
Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly

Chengzhi Wu1, Xuelei Bi1, Julius Pfrommer2,3,
Alexander Cebulla1, Simon Mangold4, and Jürgen Beyerer2

1Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Germany
2Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Germany

3Fraunhofer Center for Machine Learning, Germany
4wbk Institute of Production Science, Karlsruhe Institute of Technology, Germany

chengzhi.wu@kit.edu xuelei.bi@student.kit.edu julius.pfrommer@iosb.fraunhofer.de
alexander.cebulla@kit.edu simon.mangold@kit.edu juergen.beyerer@iosb.fraunhofer.de

Abstract

On robotics computer vision tasks, generating and an-
notating large amounts of data from real-world for the use
of deep learning-based approaches is often difficult or even
impossible. A common strategy for solving this problem is
to apply simulation-to-reality (sim2real) approaches with
the help of simulated scenes. While the majority of cur-
rent robotics vision sim2real work focuses on image data,
we present an industrial application case that uses sim2real
transfer learning for point cloud data. We provide insights
on how to generate and process synthetic point cloud data
in order to achieve better performance when the learned
model is transferred to real-world data. The issue of imbal-
anced learning is investigated using multiple strategies. A
novel patch-based attention network is proposed addition-
ally to tackle this problem.

1. Introduction
Due to the rapid development of neural network algo-

rithms, an increasing number of industrial companies and
factories have started using deep learning (DL) methods for
a variety of manufacturing and remanufacturing tasks in the
past decade. In general, neural networks require a substan-
tial amount of data in order to be trained, whereas for practi-
cal industrial applications, allocating and annotating a large
amount of data is difficult or even impossible, especially
when robots are involved. In the field of robotics, when
the robot or manipulator directly interacts and samples with
the real-world environment, there will be problems of low
sampling efficiency and safety problems.

One possible solution to this problem is to apply
simulation-to-reality (sim2real) method, which learns with
simulated data and transfers the learned knowledge to real-
world application. This is a common strategy used in
robotics for learning robot movement controls [2, 33] and
robotic-related vision tasks [42, 24, 29]. In those com-
puter vision tasks, simulated scenes are usually rendered
into RGB images with possible auxiliary depth, thermal,
or even flow images. Then, DL-based neural networks are
pre-trained with the synthetic data and subsequently trans-
ferred to real-world use cases via domain adaption. How-
ever, most current sim2real work focuses on image data.
Few researches apply sim2real methods on point cloud data.
In this paper, we show a full pipeline of how to perform
sim2real transfer learning on point clouds for a robotics use
case as a part of a practical remanufactoring application.

We consider the automated disassembly of different vari-
ants of actuators which are commonly used in vehicle man-
ufacturing, e.g., as seat adjuster motors, window lift motors
or rear door motors. Several example motors are shown in
Figure 1(a). The ultimate goal of this project is to use robots
to perform automatic disassembly of motors, not only for
the known motor types, but also for future variants with
unseen specifications. In this case, generating a synthetic
dataset with motor variants in simulated scenes for sim2real
transfer learning [55] is a good solution. By learning the in-
ternal structure on part level, (e.g. gear container, pole pot,
electrical connection), processes on unseen variants which
have similarities to the known population of actuators be-
come feasible. This paper focuses on the first step of getting
precise screw positions and orientations on motor covers for
robots as one of the most important tasks for disassembly.

4531



(a) (b)

(c)

Figure 1: Real-world motors and generated demo motors.
(b) Upper row: no textures added; bottom row: textures
added and rendered. (c) An explosion figure of a generated
motor. The original assembled motor model is also shown
at the right most.

Generating a synthetic point cloud dataset for sim2real
transfer learning has following advantages in our project: (i)
a large synthetic dataset can be easily created, segmentation
ground truth labels are given in the simulation, no manual
annotation needed; (ii) motor variants with unseen specifi-
cations may be generated, which will strengthen the gen-
eralization ability of the trained network model; (iii) point
cloud data contain richer 3D information for the learning.
Using point cloud data avoids some problems that may oc-
cur when using image data, e.g., colors of the simulated im-
ages are far from realistic since it is hard to get the perfect
textures for scene objects or to render the scene with perfect
lighting conditions. When using the point cloud dataset, we
use point coordinates information other than colors.

