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Abstract

Given a full fingerprint image (rolled or slap), we
present CycleGAN models to generate multiple latent im-
pressions of the same identity as the full print. Our models
can control the degree of distortion, noise, blurriness and
occlusion in the generated latent print images to obtain
Good, Bad and Ugly latent image categories as introduced
in the NIST SD27 latent database. The contributions of our
work are twofold: (i) demonstrate the similarity of synthet-
ically generated latent fingerprint images to crime scene
latents in NIST SD27 and MSP databases as evaluated by
the NIST NFIQ 2 quality measure and recognition accura-
cies obtained by a SOTA fingerprint matcher, and (ii) use
of synthetic latents to augment small-size latent training
databases in the public domain to improve the perfor-
mance of DeepPrint, a SOTA fingerprint matcher designed
for rolled to rolled fingerprint matching on three latent
databases (NIST SD27, NIST SD302, and IIITD-SLF). As
an example, with synthetic latent data augmentation, the
Rank-1 retrieval performance of DeepPrint is improved
from 15.50% to 29.07% on challenging NIST SD27 la-
tent database. Our approach for generating synthetic
latent fingerprints can be used to improve the recognition
performance of any latent matcher and its individual
components (e.g., enhancement, segmentation and feature
extraction). https://prip-lab.github.io/
Synthetic-Latent-Fingerprint-Generator/

1. Introduction
Since the first use of fingerprints in criminal investiga-

tions in 1891, fingerprints have become the most widely
used tool for accurately and quickly identifying perpetra-
tors [5]. The frequent use of fingerprints in judicial courts
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worldwide has demonstrated their acceptance as scientific
evidence in the conviction of criminals. Within this context,
latent fingerprints - those collected from various surfaces in
crime scene investigations, are essential for identifying sus-
pects involved in a crime. The identification of these latent
prints by comparing them against rolled/slap fingerprints in
law enforcement databases continues to be crucial for crim-
inal investigations.

Latent fingerprint images often contain various sources
of noise, including blood, contaminants, and natural se-
cretions. Furthermore, fingers leave distinct traces on sur-
faces, such as cellulose composites, glass, metal, and plas-
tic, which lead to variations in the latent images captured
in forensic data collection [41]. In addition, each surface
where a person leaves their fingerprints provides distinct
background for friction ridge impressions, such as printed
or handwritten text, as illustrated in Figure 1.
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Figure 1: Examples of a latent fingerprint (bottom row) and
its rolled fingerprint mate (top row) from the NIST special
database 27 (SD27) [13]. The second column shows the
fingerprints with their minutiae points representation, and
the last column shows the deep-network embeddings (192-
dimensional) by DeepPrint [9] represented as a heatmap.

Given the poor quality of latent fingerprints, one of the
most challenging problem in fingerprint recognition is to
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perform identification using latent prints. Given a query la-
tent print, it needs to be compared with large collections
of rolled and plain fingerprints in forensic databases. Jain
and Feng [19] designed a latent-to-rolled matching algo-
rithm based on minutiae, singular points (delta and core),
and ridge flow map. Later, Cao et al. [4] improved
the recognition accuracy by implementing a deep-learning-
based representation to enhance poor-quality latent images
prior to minutiae extraction. These studies demonstrate that
there are many open challenges, primarily related to match-
ing poor-quality latent prints with relatively high-quality
rolled/slap fingerprints captured under supervision during
booking. Indeed, NIST ELFT evaluation [18] showed that
the best performing latent matching algorithm was able to
provide only 67% Rank-1 accuracy in retrieving the mate
of a query latent with a gallery of 100K rolled prints. When
we compare this with rolled-to-rolled matching accuracy of
over 99%, then it is clear that latent fingerprint recognition
offers fertile grounds for research [35].

Within this context, several factors make it difficult to
conduct research on latent fingerprint recognition:

1. Sparsity of public domain databases available for train-
ing and evaluating a latent fingerprint recognition sys-
tem. Table 1 contains a summary of the latent fin-
gerprint databases which have been used in academic
publications. Figure 2 shows latent fingerprint exam-
ples from some of these databases. Note that the only
two latent databases that are in the public domain are
NIST SD302 and IIITD-SLF which were collected in
a laboratory setting and not from crime scenes. One
of the most popular latent fingerprint database in aca-
demic publications is NIST SD27 [13], but it was with-
drawn from the public domain by NIST. While NIST
SD302 and IIITD-SLF are useful for research, they
are relatively small and do not capture the type of dis-
tortion and background that is observed in operational
databases such as NIST SD27 (see Figures 1 and 2).

