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Abstract

Existing deep learning approaches for person re-
identification (Re-ID) mostly rely on large-scale and well-
annotated training data. However, human-annotated labels
are prone to label noise in real-world applications. Pre-
vious person Re-ID works mainly focus on random label
noise, which doesn’t properly reflect the characteristic of
label noise in practical human-annotated process. In this
work, we find the visual ambiguity noise is more common
and reasonable noise assumption in annotation of person
Re-ID. To handle the kind of noise, we propose a simple and
effective robust person Re-ID framework, namely Graph-
Based Self-Learning (GBSL), to iteratively learn discrimi-
native representation and rectify noisy labels with limited
annotated samples for each identity. Meanwhile, consider-
ing the practical annotation process in person Re-ID, we
further extend the visual ambiguity noise assumption and
propose a type of more practical label noise in person Re-
ID, namely the tracklet-level label noise (TLN). Without
modifying network architecture or loss function, our ap-
proach significantly improves the robustness against label
noise of the Re-ID system. Our model obtains competitive
performance with training data corrupted by various types
of label noise and outperforms the existing methods for ro-
bust Re-ID on public benchmarks.

1. Introduction

Person Re-ID [5, 40, 39, 38] is a fine-grained retrieval
task that aims to match people across non-overlapping cam-
era views. Impressive progress on the Re-ID task has been
made recently with the development of deep convolutional
neural networks (deep CNNs) [43, 4]. However, their suc-
cesses highly rely on high-quality supervision of cleanly la-
beled data. In real-world industrial applications, label noise
is pervasive due to the limited expertise of human annota-
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Figure 1. Illustration of different noise in Re-ID datasets. (a) and
(b) are mainly caused by person detector. The arrow represents
how the noise is generated in the annotation. Person (c) mislablled
to person (d) is an example of class-conditional noise (CCN).
Person (c) mislablled to person (e) is an example of instance-
dependent noise (IDN). (c), (d) and (e) are different person.

tors and the ambiguity of pedestrian’s appearance, leading
to obvious performance degradation of existing supervised
methods for Re-ID. Designing Re-ID systems tolerant of
label noise can help us avoid the labor-intensive and time-
consuming manual data cleaning.

Noise problem can be divided into two categories in per-
son Re-ID. The first type is sample noise. The person im-
ages are often cropped by off-the-shelf person detectors in
current person Re-ID datasets. Due to the effect of person
detectors, as shown in Fig. 1 (a) and (b), it may gener-
ate some outliers or imperfect person bounding box. For-
tunately, with the rapid development of person detection
algorithms [46, 13, 18], such sample noise can be readily
detected and rectified.

The second noise is label noise, which means that the
person image may be incorrectly labeled as another iden-
tity. Compared to sample noise, label noise can cause
obvious performance degradation to person Re-ID model.
More specifically, the common label noise has two types:
class-conditional noise (CCN) [44, 28, 27] and instance-
dependent noise (IDN) [3, 6, 7]. CCN is assumed that the
noise is independent of image features given the true la-
bel. As shown in Fig. 1, that is to say the probability of
person (c) being mislabeled as person (d) and person (e) is
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equal under CCN assumption. Previous works(e.g., [42, 41]
) mainly consider the CCN in person Re-ID. But we find
CCN is a very small proportion in practical human annota-
tion. It is easy to know the possibility of person (c) being
wrongly annotated as person (d) that is relatively low. This
is because the person (c) and (d) have obviously different
visual appearances. On the other hand, we can find that per-
son (c) is incorrectly labeled as person (e) is common in
human annotation due to their similar visual appearances.
Therefore we argue the IDN is a main label noise in practi-
cal person Re-ID scenario.

