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Abstract

Though semantic segmentation has been heavily ex-
plored in vision literature, unique challenges remain in
the remote sensing domain. One such challenge is how
to handle resolution mismatch between overhead imagery
and ground-truth label sources, due to differences in ground
sample distance. To illustrate this problem, we introduce a
new dataset and use it to showcase weaknesses inherent in
existing strategies that naively upsample the target label to
match the image resolution. Instead, we present a method
that is supervised using low-resolution labels (without up-
sampling), but takes advantage of an exemplar set of high-
resolution labels to guide the learning process. Our method
incorporates region aggregation, adversarial learning, and
self-supervised pretraining to generate fine-grained predic-
tions, without requiring high-resolution annotations. Ex-
tensive experiments demonstrate the real-world applicabil-
ity of our approach.

1. Introduction
Semantic segmentation is a fundamental computer vision

problem where the goal is to assign each individual pixel of
an image to a semantic class. This research area has been
heavily explored for decades and is critical for many appli-
cations, such as autonomous driving [7, 32]. Recently, ad-
vances in machine learning have pushed performance levels
to new heights. However, despite the success of these meth-
ods when applied to ground-level imagery, there remain nu-
merous challenges to successfully applying semantic seg-
mentation to imagery from the remote sensing domain [11].

Central to the issue is that overhead imagery comes in
many diverse formats. Considering space-based remote
sensing alone, there are hundreds of different imaging sen-
sors orbiting the earth, each capturing information in differ-
ent ways. These sensors can have different imaging modal-
ities (e.g., multispectral, radar), measure light differently,
varying ground resolutions (also known as ground sample
distance), unique look angles in relation to the target, and
much more. Beyond capture details, the appearance of a
scene can vary drastically for many reasons, including sea-
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Figure 1: Semantic segmentation in remote sensing has
many unique challenges, such as differences in spatial res-
olution between overhead imagery and target labels. This
is primarily due to the increased resource cost of collecting
fine-grained annotations at high-resolutions. We propose a
method for handling this resolution mismatch, without the
need for high-resolution annotations.

sonal variations and artifacts such as clouds and cloud shad-
ows. Many of these issues are unique to remote sensing and
require novel solutions.

The diversity of overhead imagery creates downstream
problems for semantic segmentation algorithms. For exam-
ple, given off-nadir imagery (i.e., not captured from directly
overhead), there is often misalignment between the imagery
and ground-truth labels. There is a large body of work ex-
ploring how to address related issues in remote sensing. For
example, Christie et al. [2] propose a method to regress the
geocentric pose of an overhead image and show its utility
for building segmentation and rectification. Deng et al. [4]
propose a framework for handling differences in scale be-
tween overhead image datasets. In this work, we focus
our efforts on how to handle resolution mismatch between
overhead imagery and target annotations, a relatively unex-
plored problem (Figure 1).

Semantic segmentation depends heavily on having high
quality, aligned labels. A recent study by Zlateski et al. [46]
found that segmentation performance primarily depends on
the time spent creating training labels. With overhead im-
agery, high-resolution labels do not exist at a large scale.
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This is primarily due to practical limitations associated with
the enormous resource costs needed for comprehensive an-
notation efforts. For example, the Chesapeake Conser-
vancy spent 10 months and $1.3 million to produce a high-
resolution (1 meter) land cover map of the Chesapeake Bay
watershed [28]. The result is a land cover dataset for a small
portion of the globe, with a fixed spatial resolution, at only
a single timestep.

In practice, it is often significantly easier to acquire low-
resolution labels. For example, the National Land Cover
Database [42] (NLCD) is freely available to the public, has
complete coverage of the continental United States, is typ-
ically updated every five years, but has a spatial resolution
of only 30 meters per pixel. In the case that an input over-
head image is of higher resolution than the target label, the
typical strategy is to simply upsample the label to match
the native resolution of the image. Our experiments demon-
strate that this approach is unsatisfactory and results in low
quality output.

Instead, our goal is to develop a method capable of
generating fine-grained predictions, but only using low-
resolution ground-truth as a direct source of supervision.
Our key insight is that even if high-resolution ground-truth
is unavailable for the training imagery, examples of high-
resolution annotations are often readily available for other
locations. In other words, it is possible to observe what
high-resolution output looks like, just not everywhere. A
method should be able to take advantage of this auxiliary
data, without the corresponding imagery, to aid in produc-
ing a fine-grained output.