2. Limited variations in the style and quality of the latent
images in public domain databases. These factors in-
clude small friction ridge area, small no. of minutiae
points, blurred regions, and background complexity.
The study by Gonzalez et al. [23] demonstrates the
challenges posed by such variations in latent finger-
print recognition accuracy; detection of even a small
no. of spurious minutiae or failure to detect a few gen-
uine minutiae can drastically impact the latent recog-
nition accuracy. Given the complexity of the latent to
rolled fingerprint matching problem, the lack of pub-
licly available operational latent fingerprint databases
has hindered the progress in latent fingerprint recog-
nition despite its critical role in law enforcement and
forensics [7, 32]. According to the Innocence Project,
“Forensic science, or more specifically, problems in

forensic science, contributes to many wrongful convic-
tions, as seen in nearly half (45%) of DNA exoneration
cases and one-quarter (24%) of all exonerations in the
United States.” and this includes errors in latent finger-
prints matching.

Database Public
domain

# of unique fingers
(# rolled-latent pairs) Collection details

NIST SD27[13] No 258 Crime scene images
MSP Latent DB [42] No 1,910 Crime scene images
NIST SD302 [12] Yes 1,019* Laboratory collection
IIITD-SLF [43] Yes 150 Laboratory collection

*Obtained after filtering the rolled and latent mates present in the finger position
annotation in the SD302h subset. The total no. of latent fingerprints is 9,990.

Table 1: Latent Fingerprint databases used in this study.

The objective of this research is to develop a method to
generate a large collection of realistic synthetic latent fin-
gerprint images that would be publicly available to inter-
ested researchers. The purpose of latent fingerprint synthe-
sis is to advance pre-processing of latent images, including:
(i) enhancement and segmentation, (ii) data augmentation
for learning a robust representation, and (iii) designing a ro-
bust matcher for latent to rolled matching.

With these objectives, this paper aims to design and de-
velop models to generate a large collection of synthetic la-
tent fingerprints from a given set of rolled prints. For each
rolled print, we are able to generate multiple latent prints
with different quality levels (Good, Bad and Ugly follow-
ing the categorization of NIST SD27 database). We vali-
date our synthesis approach by fine-tuning a state-of-the-art
fingerprint matcher, DeepPrint [9] with synthesized images.
We show that this data augmentation leads to improved per-
formance of DeepPrint on latent fingerprint recognition on
NIST SD27, NIST SD302 and IIITD-SLF latent databases.

Our contributions in this paper are as follows:

1. A method to generate synthetic latent fingerprints of
different difficulties in terms of recognition.

2. Demonstrate, both qualitatively and quantitatively, the
similarity of our synthetic latent fingerprints to real la-
tents.

3. Utility of synthetic latents for data augmentation to im-
prove the performance of a state-of-the-art deep net-
work model for latent fingerprint recognition.

Note that our objective here is not to build a state-of-
the-art latent fingerprint recognition system but to present
models for synthetic latents generation to assist in design-
ing a SOTA latent matcher. For this reason, we do not ad-
dress issues related to pre-processing of latents, including
enhancement and segmentation, typically done in COTS la-
tent matchers.

https://innocenceproject.org/
forensic-science-problems-and-solutions/
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IIITD-SLF [43] NIST SD27 [13] MSP Latent DB [42] NIST SD302 [12]

Figure 2: Latent fingerprint examples from IIITD-SLF, NIST SD27, MSP latent and NIST SD302.

2. Background
We first describe general fingerprint synthesis ap-

proaches in Section 2.1, followed by methods for synthe-
sizing latent fingerprints in Section 2.2.

2.1. Fingerprint synthesis

One of the earliest and most prominent fingerprint syn-
thesis generator is SFinGe[6], which used handcrafted
methods to generate ridge patterns, minutiae, and textures
formed by the ridge-valley pattern. But due to the limita-
tions of the model used as well as the computational re-
sources at the time, the images lacked visual realism.