The remainder of this paper is structured as follows:
Section 2 summarizes the state-of-the-art of 3D synthetic
dataset creation, sim2real transfer learning, and point cloud
segmentation. Section 3 shows a general pipeline of cre-
ating a synthetic dataset with simulated scenes. Section 4
describes the whole sim2real learning framework and gives
experimental results. Section 5 additionally explores sev-
eral strategies for imbalanced learning, including a novel
patch-based attention network module. Finally, Section 6
summarizes presented results and discusses future work.

2. Related Work
3D synthetic dataset. Generating synthetic datasets as

training data for machine learning purposes has already
been widely discussed and used as a learning approach for

various computer vision applications. In the past decade,
many synthetic datasets of 3D models have been created,
including the Princeton Shape Benchmark [38], ModelNet
[50], ShapeNet [6], PartNet [28], etc. They collect large
amounts of 3D models of different categories. A large
dataset of 3D-printing models is provided in Thingi10K
[54], while a more recent ABC dataset [19] collects over
1 million CAD models including many mechanical compo-
nents. Regarding 3D scenes, [45], [36] and [18] generate
synthetic datasets for the segmentation and detection of ob-
jects in virtual urban scenes. [22] generates images from
virtual garden scenes, while [43] creates a dataset for pose
estimation. There are also works that generate synthetic
point clouds. SynthCity [12] generates point clouds of ur-
ban scenes using Blender, while [30] also uses Blender but
for the generation of point clouds of historical objects.

Sim2real transfer learning. By allowing faster, more scal-
able, and lower-cost data collection than is possible in real-
world, sim2real approaches show great impact on machine
learning and have been applied in many fields including
robotics and classic machine vision tasks. [42], [24] and
[44] train neural network models on synthetic RGB images
with domain randomization or domain adaption then trans-
fer it to real-world, while Pachevish et al. [29] work with
synthetic depth images. Also working with synthetic im-
age data, Du et al. [9] propose a method for automatically
tuning simulator system parameters to match the real world.
With the help of deep reinforcement learning [27], robotics
policies are directly used as training data for sim2real learn-
ing in some works [25, 2]. A more detailed survey is given
in [53]. Apart from robotics tasks, sim2real methods have
also been widely used in other fields including autonomous
driving [51, 34], medical diagnosis [1], or even the control
of atmospheric pressure plasma jets [48].

Point cloud segmentation. Before the appearance of Point-
Net [31], deep learning-based methods for point cloud seg-
mentation are usually multi-view based [20, 5, 3, 40] or
volumetric-based [26, 17, 21]. PointNet [31] is the first DL-
based method that learns directly on points. It uses point-
wise multi-layer perceptrons to extract global features. Its
subsequent work of PointNet++ [32] further considers lo-
cal information. PointConv[49] and KPConv [41] propose
point-wise convolution operators with which points are con-
voluted with neighbor points. Similar ideas are proposed in
[46, 16]. Simonovsky et al. [39] takes each point as a graph
vertex and applies graph convolution. In DGCNN [47],
EdgeConv blocks update the neighbor information dynami-
cally. RandLA-Net [15] learns attention scores for points as
a soft mask to replace the original pooling layer. GAPNet
[7] and Liang et al. [23] propose graph-attention operations
with neighbor points to learn coefficients. More recently,
transformer-based methods are starting to trend. PCT [14]

4532



(a) (b)

(c)

Figure 2: Synthetic dataset generation: (a) simulated scene
built in Blender; (b) synthetic image data generated with
BlenderProc; (c) synthetic point cloud data generated with
BlenSor.

pioneers on this direction by replacing the encoder layers
in the original PointNet [31] framework with self-attention
layers, while PT [52] is based on U-Net [35]. SortNet is
proposed in [10] to learn sub-point clouds, with which at-
tention operations are applied on their latent features and
the global feature to perform local-global attention.

3. Synthetic Dataset Generation
3.1. Synthetic Mesh Model Generation

To easily generate motor mesh models of a variety of
specifications, we create a Blender addon based on the mo-
tor types we have. As an open source software, Blender
[4] is a proven tool that performs well in modeling shapes
and creating highly customizable addons. Our addon is able
to generate motor mesh models with various specifications
and save them in desired file formats. Each component of a
generated motor can also be saved separately.