We present a method that is supervised only using low-
resolution labels, but takes advantage of an exemplar set of
high-resolution labels to guide the learning process. Our
method has several key components: 1) it incorporates the
concept of region aggregation to allow the network to out-
put native resolution predictions, without upsampling the
low-resolution target label; 2) it uses adversarial learning
combined with an exemplar set of high-resolution labels to
encourage predictions to be fine-grained; and 3) it lever-
ages self-supervised pretraining on a large set of unlabeled
imagery to increase model generalization. The result is a
method which bridges the performance gap between naively
upsampling available low-resolution labels and assuming
the existence of expensive high-resolution labels. Extensive
experiments demonstrate the capability of our approach.

2. Related Work
Semantic segmentation is considered a foundational task

in computer vision, a necessary stepping stone towards the
larger goal of intelligent scene understanding [16]. Much
of the recent progress in semantic segmentation can be at-
tributed to: 1) the development of learning-based segmen-
tation algorithms (see [22] for a comprehensive survey) and

2) the introduction of large-scale benchmark datasets such
as Cityscapes [3], ADE20k [44], and Mapillary Vistas [24],
which contain pixel-wise annotations that are important for
enabling fully-supervised segmentation approaches.

Semantic segmentation has attracted a great deal of at-
tention in the remote sensing community as well [45]. It is
apt for traditional remote sensing tasks such as land cover
and land use estimation [35], which seek to understand the
physical cover of the Earth’s surface and how it is utilized.
Máttyus et al. [21] segment roads in overhead imagery as
part of a method for directly extracting road topology. Gi-
rard et al. [8] leverage semantic segmentation to extract
building polygons. Other applications include height esti-
mation [19, 37], road safety assessment [33], traffic moni-
toring [9, 38], emissions estimation [23], near/remote sens-
ing [40, 41], and more. However, similar to ground-level
imagery, a major difficulty in applying semantic segmenta-
tion to overhead imagery is the cost of acquiring annotated
training data [11].

Remote-sensed imagery presents many unique obstacles
to contend with. Imagery can come from many different
sensors, have different spatial resolutions, contain atmo-
spheric artifacts such as clouds, etc. Deng et al. [4] propose
a method for handling the scale variation commonly found
between remote sensing image collections and demonstrate
its application to domain adaptation. Workman et al. [39]
show how multi-image fusion can be applied to detecting
artifacts in imagery, such as clouds. These issues, and more,
compound the difficulty of getting annotated training data.
Ultimately, it is common for annotations to have a differ-
ent spatial resolution, be captured at a different time, have
spatial alignment errors, or a slew of other discrepancies.

In this work, we focus specifically on the resolution
mismatch problem. As high-resolution imagery has be-
come more widely available, for example WorldView-3 im-
agery at approximately 30 centimeters, it has become in-
creasingly difficult to acquire high-resolution annotations
to match the native image resolution. Instead, the typical
strategy is to simply upsample the target label to match the
image resolution. The 2020 IEEE GRSS Data Fusion Con-
test (DFC2020) [43] was of the first to consider the prob-
lem of resolution mismatch, but at an extreme scale (high-
resolution labels of 10 meters and low-resolution labels
of 500 meters), necessitating non-learning based methods.
Robinson et al. [29] use an ensemble of individual solutions
including: label super-resolution via iterative clustering,
label super-resolution using epitomic representations [20],
and post-processing inspired by deep image prior [34]. In-
stead, we explore an end-to-end learning based approach
for addressing the mismatch problem by generating a high-
resolution prediction in a single forward pass without an
ensemble or any ad hoc post-processing steps.

Several weakly supervised methods have been proposed
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Figure 2: Example labels using our merged label taxonomy. Note that the low-resolution label (e) omits many fine-grained
details, such as structures and secondary roads, that the high-resolution label (d) captures.

to take advantage of sparse ground-truth labels. Lu et
al. [18] show how geotagged point labels can be used to
identify bodies of water via the introduction of a feature
aggregation network. Wang et al. [36] also consider geo-
tagged points, as well as image-level labels, and show that
standard segmentation architectures can outperform pixel-
level algorithms. We consider an alternative, more common
scenario, where annotations are dense but of a lower spatial
resolution than the input imagery.