With the introduction of generative adversarial networks
(GAN) [14], the next generation of synthetic fingerprint ap-
proaches [3, 25, 1] emerged which are capable of generating
plain and rolled fingerprints. However, like SFinGe, they
are not designed for latent fingerprint synthesis. Also, these
generators only create a single impression per finger.

Engelsma et al. [10] proposed a state-of-the-art approach
called PrintsGAN capable of generating a large number of
distinct identities with multiple rolled/plain impressions per
finger. Although PrintsGAN has shown promise for data
augmentation, some minutiae are lost, or spurious ones are
introduced during the creation of multiple impressions of an
identity. Like PrintsGAN, Grosz and Jain [15] developed
a model capable of synthesizing multiple fingerprint spoof
impressions from the same identity.

Other fingerprint synthesis approaches use CycleGAN
[44] to generate realistic textures. Wyzykowski et al.
[37, 38] used CycleGAN to generate additional medium
and high-resolution 500 ppi and 1250 ppi fingerprints im-
ages, corresponding to the SFinGe-based identity generator.
Sams et. al [31] consolidate the use of CycleGAN, enabling
the generation of new identities with StyleGAN 2 [20]. De-
spite these advances, all of the aforementioned approaches
did not focus on latent fingerprint synthesis.

2.2. Latent fingerprint synthesis and reconstruction

Ozturk et al. [26] developed an algorithm for automated
latent fingerprint recognition. Although the paper’s focus is
not on latent fingerprint synthesis, the authors used a private
dataset of latent fingerprints to generate a model with Cy-
cleGAN capable of converting images from FVC databases

of plain fingerprints [24] into latent prints. However, the
authors did not use synthetic latent data for data augmenta-
tion purposes to show the utility of their synthesized latent
database. Further, they did not (i) provide the number of
identities generated, and (ii) evaluate the similarity between
synthetic and real fingerprint latents.

Xu et al. [40] demonstrated that they can improve match-
ing performance by using data augmentation in latent image
reconstruction. However, the authors did not specify the
metrics for evaluating latent fingerprints reconstructions,
such as a minutiae detection analysis and their image qual-
ity.

3. Proposed Latent Fingerprint Generator

This study’s main objective is to create latent fingerprints
having control of the style generated by these models. This
feature is essential since latents in different databases vary
depending on the surface where the prints were left. We
detail our method in Figure 3 with the pseudocode in Algo-
rithm 1.

In Section 3.1 we detail the modifications and parame-
ters used in CycleGAN in both stages of our method. In
Section 3.2, we describe the first stage of the fingerprint
synthesis method, where we create a generic model capa-
ble of transforming an image from the rolled domain into a
generic latent domain. Then, Section 3.3 details the second
stage, where we create specific models for each latent print
style.

3.1. CycleGAN modification details

CycleGAN [44] is a neural network model focused on
the process of unpaired image-to-image translation, i.e., a
network able to map two distinct image domains and per-
form the transformation of image features from these do-
mains. Through the Cycle-Consistency loss, CycleGAN
can perform two-way style translation, transforming input
images into styles of output images and vice versa. Fur-
thermore, CycleGAN does not require paired examples to
train, an important advantage when working with latent im-
ages, since there is no pairing between the latent and rolled
impression in many databases. However, we noticed stabil-
ity problems during training when we performed our initial
training with the original CycleGAN architecture on latent
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Figure 3: Steps to create synthetic latent fingerprints using the proposed approach.

Algorithm 1 Latent fingerprint synthesis

Input: M(i) set of rolled prints.
Output: Synthetic latent prints from M(i) denoted as
SLP (i).

First stage:
Generate a coarse CycleGAN style model GSM using
mated rolled and latent prints as training data.
output: GSM CycleGAN model

Second stage: input: (GSM CycleGAN model)
Use ResNet152V2 [17] to extract features from the latent
images.
Use K-Means for clustering the latent prints.
for each k cluster do

Generate a fine-tuned CycleGAN style model SMk

using rolled and clustered latent prints as training data.
end for
for each CycleGAN SMk model do

for each rolled prints in M(i) do
Generate SLP synthetic latents prints.

end for
end for
output: SLP (i) synthetic latents prints.

prints. Other authors [33, 22] also report similar problems
using CycleGAN on different image styles. Thus, we de-
cided to use a global discriminator (already present in Cyle-
GAN) and a patch discriminator, which we detail in Figure
4. The patch discriminator stabilized our training, generat-
ing better details of the fingerprint ridges. We use a public
implementation of CycleGAN to perform the modifications
described in this section.