The generated models contain the following compo-
nents: (i) Pole Pot; (ii) Electric Connection; (iii) Gear Con-
tainer; (iv) Cover and (v) Screws. Those are the five main
categories we need perform segmentation on. Additionally,
following inner components have also been generated : (vi)
Magnets; (vii) Armature; (viii) Lower Gear and (ix) Upper
Gear as presented in 1(c). However, since we only focus
on the first step of unscrewing process in this paper, inner
parts will not be investigated. To generate motors with vari-

ous specifications, we provide lots of parameter options that
control the type, size, position and rotation of different parts
of motor, e.g. screw position, gear size, or pole pot length.
Figure 1(b) shows ten generated demo motors with different
parameters and an exploded view of a demo motor. All the
individual components mentioned above are modeled sepa-
rately as illustrated.

3.2. Synthetic Point Cloud Generation

The generated mesh models are further used to create
synthetic image and point cloud datasets. A simulated
scene is built in Blender for it. Apart from the lights and
cameras, the Blender scene also contains the model of the
real-world clamping system and a background panel. The
camera rotates randomly on top of the scene within a cer-
tain range yet always towards the motor. To create image
dataset, apart from the scene images rendered by Blender
directly, BlenderProc [8] can be used to generate corre-
sponding depth images, normal images, and segmentation
ground truth images as shown in Figure 2(b). Or in our
case, BlenSor [13] is used to simulate the sensors to create
point cloud dataset. Figure 2(c) gives a demo of generated
point cloud colored in the material color or its segmentation
ground truth.

3.3. Data Pre-processing and Augmentation

The generated point clouds are of relatively large size.
Each point cloud contains around 1.2 million points. How-
ever, neural networks have a limitation of point number per
batch, common choices are 1024/2048/4096 points. Direct
downsampling makes the sub-point clouds contain too less
points for tail categories (e.g., screws in our case) thus does
not work. To deal with large point clouds, common indus-
trial applications use sliding voxels to voxelize the point
cloud space and perform prediction voxel-wise. In our case,
we want to perform the point cloud segmentation fast and
precisely to prevent the robot from being idle for a too long
time. Using the prior knowledge that motors are always
clamped in a relatively fixed position in the clamping sys-
tem and only the area around the motor is of our interest,
we restrict the sampling region by cropping a cuboid area
around that location and use it as input to the segmenta-
tion neural network. All other residual points are labeled as
background points directly. The size of the cropped point
cuboid is of only around 10% of the raw point cloud. By
doing so, direct downsampling the point cuboid into sub-
point clouds of 2048 points makes the tail categories still
have enough points for learning. A cropped point cuboid
demo is given in Figure 2(c).

Apart from pre-processing, augmentation is also an im-
portant part to improve the generalization ability of the
models. Common augmentation methods include random
rotation and random jittering over the whole point cloud.

4533



Figure 3: Sim2real transfer learning piepline for the point cloud segmentation task in our industrial application.

In our case, we additionally introduce other augmentation
methods of (i) random cuboid size along all three axes; (ii)
random mild translation and rotation of motors; and (iii)
adding random size and random position hovering tiles over
the clamping system as scene masks, which is similar to
the masking augmentation on images. An detailed ablation
study regarding the augmentations is given in Section 4.5.

4. Sim2real Point Cloud Learning
As illustrated in Figure 3, apart from the synthetic point

cloud dataset generation, the whole pipeline consists fol-
lowing other steps: pre-train the network model on syn-
thetic data, fine-tune the network model on real-world data,
and post-processing for screw information.

4.1. Pre-training on Simulated Scenes

As reviewed in Section 2, there are a variety of neural
network models that can be used for the point cloud seg-
mentation task. Since the backbone itself is not of our main
focus, balancing the performance and the computation time,
we use DGCNN [47] as our backbone network for the seg-
mentation task. To better deal with the camera perspective
variance, a spatial transform network (STN) [31] is intro-
duced at the beginning.

In the previous step, a dataset of 1000 random scenes
with 1000 random motors is generated. We use 80% of it
for training and 20% for test. In the pre-training process, the
training takes 100 epochs and the batch size is 16. We use an
initial learning rate of 0.01, and a cos decay scheduler with
a final learning rate of 0.00001. The optimization method is
stochastic gradient descent (SGD). We use the widely used
cross entropy for the segmentation loss Lseg. An auxiliary
STN rotation loss Lrot which describes the L2 difference
between the learned rotation matrix and the ground truth
(saved during the augmentation) is additionally applied with
a small weight α. The total loss is defined as:

Ltotal = Lseg + αLrot (1)

Table 1: Numerical results of models with different settings.
The second column indicates whether the model is pre-
trained on the synthetic dataset or not. Both results in the
pre-training step (Simulation) and the fine-tuning step (Re-
ality) are given. Note that the results in Simulation columns
are the test results on synthetic test dataset, other than real-
world test dataset. Same below.

