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Abstract

Automatic machine learning-based (ML-based) medical
report generation systems for retinal images suffer from a rel-
ative lack of interpretability. Hence, such ML-based systems
are still not widely accepted. The main reason is that trust is
one of the important motivating aspects of interpretability
and humans do not trust blindly. Precise technical definitions
of interpretability still lack consensus. Hence, it is difficult
to make a human-comprehensible ML-based medical report
generation system. Heat maps/saliency maps, i.e., post-hoc
explanation approaches, are widely used to improve the in-
terpretability of ML-based medical systems. However, they
are well known to be problematic. From an ML-based medi-
cal model’s perspective, the highlighted areas of an image
are considered important for making a prediction. However,
from a doctor’s perspective, even the hottest regions of a heat
map contain both useful and non-useful information. Simply
localizing the region, therefore, does not reveal exactly what
it was in that area that the model considered useful. Hence,
the post-hoc explanation-based method relies on humans
who probably have a biased nature to decide what a given
heat map might mean. Interpretability boosters, in partic-
ular expert-defined keywords, are effective carriers of ex-
pert domain knowledge and they are human-comprehensible.
In this work, we propose to exploit such keywords and a
specialized attention-based strategy to build a more human-
comprehensible medical report generation system for retinal
images. Both keywords and the proposed strategy effec-
tively improve the interpretability. The proposed method
achieves state-of-the-art performance under commonly used
text evaluation metrics BLEU, ROUGE, CIDEr, and ME-
TEOR. Project website: https://github.com/Jhhuangkay/Expert-defined-

Keywords-Improve-Interpretability-of-Retinal-Image-Captioning.

1. Introduction
Automatic machine learning-based (ML-based) medical

systems, e.g., medical report generation for retinal images,
are still not widely accepted [7, 4]. The main reason is that
such ML-based systems suffer from a relative lack of explain-
ability/interpretability. Hence, it is hard for humans to un-
derstand or at least get an explanation for the machine-made

Original input retinal image.

Original input retinal image with a yellow sketch 
annotated by the ophthalmologist.

Predicted output class based on Resnet-152: 
Bilateral Macular Dystrophy.

Figure 1: A heat map based on CAM [53], i.e., a post-hoc
explanation method. Brighter colors (red) indicate regions
with higher levels of importance according to the deep neural
network, and darker colors (blue) indicate regions with lower
levels of importance. “Bilateral Macular Dystrophy” is the
predicted retinal disease by an ML-based model.

decision. As mentioned in [7], some high-level definitions
of interpretability have been proposed by various researchers
[6, 31]. For example, the authors of [4] define that inter-
pretability, e.g., in the form of attribute importance, conveys
a sense of causality to a system’s target group. This concept
of causality can only be grasped when the system points
out the underlying input-output causal effect relationship.
However, precise technical definitions of interpretability still
lack consensus. Hence, making a human-comprehensible
ML-based medical report generation system is challenging.

To improve the interpretability, methods [53, 42] based
on heat maps/saliency maps [35] are widely used to highlight
or explain how much each region of a medical image con-
tributed to a decision given by an ML-based medical system.
However, such methods are well known to be problematic
in the broader interpretability literature [1, 7]. Take the re-
sult based on CAM [53] in Figure 1 as an example. From
an ML-based medical model’s perspective, the highlighted
areas of the retinal image are deemed most important for the
diagnosis/classification of retinal disease. However, from
the perspective of ophthalmologists, even the hottest regions
(in red) of the heat map contain both non-useful and useful
information. Hence, simply localizing the region does not
reveal exactly what it was in that area that the ML-based
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model considered useful. That is to say, the ophthalmologist
cannot know if the ML-based model properly established
that the presence of the macular pattern was important in
the decision, if the vessels were the deciding factor, or if the
model had relied on an inhuman feature, such as a particular
texture or pixel value that might have more to do with the
image acquisition process than the underlying retinal disease.
This explainability gap of this widely used interpretability
approach, such as [53, 42], relies on humans to decide what
a given heat map, i.e., a given explanation, might mean. Un-
fortunately, human is biased and tends to ascribe a positive
interpretation [3, 7]. The same aforementioned issue also
happens to an ML-based medical report generation model.

Textual data, e.g., a sequence of expert-defined keywords,
is human-comprehensible. Hence, it is an effective carrier
of expert domain knowledge. As described in [23], ophthal-
mologists have usually written down a small set of keywords
denoting important information in the early diagnosis pro-
cess. Hence, they can be collected without much effort
[23, 20, 18, 19, 25, 33, 50]. In this work, we propose to
exploit interpretability boosters, in particular expert-defined
keywords, and a specialized attention-based strategy to build
a more human-comprehensible medical report generation
system for retinal images. Since the human-comprehensible
keywords carry the domain knowledge of ophthalmologists,
we exploit them to teach an ML-based model to generate
more explainable results. The proposed attention-based strat-
egy is to describe the salient combination of local features
that match with keywords in a certain modality, referring to
Section 3 for details. Both the expert-defined keywords and
the proposed strategy help improve the interpretability.
Contributions

i We propose a more explainable retinal image captioning
model based on interpretability boosters, in particular
expert-defined keywords.

ii A novel attention-based strategy in the transformer
decoder is proposed to match human-comprehensible
keywords with local image patches. The strategy effec-
tively reinforces the interpretability of the proposed
method.

iii According to the extensive experiments on the existing
large retinal image captioning dataset, when equipped
with the context-aware transformer decoder, perfor-
mance improvements on the baselines are witnessed
in all commonly used metrics. This demonstrates that
the semantic-grounded image representations are effec-
tive and can generalize to a wide range of models.