3. Low2High: A Dataset for Resolution Mis-
match

To support our experiments, we introduce the Low2High
dataset which extends the recent Chesapeake dataset [28].
The Chesapeake dataset contains high-resolution overhead
imagery, at 1m per pixel, from the USDA National Agri-
culture Imagery Program (NAIP). In total, the dataset con-
sists of over 700 non-overlapping tiles from six states, with
each tile corresponding to an area of approximately 6km
× 7.5km. This imagery is combined with land cover la-
bels from two different sources. The first source is high-
resolution labels (1m per pixel) obtained from the Chesa-
peake Conservancy land cover project covering approxi-
mately 100,000 square miles of land around the Chesapeake
Bay watershed. The second source is low-resolution labels
(30m per pixel) from the National Land Cover Database
(NLCD). We extend this dataset to support our experiments
related to the resolution mismatch problem.

3.1. Dataset Generation

We start from the raw tiles in the Chesapeake dataset,
update the land cover labels to use a merged label taxonomy,
and generate an aligned dataset of non-overlapping images
of size 512 × 512. We promote label diversity and omit
any image with less than 3 unique land cover classes (either
label source), or that has a single land cover class covering
more than 75 percent of the image. This process results in
34791 images. We also generate a custom evaluation split,
including a held-out set of images from each state. The final

split consists of training (75%), validation (10%), held-out
(10%), and testing (5%).

Merged Label Taxonomy The high-resolution land
cover labels from the Chesapeake Conservancy include six
land cover classes: tree canopy / forest, low vegetation
/ field, barren land, impervious (other), and impervious
(road). The low-resolution land cover labels from NLCD
include twenty land cover classes with high-level categories
spanning developed, barren, forest, and shrub land. For our
purposes, we generate a merged label taxonomy consisting
of four classes: water, forest, field, and impervious. Each
label source is remapped to use the merged label taxonomy
by assigning existing labels to the most relevant category
(see the supplemental material for details). Figure 2 shows
qualitative examples of this process. Though the labels of-
ten tend to agree there can be stark differences, with the
low-resolution label missing certain details completely.

3.2. Auxiliary Imagery & Labels

Self-supervised learning, where a supervisory signal is
obtained directly from the data itself, is an alternative train-
ing paradigm capable of taking advantage of large amounts
of unlabeled data. To support this scenario and improve ge-
ographic diversity, we supplement Low2High with an aux-
iliary set of images collected near rest stops across the con-
tiguous United States [27]. Similar to the format of the
Chesapeake imagery, we obtained overhead imagery (512×
512) from NAIP between 01/01/2013 and 12/31/2014, re-
sulting in 12,024 training and 603 validation images.

We also supplement the Chesapeake data with a new
held-out test region to support domain adaptation experi-
ments. Milwaukee, Wisconsin was selected as the new test
site due to its diverse geography compared to the Northeast-
ern USA. For land cover labels, we use annotations made
available through the EPA EnviroAtlas [26] and, as before,
the land cover classes were remapped to use our merged la-
bel taxonomy. The resulting test set contains 3262 samples
at 1m ground sample distance.

3711



Encoder Decoder
Region 

Aggregation

Loss

Generator

LossExemplar 
High-Res. Labels

Soft 
ArgmaxDiscriminator

Figure 3: An overview of our architecture for handling resolution mismatch.

4. A Method for Semantic Segmentation with
Resolution Mismatch

We propose an end-to-end architecture for semantic seg-
mentation that is supervised using low-resolution annota-
tions, but is capable of generating fine-grained predictions.
Figure 3 provides a visual overview of our approach.

4.1. Approach Overview

We present a framework for semantic segmentation in
the event of resolution mismatch. Our method is directly
supervised with low-resolution labels, but takes advantage
of an exemplar set of high-resolution labels (no correspon-
dence to the input imagery) to guide the learning process.
Our architecture has four primary components. First, we de-
scribe the general segmentation architecture (Section 4.2).
Second, we incorporate the concept of region aggregation
to allow the network to output native resolution predictions,
without upsampling the low-resolution target label (Sec-
tion 4.3). Third, we use adversarial learning combined with
an exemplar set of high-resolution labels to encourage pre-
dictions to be fine-grained (Section 4.4). Finally, we lever-
age self-supervised pretraining on a large set of unlabeled
imagery to increase model generalization (Section 4.5). The
remainder of this section describes the high-level architec-
ture. See the supplemental materials for additional details.