What’s more, the IDN mainly occurs at the image level
in image classification problems [3]. Compared to image
classification, IDN may bring a more severe negative ef-
fect in person Re-ID, which may cause a sequence of im-
age mislabelling. In practice, training images for Re-ID are
pedestrian bounding boxes detected and sampled from suc-
cessive frames in a surveillance video, which is called the
tracklet [23] of a pedestrian. Human annotators are asked to
match the identity of cross-view tracklets captured by non-
overlapping cameras. Label noise in Re-ID is more likely to
be tracklet-level instead of image-level. That is if a human
annotator fails to recognize a person in a tracklet, images in
the whole tracklet (video clip) will be assigned an incorrect
label (as shown in Fig. 1 (c) , (d) and (e) ). Therefore, only
considering the the IDN at image-level may not reflect the
characteristics of label noise in the process of real human
labeling. To address this issue, we further extend the IDN
assumption, and propose a new type of label noise, namely
the tracklet-level label noise (TLN) , which can provide a
more realistic description about the label noise of human
annotation in real-world person Re-ID system.

Although a variety of methods have been developed for
robust deep learning with noisy labels, most of them fo-
cus on image classification [21, 11, 1, 31]. Two underlying
assumptions limit their application to the Re-ID problem:
1) They assume that human annotation errors happen in
image-level, which may not conform to the annotation pro-
cess of Re-ID. 2) They assume that there are enough train-
ing samples for each class. Conversely, Re-ID is a few-shot
problem that usually has more identities (IDs) and much
fewer samples for each class (i.e., identity) , as shown in
Table 1.

Therefore, based on the above analysis, to address the la-
bel noise problem in person Re-ID with limited samples for
each identity, we propose a simple and effective framework,
namely Graph-Based Self-Learning (GBSL), to iteratively
detect and rectify false annotations in the deep representa-
tion learning process. We build a relational graph based
on nearest neighbors and propagate the label messages to
rectify inconsistent labels in the iteration of model training.
After label correction, the network is provided with labels
of higher quality which facilitates learning more discrimi-
native features for label correction in the next iteration.

Table 1. Comparison on the number of classes and labeled train-
ing images in general image classification (left) and person Re-ID
(right).

Classification #classes #imgs Re-ID #IDs #imgs
CIFAR-10 10 5K Market [47] 751 17.2

CIFAR-100 100 0.5K Duke [48] 702 23.5
Clothing1M 14 71.4K MSMT [36] 1041 31.3
Food-101N 101 750 Real-world Massive Few

To summarize, our main contributions are: 1) We discuss
a more practical label noise in real-world person Re-ID,
tracklet-level label noise (TLN), for the first time. TLN is
a type of label noise in the tracklet-wise annotation process
of person Re-ID. 2) Relaxing the constraints of noise rate or
auxiliary clean data, a model-agnostic self-learning frame-
work is presented to automatically correct various types of
noisy labels, which can be embedded into most person Re-
ID models easily. 3) On public Re-ID benchmarks cor-
rupted by different types of severe label noise, the proposed
method surpasses all the compared methods for robust per-
son Re-ID by a clear margin.

1.1. Related Work

This work is closely related to noise-robust person Re-
ID, tracklet person Re-ID, and robust deep learning with
noisy labels.
Noise-robust Re-ID. Developing noise-robust Re-ID is a
critical issue because open-world Re-ID applications usu-
ally suffer from unavoidable noise in data collection and
human annotation [40], including sample noise and label
noise. Sample noise is mainly caused by inaccurate detec-
tion or tracking algorithms, includes outlying regions (e.g.
occlusion and background) within the bounding box [30]
and outlier frames within each tracklet [2]. Attention mech-
anism and pose-guided methods are posed to handle noise
within an image. For outliers frames in the video sequence,
frame re-weighting and spatial-temporal attention are stud-
ied in recent research. Label noise in Re-ID has also been
investigated in some preliminary works (namely robust per-
son Re-ID) [42, 41]. They only consider image-level ran-
dom noise (similar to CCN). Methodologically, Yu et. al.
[42] focus on robust architecture design, while Ye and Yuen
[41] focus on label refinement and sample re-weighting
based on the model prediction. In comparison, beyond the
image-level CCN, we start the first attempt to study a more
realistic and challenging tracklet-level noise model and pro-
pose a label correction method based on graph consistency.
Tracklet Person Re-ID The tracklet association of pedes-
trian images can be useful supervision for unlabeled dataset
[22, 23, 37]. The noisy frames within a tracklet, which is a
type of sample noise produced by detection algorithms, are
also studied in [24]. Instead, we focus on the label noise
in supervised person Re-ID with TLN generated from the
false human annotation in this paper.
Robust Deep Learning with Label Noise Training deep
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neural networks with noisy labels has been widely explored
in recent years [1, 31], including robust losses [44, 27, 25],
robust model architectures [9, 10], sample re-weighting
[45, 17], label correction and others. Most of these works
focus on robust deep learning for image classification,
which require a set of clean labels [15, 21, 35] and rely-
ing on noise distribution assumptions. Specific design on
network architectures or loss functions also limits the ap-
plications to other vision tasks. From the perspective of
noise distribution, many previous methods only consider
random or class-conditional noise, while recent researches
[3, 6] point out that label noise pattern in the real-world
is most likely to be instance-dependent. Methodologically,
there exist iterative self-learning frameworks for noisy label
learning which embeds re-weighting [41], filtering [11, 34]
or label correction [12] in the representation learning pro-
cess. In comparison, we propose a graph-based label cor-
rection method that employs message propagation to rectify
noisy labels.