2. Related Work
2.1 Current Methods for Improving Interpretability

Typically, attempts to produce human-comprehensible
explanations for an ML-based model’s decision have been
mainly divided into two categories: inherent interpretabil-
ity and post-hoc interpretability [7]. A simple ML-based
method modeling input data usually has inherent explain-
ability. Take a linear regression model as an example where

a simple coefficient measures the direction and strength of
the relationship. However, in modern AI use cases, models
describing complex data distributions cannot be explained
by a simple relationship between inputs and outputs. In such
scenarios, many works focus on dissecting the ML-based
model’s decision-making process, i.e., post-hoc interpretabil-
ity [53, 42, 40, 43, 16, 17, 22, 10]. In [53], the authors
propose a class activation mapping (CAM) technique based
on the global average pooling layer proposed in [30]. The
proposed CAM builds a generic localizable deep represen-
tation that exposes the implicit attention of a convolutional
neural network (CNN) on an image. [42] propose a gradient-
weighted class activation mapping (Grad-CAM) technique
to exploit the gradients of any target concept flowing into
the final convolutional layer to generate a coarse localization
map, highlighting important image regions. Heat maps are
popular and widely used in medical imaging-related fields.
They provide a simple means of understanding some of the
limitations of post-hoc interpretability techniques [53, 42, 7].
Hence, they are illustrative. However, heat maps are well
known to be problematic in the broader interpretability lit-
erature [1]. The concerns also extend to other well known
post-hoc explanation approaches, e.g., locally interpretable
model-agnostic explanations (LIME) [40] and Shapley val-
ues (SHAP) [43].
Keywords are meant to represent the important image con-
tent while subtly alluding to its semantic relationship. Also,
they are effective expert domain knowledge carriers. Hence,
in this work, they are used to improve the interpretability
gap of the heat map-based explainability methods.

2.2 Natural Image Captioning
The encoder-decoder paradigm is a popular network ar-

chitecture for image captioning [47, 27], which leads to
promising results. A convolution neural network (CNN)
is first utilized to encode the image and a recurrent neural
network (RNN) is adopted to generate the output word se-
quence. In [48], a bidirectional LSTM-based approach is
proposed to create image descriptions. Both past and future
information are utilized at the same time to learn long-term
interactions between vision and language. In [39], an area-
based attention model is introduced for image captioning.
The area-based model predicts the next word and correspond-
ing regions of the image in each RNN time step for creating
image captions. The authors of [51] propose to exploit graph
convolutional networks (GCN) [41] and Long Short-Term
Memory (LSTM) [9] to build an encoder-decoder architec-
ture for image captioning. The graphs are built over the
detected objects in an image based on their spatial and se-
mantic connections. In [24], the authors propose an attention
on attention (AoA) module to determine the relevance be-
tween attention results and queries. The AoA module is
based on conventional attention mechanisms, both applied to
the encoder and the decoder of an image captioning model.
In [37], the authors introduce a unified attention block that
employs bilinear pooling to selectively capitalize on visual
information. The attention blocks are integrated into the im-
age encoder and sentence decoder to leverage higher-order
interactions of multi-modal features.
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The aforementioned methods are mainly based on natural
images to generate simple/rough image descriptions. Retinal
and natural images have very different characteristics, both
in objects’ sizes and details [23]. Hence, when those natural
image-based approaches are directly used to generate cap-
tions for retinal images, the quality of the generated medical
descriptions still needs improvement.
2.3 Retinal Image Captioning

Medical description generation for a given retinal image,
i.e., retinal image captioning, is a challenging computer vi-
sion task. In retinal image captioning, long and semantically
coherent medical descriptions for a given retinal image must
be generated algorithmically [46, 36, 23, 20, 18]. In [46],
the authors introduce an ML-based clinical decision support
system to assist ophthalmologists more effectively. The pro-
posed system is mainly based on an LSTM-based image
captioning model. In [36], an automatic medical description
generation model based on CNN and self-trained bidirec-
tional LSTM is proposed. In [23], the authors propose an
AI-based method to improve the traditional retinal disease
treatment procedure. The proposed model consists of a reti-
nal disease identifier, a clinical description generator, and a
CAM-based deep network visual explanation module. Also,
the authors propose a large-scale retinal image captioning
dataset DeepEyeNet to train and validate their method. The
authors of [20] propose a context-driven encoding network
to generate more accurate and meaningful medical reports
for retinal images. The proposed method is composed of a
multi-modal input encoder and a fused-feature decoder. In
[18], the authors propose an end-to-end transformer-based
model for retinal image description generation. The model is
mainly based on the non-local attention mechanism, feature
reinforcement module, and masked self-attention.
ML-based models have been proposed for retinal image
captioning. However, none of them is clearly interpretable.
To build a more human-comprehensible retinal image cap-
tioning system, we start from the encoder-decoder based
framework. Then, the expert-defined keywords and special-
ized attention-based strategy, referring to Section 3, are used
to reinforce the interpretability of the proposed method.

