statis-
tics stream under both the near- and far-OOD settings. In
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Figure 2. F1-score for binarisation at different critical values of
angular distance to closest class descriptor. The model used is the
1D Subspaces trained WideResNet. The grey region corresponds
to binarisations that would produce a result within 5% of the maxi-
mum F1-score achieved for all far-OOD datasets. To avoid clutter,
far-OOD datasets have been grouped: i) MNIST (AVG) contains
KMNIST, MNIST and FashionMNIST. ii) SUN (AVG) contains
iSUN, LSUNr and LSUNc. iii) Other (AVG) contains all other
far-OOD datasets. As expected, the near-OOD task (CIFAR100)
leads to significantly lower thresholds compared to all far-OOD
tasks.

the far-OOD setting HDFF and Gram are consistently the
top performers with small performance differences of less
than 1% AUROC between the two methods on most OOD
dataset configurations. This finding indicates that the feature
representations of the in-distribution data from both Gram
and HDFF are powerful for the far-OOD detection task. On
this note, we identify that the vector representation of HDFF
is far more compact than the square matrix representations
from Gram. The difference in representation complexity ac-
counts for the performance differences, but also introduces
large gaps in computational performance with gram requir-
ing ≈4.5x longer per inference pass compared to HDFF as
described in Section 5.3.

We note that the MSP detector outperforms all other meth-
ods in the statistics stream in the near-OOD detection setting
(CIFAR10 as in-distribution and CIFAR100 as OOD). Con-
sidering that HDFF is effectively detecting deviations in con-
volutional feature activations this would indicate that images
with similar features are being grouped with in-distribution
classes, this behaviour is discussed more in Section 5.6.

Table 2 compares the results of the methods in the train-
ing stream on the AUROC metric in the near- and far-OOD
settings. The first finding from this table is the broadly
powerful nature of the HDFF vector representation in com-
bination with the MLP. Across the board, the majority of
the top performing results are from the HDFF MLP detector
demonstrating the power of the HDFF representation when
combined with latest state-of-the-art detectors.

Secondly and more specifically, we note that when HDFF
is applied to the 1D Subspaces trained model it improves
upon the performance of the Spectral Discrepancy detector
on 3 out of the 4 comparable benchmarks. We addition-
ally note that the Spectral discrepancy detector requires 50
SWA-G [33] samples to achieve these performance levels
whilst the HDFF detector requires only one inference pass,
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mandating a 5000% increase in computational time when
using Spectral Discrepancy. These two findings combined
reinforce the claim that HDFF is generally applicable to a
wide range of models and training regimes.

5.3. Computational Efficiency

HDC techniques are commonly used for computation
or learning in low-power situations [36, 20] and as such,
we expect HDFF to introduce minimal computational over-
head. For a full pass of the CIFAR10 test set, HDFF takes
7.0±0.9s compared to a standard inference pass at 6.0±0.7s,
averaged over 5 independent runs. We note that this ≈17%
increase is comparatively minor considering the large per-
formance gains that HDFF boasts over the MSP and ML
detectors. By comparison, the closest equivalent method to
ours, Gram [50] takes 31.4±0.3s to complete a full inference
pass over the CIFAR10 test set, resulting in an ≈4.5x longer
inference time than HDFF. Additionally, we expect the com-
putational efficiency of Gram to drop on larger networks
due to the gram matrices scaling O(n2) in computation and
memory requirements with the number of channels whereas
HDFF scales linearly O(n) with the number of channels.

Characteristic of belonging to the statistics stream, HDFF
requires far less calibration or training than other methods
belonging to the training stream. In particular, the closest
comparative method, NMD, prescribes a training regime of
60-100 epochs for the MLP detector, whereas HDFF only
requires a single epoch to collect the full in-distribution statis-
tics, resulting in a minimum 60x decrease in computational
time. Additionally, HDFF can be applied post-hoc to com-
mon networks, requiring no additional computation in the
training or fine-tuning of the network. We further note that
HDFF with only a single inference pass competes with or
exceeds the Spectral Discrepancy detector [59] that requires
50 MC samples to be collected, necessitating a minimum
inference increase of 5000%.

5.4. Critical Threshold Ablation

During deployment, it is often more useful if an OOD
detector produces a binarisation of ID vs OOD rather than
a raw OOD estimate; the grey regions in Figure 2 show a
range of critical thresholds that will produce performance
reasonably close to optimal in this setting. Specifically, the
grey region in Figure 2 shows a region of confidence where
any critical value would produce an F1-score within 5%
of the maximum value achieved on each far-OOD dataset,
an approximate standard of reasonable performance. The
near-OOD detection task is plotted but does not contribute
towards the definition of the grey region due to the severe
differences between the near- and far-OOD tasks. As we
can see, a large region of critical values around the range of
18-29 degrees will result in generally good performance for
far-OOD detection.

Figure 3. Comparison of effectiveness for OOD detection of each
layer individually with the AUROC measure. CIFAR10 is the in-
distribution dataset. Mean and 95% confidence interval over 5
randomly initialised models trained with the 1D Subspaces method-
ology. Dotted lines correspond to the results attained by the fusion
of all 12 BasicBlocks. Performance of individual layers shows a
trend toward later layers being more effective at detecting OOD
data. The fusion of feature maps from across the network provides
good general performance across all datasets and does not require
calibration on OOD data to set.