STN Pre-train Simulation Reality
mIoU screw IoU mIoU screw IoU

- - - - 0.8707 0.4884
✓ - - - 0.9030 0.6272
- ✓ 0.9202 0.7120 0.9187 0.6830
✓ ✓ 0.9675 0.8875 0.9375 0.7842

We set α = 0.01. During the training, the common segmen-
tation metric, mean intersection over union (mIoU), is used
to measure the model performance. The IoU of screw cate-
gory is used as an additional metric since screws are of our
main focus. During both pre-training and fine-tuning pro-
cesses, we save the model that performs best on the screw
IoU metric.

4.2. Fine-tuning on Real-world Scenes

During the fine-tuning step, we load the network parame-
ters from the pre-training step and perform transfer learning,
i.e., adapting the network model from simulated scenes to
real-world scenes. We took 26 real-world point clouds with
Zivid camera and manually labeled them. 20 scenes are
used for fine-tuning and 6 scenes are used for test. Note that
this is not a small dataset since the point cloud cuboid from
each scene contains around 200,000 points and can be sam-
pled to around 100 sub-point clouds of 2048 points. In the
fine-tuning process, the training takes 300 epochs and the
batch size is 16. We use an initial learning rate of 0.001, and
a cos decay scheduler with a final learning rate of 0.00001.
The optimizer, loss, evaluation metrics are identical to that
in the pre-training step.

4534



input GT w/o pre-train only pre-train fine-tuned

Figure 4: Segmentation result visualization on real-world test data. Without pre-train means the network is trained on real-
world data directly. Only pre-train means the network is trained only on synthetic dataset and directly used for the testing on
real-world data. Fine-tuned means the network is both pre-trained and fine-tuned.

Table 2: Ablation study on augmentation methods. Aug 1: random rotation and random jittering over the cuboid point cloud.
Aug 2: random cuboid size along all three axes. Aug 3: random mild translation and rotation of motors. Aug 4: adding
random position hovering tiles over the clamping system as scene masks.

Dataset Augmentations Simulation Reality
aug 1 aug 2 aug 3 aug 4 mIoU screw IoU mIoU screw IoU

dataset 1 ✓ 0.9751 0.9141 0.9280 0.7518
dataset 2 ✓ ✓ 0.9801 0.9372 0.9368 0.7799
dataset 3 ✓ ✓ ✓ 0.9742 0.9161 0.9370 0.7815
dataset 4 ✓ ✓ ✓ ✓ 0.9675 0.8875 0.9375 0.7842

Note that after the model is trained, the dataloader for the
test process is different from that for the training process.
When training the network, each input point cuboid splits
into sub-point clouds of 2048 points as much as it can, and
the residual points are discarded. When testing the trained
model, the residual points are not discarded but completed
into a sub-point cloud of 2048 points with other random
points resampled from the original input.

4.3. Quantitative and Qualitative Results

Numerical results over the metrics of mIoU and screw
IoU are given in Table 1. From it, we can observe that using
the STN module improves the performance drastically. On
the other hand, using the sim2real transfer learning with two
steps of pre-training and fine-tuning also boosts the perfor-
mance. Combining both gets even better performance.

Some qualitative results are given in Figure 4. From it,
we can observe that direct training on the real-world data
performs decent on most points but not so good on tail cat-
egories. With pre-training on the simulated scenes and fine-
tune the model on real-world scenes can achieve a much

better segmentation result, especially for the tail categories.

4.4. Post-processing for Screw Information

After the network model is fine-tuned, given a real-world
point cloud as input, the network outputs the segmenta-
tion result. The post-processing step aims at getting screw
locations and orientations with the screw points that have
been segmented out. To get screw locations, clustering al-
gorithms are firstly used to group segmented screw points.
In our case, we use the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [11, 37] algorithm
for clustering. With appropriate parameter settings, each
cluster is one screw. Using the prior knowledge that the
bottom most screw is always the side screw, all the clusters
above are cover screws that need to be unscrewed in this
process. The cover screw locations are obtained by com-
puting the center of each cluster. For the screw orientations,
processing on the screw points directly is problematic since
screws have uneven surfaces. Using the prior knowledge
that all cover screws are having the same orientation as the
flat cover, the screw orientation is actually identical to the

4535



Figure 5: Post-processing for screw information.