3. Methodology
In this section, we present the proposed explainable reti-

nal image captioning model as shown in Figure 2. The
proposed model is driven by interpretability boosters, i.e.,
expert-defined keywords. Overall, the model generates a
long and semantically coherent medical description from
a given retinal image and a list of corresponding expert-
defined keywords. In Section 3.1, a more general scenario
is also considered, i.e., without expert-defined keywords as
input. Given a retinal image, we use a CNN to learn visual
features from the image patches, which will be first fed into a
multi-label classifier to predict relevant keywords. Note that
the predicted keywords are considered as “pseudo” expert-
defined keywords. These keywords’ embedding vectors will
serve as semantic features for the retinal images. After the in-
formation extraction, the visual and semantic features are fed
to a contextual transformer decoder to sample output words

as medical descriptions sequentially. The contextual trans-
former decoder resembles a pervasive transformer decoder
[44] except the input for encoder-decoder attention module
is different. We introduce an image-keyword attention-based
encoder to fuse information both from images and keywords.
3.1 Interpretability Booster Prediction

According to [23, 20, 18], early in the diagnosis process,
ophthalmologists have usually written down a small set of
keywords denoting important information. Hence, expert-
defined keywords commonly exist in that case. However,
expert-defined keywords may not always commonly exist
in other fields, e.g., biology, chemistry, or physics. Hence,
besides directly using ground truth expert-defined keywords
for report generation, we also introduce a multi-label classi-
fier to predict these keywords beforehand of the given image.
Note that the correctness of keyword prediction affects the
model performance, referring to Section 5.1. Given an image
I , we extract its features v ∈ RN×HI with a CNN extrac-
tor ϕ(·) [8] and then feed them in a multi-layer perceptron
(MLP) classifier to predict one or more keywords from L
vocabulary with a distribution:

p(li = 1|v) ∝ e(W
MLP
i (v)), (1)

where l ∈ RL is a keyword vector, li denoting the presence
and absence of the i-th keyword. WMLP

i refers to the weight
of MLP classifier associated with i-th output. We select the
keywords with p(li = 1|v) > τ (confidence threshold) as
the used keywords to reinforce the decoding process.
3.2 Image & Interpretability Booster Fusion

After generating corresponding keywords, to exploit in-
teractions between the keywords and image, we embed key-
word sequences with image content and draw different at-
tention weights on every individual keyword with a self-
attention mechanism. To be more specific, for a given set of
keywords {ki}Ki=1, K is the number of keywords, we first
preprocess them by adding a special token “[SEP]” between
each keyword to form a complete sequence. We adopt a
glove embedding layer We to obtain the keyword embedded
vector k ∈ RK×He , where He is the embedding size. Then,
we introduce an attention feature mapping f(v,k), referring
to Equation (5). It could be interpreted as mapping an image
query Q from image I and a set of keyword key-value pairs
K,V from keywords k to an output Z. Here we leverage
the dot-product mechanism for much faster and more space-
efficient in exploring the keyword and image relationship.
The positional encoding trick is skipped since we do not wish
to include redundant sequential information with keywords’
unordered nature.

Q = Wqϕ(I) + bq (2)
K = Wkk+ bk (3)
V = Wvk+ bv (4)
Z = Attention(Q,K, V )

= softmax(
QKT

√
dk

)V (5)
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Figure 2: This figure shows the flowchart of the proposed method. It contains an image/keyword fuser and a contextual
transformer decoder for medical description generation. Visual and semantic features are respectively retrieved from a CNN
extractor and a multi-label classifier. These two features will be fused within a transformer block to weight patch importance.
Then the context features will serve as an encoder output for a transformer decoder to generate adequate medical descriptions.
“Image & Keyword” deontes “Image & Interpretability Booster”

Similarly, we also employ a residual connection, followed by
layer normalization and position-wise feed-forward layers
to enhance the model performance.

ZNorm = LayerNorm(Q+ Z) (6)

kfinal = max(0,W1ZNorm + b1)W2 + b2 (7)

During the matrix multiplication QKT , the image query Q
is respectively interacted (multiplied) with every keyword
embedded vector denoted as every key K. Therefore, we
could obtain every keyword weights on the image vector.
After scaled and softmax operation, we could get probability-
like weights for each keyword interpreted as their attention
or relationship with the current image. Finally, we multiply
the weights back with the corresponding value V to denote
their hybrid importance for providing attention-weighted
image-keyword information.
3.3 Contextual Transformer Decoder

Transformer is one of the state-of-the-art approaches in
sequence modeling and transduction problems [44]. Its at-
tention mechanism allows language modeling of global de-
pendencies between input and output, preventing the mem-
ory constraint limits of conventional recurrent models. In-
spired by the transformer’s architecture and in view of its
parallelization for attention-weighted positions, its nature is

deployed for our main output decoder. A contextual trans-
former decoder cell could be expressed in Figure 2. It com-
prises a masked self-attention unit, an encoder-decoder atten-
tion unit, and a final feed-forward layer, similar to a conven-
tional counterpart. We similarly exploit the encoder-decoder
structure [44] where the encoder follows the attention func-
tion f(v,k) directly. We can then illustrate the decoding
process as the following:

x = WeS (8)
C1 = x+ PE(x) (9)

C ′
l−1 = MultiHeadAtt([Cl−1, Cl−1, Cl−1]) (10)

Cl = FCN(MultiHeadAtt([kfinal, kfinal, C
′
l−1]))

(11)

In Equation (8), we denote a true sentence describing the
image as S = (S0, ..., ST ) and map the bag-of-word ids into
word vectors x ∈ RT×He with the same glove embedding
layer We. Then, we add positional embedding in equation
(9) on top of x to introduce sequential information. The se-
mantic vector will then repeatedly visit the multiple attention
layer block. For each layer of the decoder, we feed the input
into a self-attention layer and an encoder-decoder layer to
further attend on image-keyword fusion contexts. We also
use the dropout technique to alleviate the effect of noises and
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overfitting. Finally, we send the output of the final layer CL

into a fully connected layer to obtain the joint distribution of
decoding words.