1.2. Preliminary
In this section, to formulate the problem of person Re-

ID with noisy labels, we revisit the commonly studied CCN
and IDN. Based the IDN assumption, we further propose a
more realistic and challenging TLN in person Re-ID. No-
tably, we assume that the label noise rate ρnoise is unknown
and no auxiliary clean data is available.

1.3. Class-Conditional Label Noise (CCN) and
Instance-Dependent Label Noise (IDN)

Traditionally, the noise transition matrix T (X) is intro-
duced to model the distribution of noisy labels. X denotes
the sample feature. The transition matrix of CCN is formu-
lated as,

Ti,j(X) = P(Ỹ = j|Y ∗ = i), (1)

where the labels of samples is flipped to noisy labels Ỹ with
a probability only depending on their ground truth Y ∗.

The IDN describes label flipping that depends on the in-
herent input features, whose transition matrix can be formu-
lated as,

Ti,j(X) = P(Ỹ = j|Y ∗ = i,X), (2)

which is a function of both Y ∗ and X . When Y ∗ is given,
the transition matrix only depends on X . Thus we can intu-
itively know the IDN is closely related to visual ambiguity
problem in person Re-ID.

The transition matrix models the image-level label flip-
ping probability. In a general image classification task, we
usually have no prior knowledge of the association among
different samples. Human annotators usually label the im-
ages one by one. Therefore generating the image-level label
noise for image classification is reasonable. However, both
CCN and IDN can not well describe the tracklet-wise label
noise in human annotation process of person Re-ID.

1.4. Tracklet-Level Label Noise (TLN)

Given a tracklet S = {x1, x2, ...}, which is a set of
images sampled from a sequence of bounding boxes de-
tected from consecutive frames of surveillance video, the
human annotators match it with another tracklet captured
from other cameras and assign an identical identity label y
to all the images.
Definition 1 (TLN Model). If a bounding box image of a
person is labeled with an incorrect label j, all images within
the same tracklet will be assigned the same label j, i.e.,
∃xi ∈ S′, ỹi = j 6= y∗i ⇐⇒ ∀xk ∈ S′, ỹk = j.

The TLN model formulates a constraint to the generation
of label flipping, i.e., images within a tracket should have
coherent annotations. Since images within a tracklet are
usually of high similarity, the distribution of TLN is locally-
concentrated.

To model realistic TLN in a dataset, we first pre-train
a model on the clean dataset and use it to find the most
similar identity except the ground truth identity (namely the
secondary identity) of each image based on the outputs of
classifier. The process is similar to the IDN [3] generation.
Then, the secondary identity of a tracklet is determined by
the most frequent secondary identity of all images in the
tracklet. When generating TLN, we will change all the la-
bels of images in the same tracklet into the secondary iden-
tity of the tracklet. Details about generation of three kinds
of label noise are provided in supplementary materials.