(a) (b) (c)
Figure 6: Patch-based attention network. (a) Full architecture. (b) Proposed patch module, has an additional defined kernel
loss, outputs patch feature. (c) Cross attention module.

normal of the cover flat part in our case. We hence apply
DBSCAN on the points that are segmented as the cover cat-
egory but with their estimated normals other than coordi-
nates. With appropriate parameter settings, we can make the
cluster number to be only one, which means all the points
whose normal vectors are similar to the cover flat part are
clustered together. Then the cover normal, or the screw ori-
entation, is obtained by averaging all the normal vectors of
those points. The process is illustrated in Figure 5.

4.5. Ablation Study on Data Augmentation

A variety of augmentation methods have been used on
our synthetic dataset. To validate their effectiveness, an
ablation study is performed by generating several differ-
ent datasets and using a same network architecture for the
pre-training and fine-tuning processes. The numerical re-
sults are given in Table 2. In the used four augmentation
methods, the former two methods are augmentations per-
formed during the data pre-processing, and the latter two
methods are augmentations performed during the data gen-
eration. From Table 2, we can observe that randomly chang-
ing the cuboid size improves the segmentation performance
on both pre-training and fine-tuning steps. On the other
hand, while the latter two augmentation methods decreases
the pre-training performance, they both improves the fine-
tuning performance when the model is transferred to real-
world point cloud data. In this paper, we use dataset 4 for
most other experiments.

5. Imbalanced Learning

Imbalanced learning, also referred as long-tail learning
in the classification tasks, is a problem where the distri-
bution of examples across the known categories is biased
or skewed. In our case, original synthetic point clouds are
mostly occupied with background points (around 96%) and
have extremely less screw points (around 0.1%). After ap-
plying the sample region restriction, i.e., the cuboid crop
strategy as illustrated in Figure 2(c) and described in sub-
section 3.3, in each point cuboid, background points take
up around 64% while screw points take up around 1%. The
imbalanced problem has been alleviated. Meanwhile, it is
still worth investigating to further improve the performance.
Several additional strategies are proposed to deal with the
imbalanced learning problem in this paper. They are pro-
posed from the perspectives of data augmentation, weight-
ing loss, and extra network block respectively.

5.1. Focused Sampling for Tail Categories

One common strategy to deal with the long-tail problem
in classification tasks is resampling like manually adding
samples of the tail categories. In our case, the key cate-
gory of screw only occupies a extreme small portion of the
whole point cloud compared to other components, hence it
is possible to increase the number of screw points by den-
sifying them. The strategy is as follows. For each point
p1 belongs to the screw category, get its nearest same cat-
egory point p2. (a) If the nearest same category point of

4536



Table 3: Ablation study on proposed strategies for imbalanced learning.

Sample region
restriction

Focused
sampling

Weighting
loss

Patch-based
attention

Simulation Reality
mIoU screw IoU mIoU screw IoU

✓ - - - 0.9675 0.8875 0.9375 0.7842
✓ ✓ - - 0.9627 0.8661 0.9376 0.7570
✓ - ✓ - 0.9668 0.8862 0.9409 0.7717
✓ - - ✓ 0.9693 0.9063 0.9462 0.7968
✓ ✓ - ✓ 0.9644 0.8850 0.9389 0.7622
✓ - ✓ ✓ 0.9729 0.9165 0.9412 0.7794
✓ ✓ ✓ ✓ 0.9680 0.8972 0.9401 0.7683

Figure 7: Visualizing learned patches on sub-point clouds of 2048 points.

p2 is also p1, this means both points are not at the cluster
boundary, hence a new point is added with the coordinate
of padd = p1 +

1
3 (p2 − p1). (b) If the nearest same category

point of p2 is not p1, this means p1 is likely to be an outlier
point or at the cluster boundary, hence a new point is added
with the coordinate of padd = p1 +

2
3 (p2 − p1). Above op-

eration doubles the point number of the tail category in the
training dataset.

5.2. Weighting Category Loss

Adding additional weights to each category when com-
puting the cross entropy loss is another widely used strat-
egy. Most current DL packages provide such an optional
argument in their in-built loss functions. However, it is
an unsolved question that what is the best way to compute
and set the category weights. In this paper, we propose a
following method. Assume the point cloud has M cate-
gories and N points in total. For each category that has
ni(i = 1, 2, . . . ,M) points, its ratio is given as ri = ni/N .
Then a scaled ratio sri is computed by decreasing the orig-
inal ratio difference with a cubic root operation as sri =
ti/(

∑M
i=1 ti), where ti = (max(r1, r2, . . . , rM )/ri)

1
3 . In

this case, smaller ri means the corresponding category gets
a larger sri. However, using sri directly leads to a huge
decrease on the loss magnitude. To eliminate the possible
problem caused by it, an additional factor is computed as
f =

∑M
i=1 ri × sri and multiplied. Hence the final cate-

gory weight is given as ωi = sri × f for each category.