We used Leaky Relu [39] as the activation function in the
generator with a negative slope of α = 0.2. For the global
and patch discriminators, we keep the original CycleGAN

https://github.com/towardsautonomy/CycleGAN_
improved

activation function, Relu. Additionally, we also used in-
stance normalization.
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Figure 4: CycleGAN architecture with discriminators.

There are six residual blocks [16] in our CycleGAN ar-
chitecture. We train our model using the Adam optimizer
[21] with β1 = 0.5 and β2 = 0.999. Our weight for cycle-
consistency loss was λ = 10. We used a learning rate of
0.0003 for the generator and 0.0001 for the discriminator.
We early-stop [28] the training if the loss does not improve
after 50 epochs.

Our work aims to transform rolled fingerprints into latent
fingerprints, not to reverse the process (rolled into latent).
However, by utilizing Cycle-Consistent Loss, CycleGAN
can improve latent images, which may further enhance the
performance of fingerprint recognition systems, an investi-
gation we plan to undertake in future work.

As described in Sections 3.2 and 3.3, we use our modi-
fied version of CycleGAN for stages 1 and 2.

3.2. First stage: rolled to latent generation

This first stage aims to create a CycleGAN “coarse”
model capable of mapping latent and rolled domains. Using
this “coarse” model as input, improved fine-tuned models
are created in the second stage (see Section 3.3).

3.3. Second stage: clustering and model refinement

A latent fingerprint image can have different styles de-
pending on where the fingerprint traces were left or if noise,
dirt, blood, etc., were present. Therefore, reproducing this
inherent variation is vital. Thus, the second stage involves
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clustering latent prints and generating custom CycleGAN
models tailored to the styles of each cluster. First, in Sec-
tion 3.3.1, we detail our approach to clustering latent finger-
prints. Then, Section 3.3.2 describes the finetuning process
in CycleGAN, generating models capable of creating styles
corresponding to clusters.

3.3.1 Cluster latent images based on visual similarity

We first used a pre-trained public ResNet152V2 [17] model
to extract feature vectors of the latent images. This network
was trained using the ImageNet-21K dataset [29]. We use
the last fully-connected layer of ResNet152V2 with 2048
output nodes as a feature vector to cluster the synthetic im-
ages with K-Means. As a result of this process, we ob-
tain k sets of latent images, each containing distinct patterns
and visual features. These k clusters then serve as input to
perform a finetuning of CycleGAN in stage 2 (see Section
3.3.2).

3.3.2 Generating multiple latent print styles

We use the CycleGAN model developed in the first stage to
generate multiple latent print styles and finetune the k clus-
ters based on visual similarity. Each of the k CycleGAN
models generates a different variation of the characteristics
present in each latent group. Therefore, if the number of
latent images per cluster is small, CycleGAN may not con-
verge well. Section 4.1 details data augmentation opera-
tions that help the training converge better.

With k finetuned CycleGAN models. Greater control
can be exerted over the distribution of synthetic latent fin-
gerprint styles. Our approach uses identities (represented as
rolled fingerprints) obtained from the NIST SD4 database
for validation in our experiments. However, any other rolled
fingerprint database can be used, for example, even the syn-
thetic rolled images from PrintsGAN [10] for generating
new synthetic identities. PrintsGAN is a neural method ca-
pable of generating unique identities by simulating param-
eters of distortions, textures, and finger pressure on a sur-
face, among others. In combination, PrintsGAN and the k
texture models can generate a wide range of latent-rolled
mated pairs of fingerprints with “virtual” identities.

4. Experimental Results
4.1. Synthetic latent fingerprint generation

During the first stage of our algorithm to create the latent
fingerprint set, we train a CycleGAN model that receives
as input 2,000 rolled fingerprints from the first acquisition
of the NIST SD4 [36]. For our target texture transfer, we

https://www.tensorflow.org/api_docs/python/tf/
keras/applications/resnet_v2/ResNet152V2

use 2,074 latent fingerprints from the MSP latent database.
At the end of this first stage, we have a model capable of
converting rolled images into latent images.