4.2. Segmentation Architecture

For our segmentation architecture, we use a variant of
U-Net [30] with a ResNet-18 backbone. However, our
approach is general enough to be conceivably combined
with any modern segmentation architecture. U-Net is an
encoder-decoder style architecture that propagates informa-
tion from the encoder through the use of skip connections.
For our feature encodings, we use the output activations
from the first four stages of ResNet. The decoder (U-Net

style) expects four feature maps to be used for skip connec-
tions. Our variant has four upsampling blocks, each con-
sisting of two convolutions (3× 3) followed by a ReLU ac-
tivation. The output is then upsampled and passed through
a final convolutional layer with number of output channels
that are task-specific. In our case, the segmentation archi-
tecture takes an overhead image as input and produces a
native resolution output.

4.3. Region Aggregation

The typical strategy in the event of resolution mismatch
between input image and target label is to simply upsam-
ple the label to the resolution of the input. Our experiments
demonstrate that this approach is sub-optimal. Instead, we
use a variant of region aggregation [12, 38] to allow our
network to generate native resolution outputs, yet be super-
vised with low-resolution target labels (without any upsam-
pling). This allows the underlying segmentation network to
generate fine-grained predictions.

In the case of semantic segmentation of overhead im-
agery, the input imagery and target label are both georef-
erenced. This means that the ground sample distance of
each is known, and enables computation of the geospatial
correspondence between a single low-resolution pixel (from
the target label) and many high-resolution prediction pixels
(from the input image). See Figure 4 for a visual illustration
of this geospatial relationship. The ratio of high-resolution
pixels to low-resolution pixels (n) can be directly computed
from the respective ground sample distances.

We construct a region index matrix M ∈ RH×W , which
expresses a pixel mapping from high-resolution to low-
resolution across a given image of height H and width W .
M is composed of t number of n × n pixel regions, where
n is the ground sample distance scale-ratio from the high-
resolution imagery to the low-resolution labels. For the case
of mapping 1m NAIP imagery to 30m NLCD annotations,
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Figure 4: Our region aggregation component takes advan-
tage of the known geospatial context of an input image to
aggregate high-resolution predictions such that they match
the spatial resolution of a low-resolution target label.

n = 30. We use M to select 30 × 30 pixel regions from
the high-resolution prediction, and sum them to produce a
single value representative of the region. In practice, this
operation is applied directly to the logits. This region-based
summation operation results in a low-resolution prediction
map. We then forward the low-resolution prediction map to
a cross entropy loss:

L(Y, Ŷ ) = − 1

N

N∑
i=1

log

(
eyi∑C

c=1 e
ŷi,c

)
. (1)

This allows newly down-scaled low-resolution predictions
to be supervised by low-resolution annotations (bottom
right of Figure 3). For the multi-class (c ∈ C) cross en-
tropy loss, yi ∈ Y indicates that N low-resolution labels
were used to supervise ŷ ∈ Ŷ aggregated predictions.

4.4. Adversarial Learning

We use adversarial learning combined with an exemplar
set of high-resolution labels to encourage predictions to be
fine-grained. In other words, we treat the segmentation net-
work (Section 4.2) as a generator (G). The predictions from
the generator are encouraged to match the appearance of an
unrelated high-resolution annotation by having the discrim-
inator (D) predict whether an input is fake (a prediction) or
real (a randomly selected high-resolution annotation). This
is represented as a two-player minmax game:

min
G

max
D

Ladv(D,G). (2)

To facilitate this training paradigm, predictions from the
generator need to match the characteristics of randomly se-
lected high-resolution annotations taken from a small held-
out dataset. In our case, the discriminator operates on seg-
mentation maps (indexed images) as input. The genera-
tor outputs logits (B × C × H × W ), yet the discrim-
inator expects inputs to be in the form of class indices
(B × 1 ×H ×W ). Transforming logits to class indices is

usually addressed by applying a softmax across the chan-
nels dimension followed by an argmax operation. How-
ever, argmax is non-differentiable, which would interrupt
gradient flow from the discriminator to the generator during
adversarial training.