PL = WvCL (12)
L(P |S, I,K) = ES∼PI

[logPL(S, I,K)] (13)

If we denote PI as the true medical descriptions for I pro-
vided in the training set and PL(S, I,K) as the final proba-
bility distribution after one fully-connected layer and soft-
max function, we could have the overall likelihood function
L(P |S, I,K) depending on our medical descriptions and
the given image shown in Equation (13). Finally, we could
minimize the total loss calculated as the sum of the negative
log-likelihood at each time step. For inference, for each
step we perform “Greedy Search” where we sample the
words based on the maximum likelihood of each word out-
put Pt on a predicted distribution Pt+1 until Pt+1 = special
end-of-sentence token.

4. Experiments
In this section, we describe the commonly used retinal

image captioning dataset and evaluation metrics. Summaries
of baseline models and experimental setup are provided.
4.1 Dataset

DeepEyeNet [23] is a commonly used benchmark for
retinal image captioning. The total amount of retinal images
is 15, 709. Each retinal image has two corresponding labels,
i.e., expert-defined keywords and clinical description. The
word length is mainly between 5 and 10 words. The labels
are annotated by experienced retinal specialists based on
retinal image analysis and conversation with patients. In this
work, we extend the DeepEyeNet dataset with 3, 145 expert-
annotated retinal images based on the same data collection
method as DeepEyeNet [23]. Hence, the size of the used
dataset for experiments is 18, 854. We separate the whole
dataset into 80%/10%/10%, i.e., 15, 083/1, 885/1, 886, for
training/validation/testing, respectively.
4.2 Performance Evaluation Metrics

In the experiments, we exploit the commonly used text
evaluation metrics, [38, 29, 45, 2, 14, 15, 12, 13, 11, 5], used
in retinal image captioning field, [28], to evaluate the gener-
ated medical descriptions for retinal images. Although these
automatic evaluation metrics are popular in natural and reti-
nal image captioning tasks, these metrics’ innate properties
[38, 29, 45, 2, 23, 21] make them more suitable for natural
image captioning not retinal image captioning. Hence, in
this work, we also conduct a human expert evaluation for the
proposed method, referring to Section 5.3.
4.3 Baseline Models

We compare the proposed method with several competi-
tive image captioning models.

• LSTM [48] builds on a deep CNN and BiLSTM struc-
ture for image captioning.

• Show and tell [49] adopts the attention mechanism
on several patches of the original image to focus on
particular area when generating descriptions.

• Semantic Att [52] predicts a list of visual attributes
which are attended with hidden states both at inputs and
outputs in a RNN caption generator.

• CoAtt[26] adopts co-attention mechanism to produce
joint context vectors for generating medical descrip-
tions based on topics.

• H-CoAtt[34] proposes a co-attention model for visual
question answering tasks which hierarchically reasons
the questions based on visual features.

• ContexGPT [18] adopts a non-local attention mecha-
nism, masked self-attention, and feature reinforcement
module to build a retinal image captioning network.

• DeepContex [20] proposes a context-driven encoding
network for retinal image captioning.

• MIA[32] presents a mutual iterative attention to jointly
consider interactions between images and keywords for
image captioning and visual question answering.

4.4 Experimental Setup
ResNet50 [8], pre-trained on ImageNet, is used as our

retinal image feature extractor ϕ. We first resize the image to
the appropriate size to feed in the model. The layer before the
last fully-connected layer is adopted for embedding visual
features. To process the annotations and keywords in the
dataset, non-alphabet characters are removed, all remaining
characters are converted to lower-case, and all the words that
appear only once are replaced by a special token ⟨UNK⟩.
As a result, our vocabulary size is 3, 524. All sentences are
truncated or padded with a max length 50. For keyword
prediction, we set the threshold τ = 0.5. For the word
embedding layer, we use an embedding size He = 300
to encode words. We use two transformer blocks with 8
attention heads, 2, 048 hidden size of the fully connected
layer, and 64 hidden size. Finally, we set the mini-batch size
to 64 and the learning rate to 1e-4 to train all the models
with 10 epochs.

5. Results and Discussion
5.1 Quantitative Analysis
With expert-defined keywords. We first report the results of
medical description generation by providing retinal images
and corresponding expert-defined keywords, i.e., ground
truth keywords, jointly, referring Table 1. It is clear that
vanilla LSTM decoder performs much worse than other mod-
els with attention mechanisms, which is non-surprising for
its deficiency in capturing image dependencies. By intro-
ducing expert-defined keywords in the generation process,
keyword-driven models starting from Semantic Att [52] ren-
der a large increase in every metric which validates the bene-
fits of keywords that guide the model for accurate predictions.
The expert-defined keywords are human-comprehensible
and hence provide improved interpretability, referring to
Section 5.3 for human expert evaluation. Improvements in
the co-attention mechanism between images and keywords
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Table 1: This table shows the evaluation results of the proposed model compared with several competitive baselines by using
expert-defined keywords, i.e., ground truth keywords. “BLEU-avg” denotes the average score of BLEU-1, BLEU-2, BLEU-3,
and BLEU-4. All the keyword-driven models are superior to the non-keyword-driven models.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 B-avg ROUGE CIDEr METEOR
LSTM [48] 0.2273 0.1650 0.1224 0.1017 0.1541 0.2533 0.1102 0.2437
Show and tell [49] 0.4234 0.3583 0.3002 0.2757 0.3394 0.4463 0.3029 0.4335
Semantic Att [52] 0.5904 0.5100 0.4360 0.3969 0.4833 0.6228 0.4460 0.6056
ContexGPT [18] 0.6254 0.5500 0.4758 0.4344 0.5214 0.6602 0.4951 0.6390
CoAtt [26] 0.6712 0.5950 0.5211 0.4817 0.5673 0.6988 0.5419 0.6798
H-CoAtt [34] 0.6718 0.5956 0.5201 0.4829 0.5676 0.7045 0.5417 0.6864
DeepContex [20] 0.6749 0.6036 0.5307 0.4890 0.5745 0.7020 0.5496 0.6835
MIA [32] 0.6877 0.6138 0.5421 0.5000 0.5859 0.7195 0.5596 0.7006
Ours 0.6969 0.6195 0.5496 0.5008 0.5892 0.7252 0.5650 0.7044