Although this model trained in the first stage is already
capable of generating latent fingerprints, we aim to gener-
ate greater diversity in the visual characteristics of the latent
images, providing different matching performance behav-
iors. In the second stage, we choose 3 clusters (k = 3) since
the NIST SD27 latents have been partitioned into three cat-
egories, namely good, bad, and ugly, with three distinct lev-
els of recognition difficulty and visual texture.

Given the three clusters in the first stage, we execute the
stage 2 of our method, finetuning the coarse model with the
styles for each cluster. We applied data augmentation oper-
ations on the fly during training by doing a random vertical
and horizontal translation of the images (maximum of 100
pixels) and a random rotation with a maximum of 15 de-
grees. This data augmentation operation does not change
the identity of the fingerprint. Finally, after training, we
have three CycleGAN latent print models each with differ-
ent characteristics, including distortion, texture and friction
ridge area, a factor that provides more control in generating
latent images.

To create our final set of synthetic latents, we used rolled
images from the second acquisition of the NIST SD4 [36]
and used the three CycleGAN models to generate 2,000 new
latent images. We now have a database of 2,000 synthetic
latents and their 2,000 rolled mated images from NIST SD4.
Figure 5 shows a visual comparison between the good, bad,
and ugly groups from the MSP latent database, NIST SD27,
and our synthetic latent images.

4.2. Similarity of real and synthetic latent embed-
dings

To validate the similarities between our synthetic latents
and real latent fingerprints in MSP latent and NIST SD27
databases, we first used NFIQ 2 [2] to compare the quality
of latents. NFIQ 2 provides a score in the range [0, 100],
where higher the score, better the image quality. Figure
6 contains the frequency histogram of the scores obtained
from the MSP latents, NIST SD27, and our synthetic latent
prints (SLP), showing that the quality of NIST SD27 latent
images is, overall, better than MSP latents and our synthetic
latents. The quality of our synthetic latents is similar to the
MSP latent images, which is reasonable since we use the
MSP latent in our training of CycleGAN.

To further illustrate the similarity of synthetic latents
to MSP latents and NIST SD27 latents, we show a t-
Distributed Stochastic Neighbor Embedding (t-SNE) plot
in Figure 7. We see that the placement of 2D embeddings
of latent fingerprints of real databases and our synthetic la-
tents is similar. These results show that we are able to re-
alistically generate latent fingerprints that replicate visual

975



N
IS

T
SD

27
M

SP
Sy

nt
he

tic
la

te
nt

s

Good Bad Ugly

Figure 5: Good, Bad and Ugly latents from NIST SD27, MSP database and our synthetic latent prints (SLP). NIST SD27
database comes with a subjective categorization into Good, Bad and Ugly classes. The same categorization is used for MSP
latents and our synthetic fingerprints.

features of real latent images.
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Figure 6: Histogram of NFIQ 2 scores. Note that the qual-
ity histogram of synthetic latents generated by our method
overlaps the quality histograms of crime scene latents from
NIST SD27 and MSP databases.

Finally, for each of the three CycleGAN models, one
each for Good, Bad and Ugly latents, we matched the syn-
thetic latent images with their mated rolled images from
the NIST SD4 database using Verifinger V12.3 SDK. Fig
9. shows the ROC plots for the three groups of synthetic la-
tents as well as the NIST SD27 database. This comparison
shows that the recognition difficulty of Good, Bad and Ugly
synthetic prints is similar to the difficulty levels of the cor-
responding three types of latents in NIST SD27 latents. The
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Figure 7: 2D t-SNE plot of 192D embeddings showing the
overlap of NIST SD27, MSP and synthetic latents images.

TDR of “good” synthetic images is 83.22% and the corre-
sponding TDR value for “good” images in NIST SD27 is
92.05%. The difference in TDR can be explained as fol-
lows: the MSP latent database used for training CycleGAN
has a different quality distribution than NIST SD27. Our
goal is not to replicate NIST SD27 images, but to design a
method capable of generating latents with distinct quality
for data augmentation.