5.3. Patch-based Attention Network

Additionally, we propose a novel patch-based attention
network to deal with the imbalanced learning problem. The
key idea is to force the network to learn a same number
of kernel points for all categories by using an additional
kernel loss. In our task, we have 6 categories in total and
we select 8 kernel points per category. For each category,
the ground truth kernel points are obtained by performing
K-means algorithm on all points of this category. After 8
clusters are grouped, cluster centers are computed and their
nearest neighbor points that belong to this category are de-
fined as kernel points. The kernel loss is a L2 loss between
the goal kernels and learned kernels. Hence the total loss in
this case is defined as:

Ltotal = Lseg + αLrot + βLker (2)

where β is a loss weight. We set β = 0.05. Apart from the
obtained kernel points, their 32 neighbor points are grouped
to form a patch and a convolution layer is used to get patch-
wise features. The patch-wise features are further used to
perform cross attention with the point-wise features learned
from the DGCNN backbone (lower branch in Figure 6(a)).
This is a patch-to-point cross attention, i.e., using patch fea-
tures to represent point features. The output is concatenated
back to the lower branch for final segmentation. Detailed
network designs are given in Figure 6.

5.4. Experimental results

All the experiments are conducted with the same dataset
on which all augmentation methods are applied (dataset 4

4537



in Table 2). Numerical results of them are presented in Ta-
ble 3. From it, we can observe that the focused sampling
strategy always leads to a worse performance. One possible
reason is that this operation is only performed during train-
ing. For test cases, labels are segmentation goals and are not
provided hence the focused sampling operation is not appli-
cable. This causes data distribution difference between the
training set and the test set thus leads to bad performance.
The loss weighting strategy improves the performance on
synthetic data but degrades the performance on real-world
data slightly. This indicates the strategy contributes to a
better pre-training yet not performing well on transfer learn-
ing. On the other hand, our proposed patch-based attention
module improves the performance on both steps. To give
better insights of our proposed module, learned patches of
some sub-point clouds are visualized in Figure 7. It shows
that our method forces the network to learn patches around
boundaries or other informative places.

6. Conclusion

In this paper, we adopt sim2real transfer learning method
for an industrial application on point cloud data. Follow-
ing the pipeline, synthetic dataset are generated in simulated
scenes. The network model is firstly pre-trained on the syn-
thetic data and then fine-tuned on the real-world data. Both
quantitative and qualitative results show that this achieves
better performance. To deal with the imbalanced learning
problem, several strategies have been tested. The proposed
patch-based attention module shows its effectiveness by im-
proving the performance drastically. For future directions,
we would like to try with more backbones, as well as inves-
tigating more on the attention-based learning methods for
point cloud data.

Acknowledgements

The project AgiProbot is funded by the Carl Zeiss Foun-
dation.

References
[1] Juan Felipe Perez-Juste Abascal, Nicolas Ducros, Va-

leriya Pronina, Simon Rit, Pierre-Antoine Rodesch, Thomas
Broussaud, Suzanne Bussod, Philippe Douek, Andreas
Hauptmann, Simon Robert Arridge, and Françoise Peyrin.
Material decomposition in spectral ct using deep learning: A
sim2real transfer approach. IEEE Access, 9:25632–25647,
2021.

[2] Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville
Kyrki. Meta reinforcement learning for sim-to-real domain
adaptation. 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 2725–2731, 2020.

[3] Nicolas Audebert, Bertrand Le Saux, and Sébastien Lefèvre.
Semantic segmentation of earth observation data using mul-

timodal and multi-scale deep networks. In Asian conference
on computer vision, pages 180–196. Springer, 2016.

[4] Christian Bonatti, Sylvain Crovisier, Lorenzo Diaz, and
Amie Wilkinson. What is... a blender? arXiv preprint
arXiv:1608.02848, 2016.

[5] Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert.
Unstructured point cloud semantic labeling using deep seg-
mentation networks. 3DOR@ Eurographics, 3, 2017.