Table 2: This table shows the evaluation results of the proposed model compared with several competitive baselines by using
predicted keywords, i.e., pseudo expert-defined keywords. “BLEU-avg” denotes the average score of BLEU-1, BLEU-2,
BLEU-3, and BLEU-4. All the keyword-driven models are superior to the non-keyword-driven models.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 B-avg ROUGE CIDEr METEOR
LSTM [48] 0.2273 0.1650 0.1224 0.1017 0.1541 0.2533 0.1102 0.2437
Show and tell [49] 0.4234 0.3583 0.3002 0.2757 0.3394 0.4463 0.3029 0.4335
H-CoAtt [34] 0.4465 0.3822 0.3285 0.2969 0.3636 0.4788 0.3409 0.4564
ContexGPT [18] 0.4493 0.3744 0.3109 0.2800 0.3536 0.4771 0.3171 0.4588
Semantic Att [52] 0.4541 0.3771 0.3117 0.2777 0.3552 0.4785 0.3118 0.4610
CoAtt [26] 0.4647 0.4038 0.3479 0.3162 0.3831 0.4906 0.3563 0.4759
DeepContex [20] 0.4683 0.3966 0.3302 0.2969 0.3730 0.4941 0.3341 0.4803
MIA [32] 0.5077 0.4446 0.3861 0.3514 0.4224 0.5326 0.3897 0.5163
Ours 0.5268 0.4600 0.3915 0.3634 0.4354 0.5482 0.4105 0.5316

further strengthen our belief that models pay large attention
to integrated representation collections from both the visual
and semantic concepts. By leveraging the mutual attention
weights from image and keywords, our model with the trans-
former decoder replacing the LSTM decoder outperforms all
other baselines, where previous tokens and fusion concepts
could be fully referenced to generate the next token. Over-
all, we see an increase of 74% in BLEU average, 63% in
ROUGE, 87% in CIDEr, and 63% in METEOR, compared
with non-keyword-driven attention models [49].
Keyword prediction. To simulate a more general setting, we
also report the experimental results by predicted keywords,
i.e., pseudo expert-defined keywords, using our pre-trained
multi-label classifier in Table 2 and Table 3. We can see
the benefit of keyword fusion is degraded due to some erro-
neously predicted keywords. This is particularly challenging
in the medical description generation task since there are
3, 465 keyword options in the DeepEyeNet dataset where the
number of keywords to select is undetermined for a given
image. But still, we can observe an overall improvement
in all metrics by inducing the predicted keyword contexts.
Our approach especially outperforms several co-attention
based approaches, which intrinsically overfit the training
data resulting from their model complexity. The single cross
attention embedded in our transformer decoder between the
visual and semantic concepts could be more robust to the
keyword noise during the several layer transitions.
Co-attention between image and keywords. According
to Table 4, we find that the performance of “Image only”

and “Keyword only” baselines are worse than the “Im-
age+Keywords” methods. It implies that the interaction
between keywords and image is crucial for medical report
generation. To further demonstrate the benefits of attention
mechanisms, we provide another baseline where image and
keyword features are concatenated without further fusion.
We can see a large performance degradation without using
attention mechanisms.
5.2 Qualitative Results and Analysis
Comparison with the classic attention model. We present
some qualitative results generated by three medical genera-
tion models including ours and [49, 18] in Figure 3. Show
and tell [49] does not apply any keywords and ContexGPT
[18] serves as a keyword-oriented baseline. In the first two
images, by semantically attending to the correct predicted
keywords, both ContexGPT and our model generate descrip-
tions related to keywords. But our model matches the ground
truth identically. Show and tell model [49] without explicit
textual attributes seem to diverge from accurate symptom
names and detailed illustrations. ContexGPT also loses track
of accurate semantic information besides the keyword guid-
ance. It substantiates the need for our pre-trained keyword
predictor to first coarsely tag a given retinal image then ex-
tend the details, which is more imperative and intuitive in
medical fields compared with common domains.

For the third image, we can observe the keywords are
not explicitly involved in the ground truth, intead symptom
illustration. Both two baselines provide irrelevant image
descriptions, while our model provides more details of il-
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Table 3: The table is to show the performance drop when expert-defined keywords are not available, i.e., the case “With
predicted keywords”.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 B-avg ROUGE CIDEr METEOR
With predicted keywords 0.5268 0.4600 0.3915 0.3634 0.4354 0.5482 0.4105 0.5316
With expert-defined keywords 0.6969 0.6195 0.5496 0.5008 0.5892 0.7252 0.5650 0.7044

Table 4: The table is to demonstrate the ablation study of the proposed model structure. “Image only” and “Keywords only”
refer to input either feature only into our model. “Image+Keywords (concat)” indicates we only concatenate image and
keyword vectors and send them into the transformer decoder. “Image+Keywords (coatt)” is the complete structure of the
proposed method.