4.3. Minutiae analysis

To further analyze the visual differences between Good,
Bad, and Ugly latent images generated by CycleGAN mod-
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els, in Figure 8, we show Good, Bad and Ugly latent im-
ages generated from a single NIST SD4 identity, overlaid
with the minutiae extracted by Verifinger V12.3. Note that
the number of minutiae decreases in images generated by
Good, Bad and Ugly models. To make a quantitative com-
parison of minutiae count between real and synthetic latent
prints, we generated 258 latent prints, the same as in NIST
SD27. The mean minutiae count for the NIST SD27 are:
68, 45, and 35 for Good, Bad and Ugly latents, respectively.
The corresponding minutiae count mean for our synthetic
prints are: 55, 39, and 35, respectively.

(a) NIST SD4 rolled (88) (b) Good latent from (a) (31)

(c) Bad latent from (a) (21) (d) Ugly latent from (a) (19)

Figure 8: Good, Bad and Ugly latents synthesized from the
rolled shown in (a). No. of minutiae in the images (a)-(d) by
Verifinger V12.3 SDK are shown in parentheses. Generally,
lower the minutiae count, lower the image quality.
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Figure 9: ROC curves for synthetic latents prints (SLP) gen-
erated from NIST SD4 and NIST SD27. Good, Bad and
Ugly ROC curves for the two comparisons appear to be
grouped together in these plots. TDR (%) reported @ FAR
= 0.1%.

4.4. Data augmentation to increase accuracy

This experiment aims to show that it is possible to in-
crease the matching accuracy of the rolled-to-rolled matcher
DeepPrint [9] by using the synthetic latent prints (SLP) as
data augmentation for retraining DeepPrint. In perform-
ing this experiment, we seek to ascertain the relative per-
formance increase within the scope of DeepPrint and not
relative to other matchers, thus validating the usefulness of
synthetic latent images to improve the recognition perfor-
mance of any fingerprint matcher for latent recognition.

As a test set for our experimentation, we used NIST
SD27 [13], NIST SD302 (N2N) [12] and IIITD-SLF [43],
performing the matching between latent images and mated
rolled/slap images from each of these databases. Further-
more, as our method allows the controlled synthesis of
Good, Bad and Ugly latents, we only utilize Bad and Ugly
latents for data augmentation as these provide higher match-
ing challenge.

We designed the experiment as follows: (i) Use the
original DeepPrint model [9] as a reference model. (ii)
Finetune DeepPrint with MSP latent database images, find-
ing an optimal value for the localization network hyper-
parameter LN in DeepPrint’s architecture in the context of
latent prints. Using the same LN value as in (ii) allows
direct comparison and finetuning DeepPrint with our syn-
thetic SLP latent prints. (iii) Generate a variation in the
model that allows us to perform score level fusion, and per-
form finetuning using the same images as (ii), but with a
different LN value that still provides satisfactory recogni-
tion results. The models used in our experiments are sum-
marized in Table 2.

Model Training data Localization network
hyper-parameter

DeepPrint [9] 455K MSP rolled prints 0.035
DeepPrint1 518 MSP aligned pairs of rolled and latents 0.018
DeepPrint2 2K SD4 (rolled, synthetic latents) pairs (bad, ugly) 0.018
DeepPrint3 2K SD4 (rolled, synthetic latents) pairs (bad, ugly) 0.007

DeepPrint2 and DeepPrint3 models do not use any real latent prints for
retraining.

Table 2: Models, training data and hyper-parameters.

In addition to the models in Table 2, we applied
Min-Max normalization to the scores generated by the
DeepPrint2 and DeepPrint3 models and performed sim-
ple score level fusion [30] as ScoreFusion = (ns2+ns3)

2 ,
where ns2 and ns3 are the normalized scores from
DeepPrint2 and DeepPrint3. The “fused” model is
referred to as DeepPrint4. Figure 10 shows the ROC
curve of the DeepPrint [9], DeepPrint1, DeepPrint2,
DeepPrint3 and DeepPrint4 models evaluated on NIST
SD27 [13].

977



10 2 10 1

False Detection Rate %
20

30

40

50

60

70

Tr
ue

 D
et

ec
tio

n 
Ra

te
 %

DeepPrint [8]: MSP longitudinal
DeepPrint1: MSP latents
DeepPrint2: Bad and Ugly SLP
DeepPrint3: Bad and Ugly SLP
DeepPrint4: score fused with DeepPrint2 and DeepPrint3

Figure 10: ROC curves of the DeepPrint [9] and its variants
evaluated on NIST SD27 [13].