[6] Angel X. Chang, T. Funkhouser, L. Guibas, P. Hanra-
han, Qixing Huang, Zimo Li, S. Savarese, M. Savva,
Shuran Song, Hao Su, J. Xiao, L. Yi, and F. Yu.
Shapenet: An information-rich 3d model repository. ArXiv,
abs/1512.03012, 2015.

[7] Can Chen, Luca Zanotti Fragonara, and Antonios Tsour-
dos. Gapnet: Graph attention based point neural network
for exploiting local feature of point cloud. Neurocomputing,
438:122–132, 2021.

[8] Maximilian Denninger, Martin Sundermeyer, Dominik
Winkelbauer, Youssef Zidan, Dmitry Olefir, Mohamad El-
badrawy, Ahsan Lodhi, and Harinandan Katam. Blender-
proc. arXiv preprint arXiv:1911.01911, 2019.

[9] Yuqing Du, Olivia Watkins, Trevor Darrell, P. Abbeel, and
Deepak Pathak. Auto-tuned sim-to-real transfer. 2021
IEEE International Conference on Robotics and Automation
(ICRA), pages 1290–1296, 2021.

[10] Nico Engel, Vasileios Belagiannis, and Klaus C. J. Diet-
mayer. Point transformer. IEEE Access, 9:134826–134840,
2021.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei
Xu. A density-based algorithm for discovering clusters in
large spatial databases with noise. In KDD, 1996.

[12] David Griffiths and Jan Boehm. Synthcity: A large scale
synthetic point cloud. ArXiv, abs/1907.04758, 2019.

[13] Michael Gschwandtner, R. Kwitt, A. Uhl, and W. Pree.
Blensor: Blender sensor simulation toolbox. In ISVC, 2011.

[14] Meng-Hao Guo, Junxiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph Robert Martin, and Shimin Hu. Pct: Point cloud
transformer. Comput. Vis. Media, 7:187–199, 2021.

[15] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yu-
lan Guo, Zhihua Wang, Agathoniki Trigoni, and Andrew
Markham. Randla-net: Efficient semantic segmentation of
large-scale point clouds. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
11105–11114, 2020.

[16] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-
wise convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 984–993, 2018.

[17] Mingyang Jiang, Yiran Wu, Tianqi Zhao, Zelin Zhao, and
Cewu Lu. Pointsift: A sift-like network module for
3d point cloud semantic segmentation. arXiv preprint
arXiv:1807.00652, 2018.

[18] Samin Khan, Buu Phan, Rick Salay, and Krzysztof Czar-
necki. Procsy: Procedural synthetic dataset generation to-
wards influence factor studies of semantic segmentation net-
works. In CVPRW, pages 88–96, 2019.

4538



[19] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, A. Artemov, Evgeny Burnaev, M. Alexa, D. Zorin,
and Daniele Panozzo. Abc: A big cad model dataset for ge-
ometric deep learning. CVPR, pages 9593–9603, 2019.

[20] Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg,
Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg.
Deep projective 3d semantic segmentation. In International
Conference on Computer Analysis of Images and Patterns,
pages 95–107. Springer, 2017.

[21] Truc Le and Ye Duan. Pointgrid: A deep network for 3d
shape understanding. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 9204–
9214, 2018.

[22] Le Hoang-An, Thomas Mensink, Partha Das, Sezer
Karaoglu, and Theo Gevers. Eden: Multimodal synthetic
dataset of enclosed garden scenes. 2021 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pages
1578–1588, 2021.

[23] Zhidong Liang, Ming Yang, Hao Li, and Chunxiang Wang.
3d instance embedding learning with a structure-aware loss
function for point cloud segmentation. IEEE Robotics and
Automation Letters, 5:4915–4922, 2020.

[24] Nai Qing Liu, Yinghao Cai, Tao Lu, Rui Wang, and Shuo
Wang. Real–sim–real transfer for real-world robot control
policy learning with deep reinforcement learning. Applied
Sciences, 2020.

[25] Mohammadhossein Malmir, Josip Josifovski, Noah Klar-
mann, and Alois Knoll. Robust sim2real transfer by learning
inverse dynamics of simulated systems. 2020.

[26] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-
volutional neural network for real-time object recognition.
In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 922–928. IEEE, 2015.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
Martin A. Riedmiller, Andreas Fidjeland, Georg Ostro-
vski, Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518:529–533,
2015.

[28] Kaichun Mo, Shilin Zhu, Angel Chang, Li Yi, Subarna Tri-
pathi, Leonidas Guibas, and Hao Su. PartNet: A large-scale
benchmark for fine-grained and hierarchical part-level 3D
object understanding. 2019.