Input BLEU-1 BLEU-2 BLEU-3 BLEU-4 B-avg ROUGE CIDEr METEOR
Image only 0.4357 0.3651 0.3041 0.2773 0.3455 0.4608 0.3067 0.4454
Keywords only 0.5568 0.4970 0.4322 0.3971 0.4708 0.6110 0.4618 0.5881
Image+Keywords (concat) 0.6527 0.5752 0.4984 0.4626 0.5472 0.6783 0.5166 0.6643
Image+Keywords (coatt) 0.6969 0.6195 0.5496 0.5008 0.5892 0.7252 0.5650 0.7044

Retinal Image Keywords Ground Truth Show and Tell ContexGPT Our Method
pigment 
epithelial 

detachment 
(ped)

62 year old male armd with 
ped partly organized.

13 year old patient dusn / 
optic papillitis.

Pigment epithelial lesions. 62 year old male armd with ped
partly organized.

presumed 
ocular 

histoplasmosis 
syndrome 

32 year old woman with 
presumed ocular 
histoplasmosis syndrome with 
choroidal neovascular 
membrane.

23 year old white female 
pseudo pohs / mewds.

Presumed ocular histoplasmosis 
syndrome with large subretinal 
new vessel membrane in the 
fovea.

32 year old woman with 
presumed ocular histoplasmosis 
syndrome with choroidal 
neovascular membrane.

papilledema Os optic nerve with frank 
swelling.

29 year old female pohs with 
cnvm.

No history. Os with subtle central pigment 
epithelial changes presumably 
presumed ocular histoplasmosis 
syndrome.

sub-arachnoid 
hemorrhage

60 year old white female was 
found unconscious in her 
home she was rushed to the 
hospital where a cat scan of 
her head revealed a large sub 
arachnoid hemorrhage a 
carotid angiogram showed a 
ruptured aneurysm of the 
posterior communicating 
artery on the right side the 
next day.

This eight year old white 
female who was in perfect 
health complaining of a visual 
disturbance in the left eye the 
right eye was completely 
normal the left eye had a 
exudative detachment of the 
macula.

The patient a 29 year old white 
female developed idiopathic 
thrombocytopenis purpura itp in 
1964.

A 60 year old white female was 
found unconscious in her home 
she was rushed to the hospital 
where a cat scan of her head 
revealed a large sub arachnoid 
hemorrhage a carotid angiogram 
showed a ruptured aneurysm of 
the posterior communicating 
artery on the right side the next 
day.

Figure 3: Illustration of descriptions generated by the proposed model and two baseline models [49, 18].

lustrating phenomenon related to the symptoms. We further
demonstrate the robustness of our model to generate long
descriptions based on the context fusion in the last image,
compared to less structured expressions from other baselines.

Does our model fully understand the fused concepts? To
better understand how our model utilizes the fused visual
and semantic concepts for token sampling, we visualize the
attention weights on the input image at each time step, re-
ferring to Figure 4. Each image consists 64 patches and
each patch has a weight of the current word and correspond-
ing keyword-fused image patch. We can see our model is
less sensitive (showing minor saliency on overall regions)
to words specifying number (i.e. 29, 55) or color (in white)
by solely relying on the input image and keywords. But our

model heavily depends on some specific image regions to
predict a medical keyword. We can see a trend of similar
saliency between consecutive words which our model diag-
noses to be the abnormality of the particular image. These
highlighted regions allude some promising interpretability
of how our model understands keywords and image patches
to generate an adequate sequence.

5.3 Evaluations with Retinal Specialists
We use 5-level report quality evaluation, i.e., from 1 to 5,

the higher the better. Since our research resource is limited,
we are only able to randomly select 100 samples from our
model-generated reports and the corresponding ground-truth
report. We ask five different retinal specialists to score the
quality of the model-generated report and the correspond-
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Example 1:
Ground truth: The patient a 29 year old white female developed idiopathic thrombocytopenis purpura itp in 1964.
Keywords: Idiopathic thrombocytopenis purpura (itp)

Example 2:
Ground truth: 55 year old with background diabetic retinopathy that developed renal cell carcinoma underwent 

radiation to left orbit.
Keywords: radiation maculopathy

Figure 4: Visualization of image attention propagating through the text generation. Each example consists of an input image,
ground truth descriptions, and predicted keywords. Each predicted word is shown on top of image attention at each time step.

ing ground-truth report, respectively. Note that these five
retinal specialists do not know whether a report is model-
generated or expert-generated. Finally, we get an average
score of 4.0/5.0 for our model-generated reports and an av-
erage score of 4.3/5.0 for the ground-truth reports. Since
the ground-truth reports are defined by ophthalmologists,
the above results show that the proposed method obtains
competitive performance against the human expert baseline.
We use the same above setup to conduct interpretability eval-
uation. The first case is presenting 100 generated reports
without corresponding keywords to the five retinal special-
ists. The second case is presenting the same 100 generated
reports with corresponding keywords. In the first case, the
interpretability evaluation score is 4.0/5.0. In the second
case, the interpretability evaluation score is 4.6/5.0. Hence,
the interpretability is improved by keywords.
5.4 Main Limitation of the Proposed Approach

If the expert-defined keywords are not available in some
domains, then the performance of the proposed model will
decrease. Also, the keywords probably cannot be always
generated accurately by the proposed method. The reason is
that one of the main purposes of expert-defined keywords is
to teach a model to predict correct keywords.