Instead, we present a novel formulation using a differen-
tiable soft argmax operation, denoted as sargmax. First,
class probabilities are extracted from the input logits x by
multiplying the logits by a temperature scaling parameter,
τ = 103, and applying a softmax operation across the
channels dimension (c ∈ C) of x, indicated as xc. The
sargmax can be expressed as:

sargmax :=

C∑
c=1

c ∗ p(xc; τ), (3)

where class probabilities, p(xc; τ) = softmax(τxc), are
subsequently passed to an expectation to produce an ap-
proximate class index per spatial position, corresponding to
the highest predicted class probability. This formulation al-
lows soft class assignments to each pixel of a segmentation
output. Predictions and high-resolution exemplars are then
passed to the discriminator, D, which will try to determine
whether a given input is a real high-resolution annotation
or a prediction synthesized by G. We follow this with the
hinge loss [17], Ladv , to jointly optimize the generator and
discriminator.

Kendall et al. [13] proposed a similar operation for dif-
ferentiable aggregation denoted as softargmin. The key
distinction between our sargmax and softargmin is that
we use a temperature parameter τ to make the predicted
probability distributions have more pronounced peaks. Dis-
tinct peaks are desirable for allowing predictions to emulate
class indices, as opposed to the more common trend of us-
ing softargmin for regression.

4.5. Self-supervised Pretraining

Self-supervised learning has shown great promise for
a variety of tasks [1, 15], including land cover segmenta-
tion [31]. The premise is to leverage various pretext tasks,
which create supervisory signals from the data itself, for
learning useful feature representations which can then be
transferred to the downstream task. Masked Autoencoders
(MAE) [10] introduced image reconstruction as a pretext
task, showing that transfer performance on several down-
stream tasks outperformed supervised pretraining. Inspired
by these promising results, we use the MAE reconstruction
task to pretrain a Vision Transformer ViT [5] with a ResNet-
18 patch embedding (masking ratio of 75%) followed by 2×
upsampling layer. The weights from the pretrained ResNet-
18 embedding network are then used to initialize the feature
backbone of our segmentation network (Section 4.2).
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4.6. Implementation Details

We implement our methods using Pytorch [25] and Py-
torch Lightning [6]. Our networks are optimized using
Adam [14] with the initial learning rate set to 1e−4. The
method is trained for 100 epochs and a validation set is
used for model selection. For the adversarial learning com-
ponent, the inputs passed to the discriminator are blurred
using a Gaussian filter (3× 3 kernel with σ = 0.6).

5. Experiments

We evaluate our methods quantitatively and qualitatively
through a variety of experiments. Results demonstrate that
our approach which incorporates region aggregation, ad-
versarial learning, and self-supervised pretraining, signifi-
cantly reduces error compared to baselines.

Baseline Methods For evaluating our proposed architec-
ture, we consider several baseline methods that share com-
ponents of our full approach:

• Oracle uses the upsampled low-resolution ground-
truth directly as the prediction. This represents having
a perfect low-resolution estimator.

• Low is trained on the low-resolution ground-truth and
naively upsamples to the native image resolution.

• High is trained on the high-resolution ground truth.
This represents ideal performance in the event high-
resolution ground-truth is always available.

Our full approach is outlined in Section 4 and is subse-
quently referred to as Ours. We also compare against the
label super-resolution approach, Self-Epitomic LSR [20].

Metrics In our experiments, we evaluate all methods us-
ing the high-resolution labels. In other words, the goal is
to examine how well each method performs relative to the
high-resolution baseline, which represents optimal perfor-
mance (direct supervision using high-resolution labels). We
use the following standard evaluation metrics: F1 score (the
harmonic mean of the precision and recall scores) and mean
intersection-over-union (mIOU), also known as the Jaccard
Index. For both metrics, we use the macro strategy which
computes the metric for each class separately, and then av-
erages across classes using equal weights for each class.

5.1. Case Study: Impact of Label Resolution

To begin, we study the impact of label resolution on pre-
diction performance. For this experiment, we optimize the
baselines outlined above, which share the same segmenta-
tion architecture as our approach (a modified U-Net with a
ResNet-18 backbone). For each baseline, we train for 100
epochs using the Low2High dataset. Model selection is per-
formed using a resolution-specific validation set, treating
each label set in isolation.

Table 1: Performance of baseline methods.

Acc F1 mIOU
Oracle 80.17% 72.69% 60.28%
Low 84.40% 76.16% 64.25%
High 93.16% 90.87% 83.59%

Self-Epitomic LSR [20] 69.11% 50.90% 37.10%

Table 2: An ablation study highlighting the impact of dif-
ferent components. Our full approach significantly reduces
the gap in performance to the high-resolution baseline.