[29] Alexander Pashevich, Robin Strudel, Igor Kalevatykh, Ivan
Laptev, and Cordelia Schmid. Learning to augment synthetic
images for sim2real policy transfer. 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
pages 2651–2657, 2019.

[30] R. Pierdicca, M. Mameli, E. Malinverni, M. Paolanti, and
E. Frontoni. Automatic generation of point cloud synthetic
dataset for historical building representation. In AVR, pages
203–219, 2019.

[31] C. Qi, Hao Su, Kaichun Mo, and L. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
CVPR, pages 77–85, 2017.

[32] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
Net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017.

[33] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John
Schulman, Emanuel Todorov, and Sergey Levine. Learning
complex dexterous manipulation with deep reinforcement
learning and demonstrations. ArXiv, abs/1709.10087, 2018.

[34] Jacob Revell, Dominic Welch, and James M. Hereford.
Sim2real: Issues in transferring autonomous driving model
from simulation to real world. SoutheastCon 2022, pages
296–301, 2022.

[35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
ArXiv, abs/1505.04597, 2015.

[36] G. Ros, Laura Sellart, Joanna Materzynska, David Vázquez,
and Antonio M. López. The synthia dataset: A large collec-
tion of synthetic images for semantic segmentation of urban
scenes. CVPR, pages 3234–3243, 2016.

[37] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter
Kriegel, and Xiaowei Xu. Dbscan revisited, revisited: why
and how you should (still) use dbscan. ACM Transactions on
Database Systems (TODS), 42(3):1–21, 2017.

[38] Philip Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The
princeton shape benchmark. Proceedings Shape Modeling
Applications, 2004., pages 167–178, 2004.

[39] Martin Simonovsky and Nikos Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3693–3702, 2017.

[40] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-
Yi Zhou. Tangent convolutions for dense prediction in 3d.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3887–3896, 2018.

[41] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 6411–6420, 2019.

[42] Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wo-
jciech Zaremba, and P. Abbeel. Domain randomization for
transferring deep neural networks from simulation to the real
world. 2017 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 23–30, 2017.

[43] Jonathan Tremblay, Thang To, and Stan Birchfield. Falling
things: A synthetic dataset for 3d object detection and pose
estimation. CVPRW, pages 2119–21193, 2018.

[44] Juliano Vacaro, Guilherme Marques, Bruna Oliveira, Gabriel
Paz, Thomas S. Paula, Wagston Staehler, and David Murphy.
Sim-to-real in reinforcement learning for everyone. 2019
Latin American Robotics Symposium (LARS), 2019 Brazil-
ian Symposium on Robotics (SBR) and 2019 Workshop on
Robotics in Education (WRE), pages 305–310, 2019.

[45] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-
mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning from synthetic humans. CVPR, pages 4627–4635,
2017.

4539



[46] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric continu-
ous convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2589–2597, 2018.

[47] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019.

[48] Matthew Witman, Dogan Gidon, David B. Graves, Berend
Smit, and Ali Mesbah. Sim-to-real transfer reinforcement
learning for control of thermal effects of an atmospheric
pressure plasma jet. Plasma Sources Science and Technol-
ogy, 2019.

[49] Wenxuan Wu, Zhongang Qi, and Fuxin Li. Pointconv: Deep
convolutional networks on 3d point clouds. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9613–9622, 2019.

[50] Zhirong Wu, Shuran Song, A. Khosla, F. Yu, Linguang
Zhang, Xiaoou Tang, and J. Xiao. 3d shapenets: A deep rep-
resentation for volumetric shapes. CVPR, pages 1912–1920,
2015.

[51] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto L.
Sangiovanni-Vincentelli, Kurt Keutzer, and Boqing
Gong. Domain randomization and pyramid consistency:
Simulation-to-real generalization without accessing target
domain data. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 2100–2110, 2019.

[52] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H. S. Torr, and
Vladlen Koltun. Point transformer. ArXiv, abs/2012.09164,
2020.

[53] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Wester-
lund. Sim-to-real transfer in deep reinforcement learning for
robotics: a survey. 2020 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), pages 737–744, 2020.

[54] Qingnan Zhou and A. Jacobson. Thingi10k: A dataset of 10,
000 3d-printing models. ArXiv, abs/1605.04797, 2016.

[55] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi,
Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A
comprehensive survey on transfer learning. Proceedings of
the IEEE, 109:43–76, 2021.

4540