6. Conclusion and Future Work
To sum up, an explainable medical report generation

method for retinal images is proposed based on expert-

defined keywords and a novel attention-based strategy. The
proposed method is capable of predicting required techni-
cal keywords and fusing them for advanced word sampling.
The experiments show that the proposed model can gen-
erate more accurate and meaningful descriptions for reti-
nal images, and the performance increases about 74% in
BLEU average, 63% in ROUGE, 87% in CIDEr, and 63%
in METEOR compared with non-keyword attention-based
baselines. Attention visualization denotes some intriguing
patterns of potential symptoms in specific image regions. To
help our research community develop a more explainable
ML-based model for retinal image captioning, proposing an
automatic metric to measure explainability is an interesting
future direction.

7. Acknowledgments
This work is supported by competitive research funding

from University of Amsterdam and King Abdullah Univer-
sity of Science and Technology (KAUST).

References
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfel-

low, Moritz Hardt, and Been Kim. Sanity checks for saliency
maps. pages 9508–9518, 2018.

[2] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic
metric for mt evaluation with improved correlation with hu-

1866



man judgments. In Proceedings of the acl workshop on intrin-
sic and extrinsic evaluation measures for machine translation
and/or summarization, pages 65–72, 2005.

[3] Aaron M Bornstein. Is artificial intelligence permanently
inscrutable? 2016.

[4] Nadia Burkart and Marco F Huber. A survey on the explain-
ability of supervised machine learning. Journal of Artificial
Intelligence Research, 70:245–317, 2021.

[5] Riccardo Di Sipio, Jia-Hong Huang, Samuel Yen-Chi Chen,
Stefano Mangini, and Marcel Worring. The dawn of quantum
natural language processing. In IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
pages 8612–8616. IEEE, 2022.

[6] Finale Doshi-Velez and Been Kim. Towards a rigorous
science of interpretable machine learning. arXiv preprint
arXiv:1702.08608, 2017.

[7] Marzyeh Ghassemi, Luke Oakden-Rayner, and Andrew L
Beam. The false hope of current approaches to explainable ar-
tificial intelligence in health care. The Lancet Digital Health,
3(11):e745–e750, 2021.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[10] Tao Hu, Pascal Mettes, Jia-Hong Huang, and Cees GM Snoek.
Silco: Show a few images, localize the common object. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5067–5076, 2019.

[11] Jia-Hong Huang. Robustness analysis of visual question an-
swering models by basic questions. King Abdullah University
of Science and Technology, Master Thesis, 2017.

[12] Jia-Hong Huang, Modar Alfadly, and Bernard Ghanem.
Vqabq: Visual question answering by basic questions. VQA
Challenge Workshop, CVPR, 2017.

[13] Jia-Hong Huang, Modar Alfadly, and Bernard Ghanem. Ro-
bustness analysis of visual qa models by basic questions. VQA
Challenge and Visual Dialog Workshop, CVPR, 2018.

[14] Jia-Hong Huang, Modar Alfadly, Bernard Ghanem, and Mar-
cel Worring. Assessing the robustness of visual question
answering. arXiv:1912.01452, 2019.

[15] Jia-Hong Huang, Cuong Duc Dao, Modar Alfadly, and
Bernard Ghanem. A novel framework for robustness analysis
of visual qa models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 8449–8456, 2019.

[16] Jia-Hong Huang, Luka Murn, Marta Mrak, and Marcel Wor-
ring. Gpt2mvs: Generative pre-trained transformer-2 for
multi-modal video summarization. In Proceedings of the 2020
International Conference on Multimedia Retrieval, pages 580–
589, 2021.

[17] Jia-Hong Huang and Marcel Worring. Query-controllable
video summarization. In Proceedings of the 2020 Interna-
tional Conference on Multimedia Retrieval, pages 242–250,
2020.

[18] Jia-Hong Huang, Ting-Wei Wu, and Marcel Worring. Con-
textualized keyword representations for multi-modal retinal
image captioning. In Proceedings of the 2020 International
Conference on Multimedia Retrieval, pages 645–652, 2021.

[19] Jia-Hong Huang, Ting-Wei Wu, C-H Huck Yang, Zenglin
Shi, I Lin, Jesper Tegner, Marcel Worring, et al. Non-local
attention improves description generation for retinal images.

In Proceedings of the IEEE/CVF winter conference on appli-
cations of computer vision, pages 1606–1615, 2022.

[20] Jia-Hong Huang, Ting-Wei Wu, Chao-Han Huck Yang, and
Marcel Worring. Deep context-encoding network for retinal
image captioning. In 2021 IEEE International Conference on
Image Processing (ICIP), pages 3762–3766. IEEE, 2021.

[21] Jia-Hong Huang, Ting-Wei Wu, Chao-Han Huck Yang, and
Marcel Worring. Longer version for" deep context-encoding
network for retinal image captioning". arXiv preprint
arXiv:2105.14538, 2021.

[22] Jia-Hong Huang, Chao-Han Huck Yang, Pin-Yu Chen, An-
drew Brown, and Marcel Worring. Causal video summarizer
for video exploration. In 2022 IEEE International Conference
on Multimedia and Expo (ICME), pages 1–6. IEEE, 2022.