Acc F1 mIOU
Agg. App. Pre.
✓ 82.63% 74.59% 62.52%
✓ ✓ 87.43% 81.12% 69.84%
✓ ✓ ✓ 88.61% 82.60% 71.69%

Baseline: High 93.16% 90.87% 83.59%

Table 1 shows the result of this experiment. As expected,
High performs best, due to being directly supervised using
high-resolution ground truth. Low performs significantly
worse, highlighting the performance cost associated with
simply upsampling the low-resolution ground truth. Finally,
Oracle performs worst, which represents a model capable
of perfectly predicting the low-resolution ground truth. To-
gether, these results show that high-resolution ground-truth
is crucial for achieving high quality output in the form of
fine-grained predictions.

For comparison, we also show the performance of the
label super-resolution approach (Self-Epitomic LSR) pro-
posed by Malkin et al. [20], adapting the implementation
made available by the authors. This iterative method per-
forms significantly worse than all other methods, despite
requiring prior knowledge of statistics that describe how
frequently high-resolution annotations occur within low-
resolution annotations.

5.2. Ablation Study

Next, we evaluate the performance of our method, along
with an ablation study showing the performance impact at-
tributed to individual components. Table 2 shows the out-
come of this experiment. The results indicate that using re-
gion aggregation (Agg.) alone with direct supervision from
low-resolution annotations does not outperform the low-
resolution baseline from Table 1. This is understandable,
as the region aggregation step allows the segmentation net-
work to output fine-grained predictions, but does not con-
strain the predictions to be realistic. In other words, the ag-
gregation step simply encourages the aggregated prediction
to agree with the target label.

3714



0 500 1000 1500 2000 2500 3000
# Exemplar Labels

76

77

78

79

80

81
F1

 S
co

re
Ours
Low

Figure 5: The performance of our proposed approach versus
the quantity of exemplar labels used during model training.

However, including appearance-based adversarial train-
ing (App.) together with region aggregation (Agg.) results
in performance that surpasses both the low-resolution and
oracle baselines. This component encourages the output
predictions to look similar in appearance to an exemplar
set of high-resolution annotations. Finally, including self-
supervised pretraining (Pre.) results in a 4.21% accuracy,
6.44% F1, and 7.44% mIOU gain over the low-resolution
baseline. The full model’s performance approaches the
high-resolution baseline, without requiring direct supervi-
sion from high-resolution labels. Figure 6 shows example
outputs from our approach versus baselines.

5.3. Dependence on Exemplar Labels

Our method takes advantage of an exemplar set of high-
resolution labels to guide the learning process. These labels
have no correspondence with the input imagery, but encour-
age our method to produce realistic (i.e., fine-grained) pre-
dictions. Therefore, we evaluate how the performance of
our proposed approach changes with respect to the quan-
tity of exemplar labels used during model training. For
this experiment, we use our full approach but omit the self-
supervised pretraining component.

Figure 5 visualizes the results of this study. The x-axis
represents the number of high-resolution labels used dur-
ing model training, and the y-axis indicates the resulting
model’s F1 score on the test set. As expected, model per-
formance increases as the quantity of exemplar labels in-
creases. Even with very few exemplar labels, our method is
able to significantly outperform the low-resolution baseline.

5.4. Generalizing to Novel Locations

We use the Low2High dataset to investigate the impact
of self-supervised pretraining on model generalization. For
this experiment, we use the MAE image reconstruction
strategy outlined in Section 4.5 to pretrain our method, but

Table 3: Domain adaption study with and without self-
supervised pretraining (using our full model).

Pretrain Test Acc F1 mIOU
None Ches− 86.36% 80.07% 68.09%
Ches− Ches− 88.38% 80.31% 68.68%
USA* Ches− 88.91% 82.19% 71.01%

None VA 85.50% 76.03% 63.35%
Ches− VA 86.54% 77.03% 65.04%
USA* VA 88.40% 79.03% 67.81%

None MWI 55.93% 44.90% 30.81%
Ches− MWI 55.41% 45.21% 30.99%
USA* MWI 63.32% 48.52% 35.51%

vary the set of unlabeled images. The first set, Ches−, rep-
resents imagery from the training set minus Virginia (VA).
VA was excluded to serve as a held-out test region from
the Chesapeake Bay area. For the second set, we use the
auxiliary imagery from Low2High (Section 3.2), denoted as
USA*. After pretraining for 100 epochs, the resulting mod-
els are fine-tuned for 100 epochs on the training portion of
Ches− (states: DE, MD, NY, WV, and PA). Finally, we eval-
uate each of the two pretraining strategies and a baseline
representing no pretraining (None) on three downstream
held-out test sets: the test portion of Ches−, test samples
from VA, and our new test set over Milwaukee, WI (MWI).