5.5. Layer Sensitivivity To OOD Data

Congruent with other multi-layer OOD detectors [10, 50]
we ablate the sensitivity of individual layers with respect to
OOD samples from different target distributions. Figure 3
demonstrates the effectiveness of individual layers when they
are used in isolation for OOD detection based on our HDFF
OOD estimator. For the sake of readability, we only collect
features from the outputs of the 12 BasicBlocks and only
consider the TIN and LSUN datasets. In both ID settings
earlier features in the network appear to be less reliable at
detecting OOD samples; particularly the CIFAR10 setting
has a clear upwards trend as the layer number increases. This
observation lends weight towards suggestions in prior work
that shallow layers in a DNN are unable to or at least are less
effective at detecting OOD data [44].

The dotted lines, and related 95% confidence shaded area,
for each dataset correspond to the fusion of information
from all layers; we consider these lines the best that can
be reasonably achieved within the bounds of the OOD task.
In Figure 3 we observe that no single individual layer is
able to detect the OOD data as well as the fusion of all
feature maps. Critically, we note two points in favour of the
fusion of features: (1) without OOD data the optimal layer
combination for a given data set is unknown, and (2) the
optimal layer combination is not consistent between OOD
data configurations as shown by the drop in performance on
LSUNc. To summarise, if there is no access to OOD data at
training time to determine which layer(s) are the best, then
the fusion of feature maps from across the network often
provides the best performance or a close approximation.
We provide extra ablations against other metrics and the
CIFAR100 ID set in the Supplementary Material.

5.6. Distance of Features as Visual Similarity

As HDFF uses similarity preserving projections, the angu-
lar distance directly represents the differences between two
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Figure 4. KDE estimate of separation between ID and OOD sets
based on minimum angular distance to closest class representa-
tive in the CIFAR10 setting. To avoid clutter, far-OOD datasets
have been grouped: i) MNIST (AVG) contains KMNIST, MNIST
and FashionMNIST. ii) SUN (AVG) contains iSUN, LSUNr and
LSUNc. iii) Other (AVG) contains all other far-OOD datasets.
Overlap between the test and OOD distributions can be considered
erroneous samples.

input sets of raw features. Since these features are extracted
from a deep CNN, the angular distance between any two vec-
tors is a proxy for their visual dissimilarity. This definition
leads to intuitive understandings of how HDFF behaves and
identifying failure cases; we discuss these points here.

Using our definition, since HDFF separates based on
visual similarity, we can infer that failures in OOD detection
are due either to ID samples being visually dissimilar to the
training set or OOD samples are as similar, if not more so, to
the training set than the ID samples. To aid in understanding
this, Figure 4 visualises the differences in distributions of
angular distance between the ID and OOD datasets in the
CIFAR10 ID setting through a KDE estimate (for smoothing)
over binned angular distances on the HDFF 1D Subspaces
model. The area of overlap between the test set and any OOD
set can be considered as erroneous detection. Inspecting
Figure 4, we observe that, in the far-OOD settings, errors
due to dissimilar ID samples are more likely to appear due
to the distributional shift between the training and testing
distributions, i.e. false positives. By contrast, in the near-
OOD detection task we see that a significant number of
errors are due to OOD samples appearing very similar to ID
samples, i.e. false negatives.

As a more concrete example, Figure 5 demonstrates
HDFF separating input samples based on the angle to the
nearest class descriptor vector, in this case, the CIFAR10
truck class. Consistent with our previous assertions, we ob-
serve in Figure 5 that samples that are < 15◦ from the class
descriptor vector appear visually very similar, with no far-
OOD samples occupying this range. In the range of 15−30◦

we observe that samples from all datasets still have vehicle-
like appearance, but whether or not these accurately repre-
sent a truck is debatable; this region is still predominantly
populated by ID and near-OOD samples. Once outside the
30◦ ring, we see that the significant majority of samples
do not appear vehicle-like with the very few ID samples in
this region having the truck visually obscured; this region is
dominated by far-OOD samples.

<15°

<30°

>30°

Figure 5. Sample images from in-distribution (CIFAR10, blue),
near-OOD (CIFAR100, green) and far-OOD (TINc, red) datasets
with their approximate distance to the nearest class descriptor vec-
tor, corresponding to the CIFAR10 ID truck class. The underlying
model is the 1D Subspaces trained WideResNet. Distances to the
class bundle (centre blue dot) can be approximately inferred from
which circle the sample is encapsulated by. This figure reinforces
the hypothesis that HDFF separates based on visual similarity to
the in-distribution class as truck-like objects appear within the in-
ner circle, vehicle-like objects in the middle region and heavily
dissimilar object falling outside both of those regions.

6. Conclusion
This paper introduced powerful ideas from hyperdimen-

sional computing into the important task of OOD detection.
We investigate the sensitivity of individual layers to OOD
data and find that the fusion of feature maps provides the
best general performance with no requirements for OOD
data to fine-tune on. We perform competitively with state-
of-the-art OOD detection methods with the added benefit
of significantly reducing the computational costs associated
with the current state-of-the-art. We show the interpretation
of cosine distance as a proxy for visual similarity allows
for additional failure diagnosis capabilities over competing
methods. In this paper, we utilised the simple but powerful
element-wise addition for bundling, however, this is one of
potentially many applications of HDC to DNNs, opening
new future research directions.
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