[23] Jia-Hong Huang, C-H Huck Yang, Fangyu Liu, Meng Tian,
Yi-Chieh Liu, Ting-Wei Wu, I Lin, Kang Wang, Hiromasa
Morikawa, Hernghua Chang, et al. Deepopht: medical report
generation for retinal images via deep models and visual ex-
planation. In Proceedings of the IEEE/CVF winter conference
on applications of computer vision, pages 2442–2452, 2021.

[24] Lun Huang, Wenmin Wang, Jie Chen, and Xiao-Yong Wei.
Attention on attention for image captioning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 4634–4643, 2019.

[25] C-H Huck Yang, Fangyu Liu, Jia-Hong Huang, Meng Tian,
I-Hung Lin, Yi Chieh Liu, Hiromasa Morikawa, Hao-Hsiang
Yang, and Jesper Tegner. Auto-classification of retinal dis-
eases in the limit of sparse data using a two-streams machine
learning model. In Asian Conference on Computer Vision,
pages 323–338. Springer, 2018.

[26] Baoyu Jing, Pengtao Xie, and Eric Xing. On the automatic
generation of medical imaging reports. In Proceedings of the
56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2577–2586, Mel-
bourne, Australia, July 2018. Association for Computational
Linguistics.

[27] Andrej Karpathy, Li Fei-Fei, Andrej Karpathy, Li Fei-Fei,
Andrej Karpathy, and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In CVPR, pages
3128–3137, 2015.

[28] Christy Y. Li, Xiaodan Liang, Zhiting Hu, and Eric P. Xing.
Knowledge-driven encode, retrieve, paraphrase for medical
image report generation, 2019.

[29] Chin-Yew Lin. Rouge: A package for automatic evaluation
of summaries. Text Summarization Branches Out, 2004.

[30] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. arXiv preprint arXiv:1312.4400, 2013.

[31] Zachary C Lipton. The mythos of model interpretability:
In machine learning, the concept of interpretability is both
important and slippery. Queue, 16(3):31–57, 2018.

[32] Fenglin Liu, Yuanxin Liu, Xuancheng Ren, Xiaodong He,
and Xu Sun. Aligning visual regions and textual concepts for
semantic-grounded image representations, 2019.

[33] Yi-Chieh Liu, Hao-Hsiang Yang, C-H Huck Yang, Jia-Hong
Huang, Meng Tian, Hiromasa Morikawa, Yi-Chang James
Tsai, and Jesper Tegner. Synthesizing new retinal symptom
images by multiple generative models. In Asian Conference
on Computer Vision, pages 235–250. Springer, 2018.

[34] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hi-
erarchical question-image co-attention for visual question
answering, 2017.

[35] Scott M Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. In Proceedings of the 31st

1867



international conference on neural information processing
systems, pages 4768–4777, 2017.

[36] Sanjukta Mishra and Minakshi Banerjee. Automatic caption
generation of retinal diseases with self-trained rnn merge
model. In Advanced Computing and Systems for Security,
pages 1–10. Springer, 2020.

[37] Yingwei Pan, Ting Yao, Yehao Li, and Tao Mei. X-linear
attention networks for image captioning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10971–10980, 2020.

[38] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th annual meeting on
association for computational linguistics, pages 311–318.
Association for Computational Linguistics, 2002.

[39] Marco Pedersoli, Thomas Lucas, Cordelia Schmid, and Jakob
Verbeek. Areas of attention for image captioning. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 1242–1250, 2017.

[40] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "
why should i trust you?" explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining,
pages 1135–1144, 2016.

[41] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagen-
buchner, and Gabriele Monfardini. The graph neural network
model. IEEE transactions on neural networks, 20(1):61–80,
2008.

[42] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: Visual explanations from deep networks via gradient-
based localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626, 2017.

[43] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and
Himabindu Lakkaraju. Fooling lime and shap: Adversarial
attacks on post hoc explanation methods. In Proceedings of
the AAAI/ACM Conference on AI, Ethics, and Society, pages
180–186, 2020.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[45] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. Cider: Consensus-based image description evalu-
ation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4566–4575, 2015.

[46] Sivamurugan Vellakani and Indumathi Pushbam. An en-
hanced oct image captioning system to assist ophthalmol-
ogists in detecting and classifying eye diseases. Journal of
X-Ray Science and Technology, 28(5):975–988, 2020.

[47] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru
Erhan. Show and tell: A neural image caption generator. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3156–3164, 2015.

[48] Cheng Wang, Haojin Yang, Christian Bartz, and Christoph
Meinel. Image captioning with deep bidirectional lstms. In
Proceedings of the 24th ACM international conference on
Multimedia, pages 988–997. ACM, 2016.

[49] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhutdinov, Richard Zemel, and Yoshua
Bengio. Show, attend and tell: Neural image caption genera-
tion with visual attention, 2016.

[50] C-H Huck Yang, Jia-Hong Huang, Fangyu Liu, Fang-Yi Chiu,
Mengya Gao, Weifeng Lyu, Jesper Tegner, et al. A novel hy-
brid machine learning model for auto-classification of retinal
diseases. Workshop on Computational Biology, ICML, 2018.

[51] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring
visual relationship for image captioning. In Proceedings of
the European conference on computer vision (ECCV), pages
684–699, 2018.

[52] Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang, and
Jiebo Luo. Image captioning with semantic attention, 2016.

[53] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. Learning deep features for discrimina-
tive localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2921–2929,
2016.

1868