In all cases, our models trained with the synthetic im-
ages performed better than the original DeepPrint model
and the finetuned models trained with the MSP latents on
NIST SD27. We arrange all the experimental analysis re-
sults in Table 3. Only with the latent MSP latents was it pos-
sible to increase the system’s performance accuracy. Still,
it was necessary to perform alignment between the rolled
and latent mates, which is also a challenging task. This
alignment is needed because the Localization network in
DeepPrint cannot perform such a precise alignment with la-
tent images. However, the alignment problem does not exist
with synthetic images since we can control the latent syn-
thesis directly from a rolled print. These results corroborate
that Verifinger V12.3 is one of the best-performing match-
ers, consistent with the results reported in FVC-onGoing [8]
and NIST FpVTE [35].

Model NIST SD27 NIST SD302 (N2N)* IIITD-SLF

DeepPrint [9] 26.35 10.81 10.0
DeepPrint1 29.45 13.15 14.16
DeepPrint2 32.55 13.97 15.0
DeepPrint3 37.20 14.07 17.5
DeepPrint4 39.92 14.31 20.83

Verifinger V12.3 55.81 16.22 29.70
*N2N latent and rolled mates present in the finger position annotation in the SD302h

subset. We reduced the resolution of N2N latent images to 500dpi and applied the
Clahe filter [27] to highlight the fingerprint ridges.

Table 3: True detection rate (TDR (%)) @ FAR = 0.01%

4.4.1 Identification (1:N Comparison)

Our goal of this experiment is to perform a closed-set anal-
ysis of identification accuracy by matching latent prints in
NIST SD27, NIST 302 (N2N) and IIITD-SLF against a
galley augmented by 62,871 rolled fingerprints from the
NIST SD300a (8,871k) [11] and NIST SD14 [34] (54K)
databases. The results of this analysis are shown in Table 4
and the Cumulative Matching Characteristics (CMC) of the
NIST SD27 is presented in Figure 11. We used the same
protocol as NIST ELFT-EFS [18] to evaluate the perfor-
mance of our models.

Model NIST SD27 NIST SD302 (N2N)* IIITD-SLF
DeepPrint [9] 15.50 4.18 9.8
DeepPrint1 23.64 5.98 14.13
DeepPrint2 26.74 6.56 14.7
DeepPrint3 28.29 7.24 17.12
DeepPrint4 29.07 7.93 18.21

Verifinger V12.3 45.45 10.81 22.71
*We used all 9,990 latents in N2N. We reduced the resolution of N2N latent images

to 500dpi and applied the Clahe filter [27] to highlight the fingerprint ridges.

Table 4: Rank-1 accuracies (%) of different DeepPrint mod-
els against a background set of 62,871 rolled fingerprints
(54K from NIST SD14 and 8,871K from NIST SD300a), in
addition to the true rolled mates of the latents prints of each
database.
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Figure 11: CMC curves of various DeepPrint models eval-
uated on NIST SD27 latent database.

5. Conclusion
We present a new approach capable of synthesizing la-

tent fingerprints from any rolled fingerprint database. To
accomplish this, we used a modified version of CycleGAN
by adding a patch discriminator in addition to the global dis-
criminator already present in the original CycleGAN. Our
approach generates models capable of replicating Good,
Bad and Ugly latent images present in the NIST SD27 latent
database, thus allowing the generation of style-controlled
latent images.

Additionally, by comparing NFIQ 2 quality values and
t-SNE plots in two dimensions and the recognition perfor-
mance of the latent to their mated rolled images we can
claim that the synthetic latent images are realistic and simi-
lar to the real latent images.

Finally, we performed a finetuning on the original Deep-
Print [9] model using our SLP latent images generated with
our modified CycleGAN model. We achieved a perfor-
mance boost, validating this on three latent databases. In
future work, we plan to refine the synthesis of latent prints
by adding more complexity to background and texture vari-
ations. Furthermore, CycleGAN is capable of reverting a
latent into a rolled one. With this, we plan to improve the
quality of latent prints, thus improving latent recognition in
deep networks.
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