Table 3 summarizes the results of this experiment. The
first three rows show performance for the Ches− test set.
As expected, no pretraining (None) performs the worst.
Notably, pretraining on USA* outperforms pretraining on
Ches−. As both pretraining sets have exposure to imagery
similar to the testing region, this can likely be attributed
to learning an improved feature representation from a more
geographically diverse set of images.

The middle three rows show performance on the held-
out VA test set. Unlike the prior three rows, no method had
any previous exposure to VA imagery during model train-
ing. Despite this, the results follow the same trend as be-
fore. No pretraining (None) performs the worst and pre-
training on USA* outperforms pretraining on Ches−. This
result shows that pretraining on a more diverse set of im-
ages (USA*) is still beneficial for downstream learning, as
compared to pretraining only on a set of images (Ches−)
that is more geographically similar to the test set.

Finally, the bottom three rows show performance for the
held-out MWI test set. In this scenario, the baseline (None)
is competitive with Ches−. This is understandable, as MWI
is geographically diverse compared to the Chesapeake Bay
region. USA* outperforms both alternatives, showcasing
that self-supervised pretraining has a significant positive
impact on generalizing a model to novel locations.
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Figure 6: Example qualitative results. From left to right: input image, high-resolution ground-truth label, prediction from the
high-resolution baseline, low-resolution ground-truth label, prediction from the low-resolution baseline, and our result.

6. Conclusion

Semantic segmentation has reached impressive perfor-
mance levels, but in remote sensing, it is still extremely
challenging to acquire high-resolution annotations. In prac-
tice, for many tasks it is much easier to get coarse, low-
resolution labels. Our results demonstrate how naively up-
sampling these labels results in low quality outputs that lack
sufficient detail. Instead, we proposed a method that is su-
pervised using low-resolution annotations, incorporates ex-
emplar high-resolution labels, and generates fine-grained
output. Experiments on a novel dataset demonstrate how
our approach significantly reduces the performance gap to a

high-resolution baseline. This approach has the potential to
have real-world applicability in the remote sensing domain.
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[21] Gellért Máttyus, Wenjie Luo, and Raquel Urtasun. Deep-
roadmapper: Extracting road topology from aerial images. In
IEEE International Conference on Computer Vision, 2017.

[22] Shervin Minaee, Yuri Y Boykov, Fatih Porikli, Antonio J
Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos. Image
segmentation using deep learning: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2021.

[23] Ryan Mukherjee, Derek Rollend, Gordon Christie, Armin
Hadzic, Sally Matson, Anshu Saksena, and Marisa Hughes.
Towards indirect top-down road transport emissions estima-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition Workshop, 2021.

[24] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In IEEE International Con-
ference on Computer Vision, 2017.

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, 2019.

[26] Andrew Pilant, Keith Endres, Daniel Rosenbaum, and
Gillian Gundersen. Us epa enviroatlas meter-scale urban
land cover (mulc): 1-m pixel land cover class definitions and
guidance. Remote sensing, 12(12):1909, 2020.

[27] Roundabout Publications. Interstate rest areas.
https://www.interstaterestareas.com/
map-of-rest-areas.

3717



[28] Caleb Robinson, Le Hou, Kolya Malkin, Rachel Soobit-
sky, Jacob Czawlytko, Bistra Dilkina, and Nebojsa Jojic.
Large scale high-resolution land cover mapping with multi-
resolution data. In IEEE Conference on Computer Vision and
Pattern Recognition, 2019.

[29] Caleb Robinson, Kolya Malkin, Lucas Hu, Bistra Dilkina,
and Nebojsa Jojic. Weakly supervised semantic segmenta-
tion in the 2020 ieee grss data fusion contest. In IEEE Inter-
national Geoscience and Remote Sensing Symposium, 2020.

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In International Conference on Medical Image Computing
and Computer-Assisted Intervention, 2015.
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