2. Methodology
2.1. Iterative Self-Learning Framework

Our goal is to learn discriminative features for person
Re-ID with noisy human annotations. Fig. 2 illustrates the
proposed graph-based self-learning framework which iter-
atively optimizes network parameters Θ and rectifies the
labels of the noisy dataset Ỹ . In the network optimization
phase, we train a deep network to learn discriminative rep-
resentations which helps us distinguish clean and noisy la-
bels. In the label correction phase, we construct a similarity
graph to detect and rectify inconsistent labels, which can
learn better discriminative features. After several iterations
between network optimization and label corrections, the la-
bels converge and then we can continue training the net-
work parameters with stable labels until the convergence of
the model.

Our method is model-agnostic and loss-independent
which focuses on label correction. So we adopt a widely
used ResNet-50 [14] architecture to be optimized with a
combination of identity loss (i.e. cross entropy loss) Lid
and hard triplet loss [16] Ltri, which is formulated as:

Θ = argmin
Θ

Lid(X|Θ, Y ) + Ltri(X|Θ, Y ). (3)
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Figure 2. Illustration of the proposed framework Graph-Based Self-Learning (GBSL).

where Y is the rectified label which is updated in each iter-
ation of label correction and Y = Ỹ in the first iteration.

2.2. Graph-Based Message Passing

Existing label refinement or correction methods for noisy
labels rely on model classifier [41, 3] or class prototypes
[12] to refine the labels for noisy dataset. However, the
training data for Re-ID is usually few-shot and long-tailed,
the model classifier will be sensitive to label noise and it’s
difficult to find reliable prototypes. To address this, we con-
struct a relational graph to propagate label information to
find inconsistency in the graph, which may probably detect
and rectify the samples with incorrect labels. Based on the
cluster assumption [51] that nearby points are likely to have
the same label, we detect inconsistent points with noisy la-
bels and correct the labels by aggregating messages from
their neighbors on the graph.
Graph construction. Given a network with parameters Θ,
we obtain the representation set Z = [z1, z2, ..., zn], where
zi = φ(xi|Θ). We construct a sparse affinity matrix A ∈
Rn×n by

Aij =

{
1− d(zi, zj), zj ∈ Nk(zi);
0, otherwise.

(4)

where d(zi, zj) ∈ [0, 1] is the normalized distance metric
(e.g., cosine distance) between two samples band. Nk(zi)
denotes the set of zi’s k-nearest neighbors. Generally, an
affinity matrix should be symmetric. We can introduce the
symmetric affinity matrix A∗ with zero diagonal as:

A∗ =
1

2
(A+A>) (5)

Message passing. After constructing the k-nearest neigh-
bor graph, we aim to optimize the label space to be consis-
tent to the contextual information in the feature space. It is
performed by label message passing on the k-nearest graph
neighbor. We denote the label matrix as L whose row cor-
responding to the label of each example is one-hot encoded
(i.e., Lij = 1 if yi = j otherwise Lij = 0). In each label
correction iteration, the propagation model for the graph-
based message passing is formulated as:

L := D−
1
2 (A∗ + λI)D−

1
2L (6)

where D is the degree matrix of A∗+λI . A∗ij measures the
connectedness between sample xi and xj and controls the
weights of message passing between them.

The propagation model is the graph laplacian of the ma-
trix A∗ + λI . I is the identity matrix where the sample
propagates its label to itself. λ is a hyperparameter which
controls the degree of self-reinforcement in the correction
phase. Since most labels are correct in a human-annotated
dataset, we should emphasize a sample’s own label instead
of purely relying on information from its neighbors. Our
propagation model is relative to the first-order approxima-
tion of spectral graph convolution used in GCN [20]. The
difference lies in that we propagate the label message in-
stead of node features. Different from label propagation
[52, 51] methods for semi-supervised learning which re-
peatedly propagate labels from labeled samples to unlabeled
samples until converging to a stable state, the label message
propagation in our method is embedded into the represen-
tation learning of a deep network. We only propagate the
label information once in each label correction stage and
explicitly perform hard label correction. The principle for
this is to inhibit the propagation of noisy information be-
fore learning more discriminative representations. Besides,
solving our first-order propagation model also needs lower
computation costs.
Label correction. After neighborhood aggregation by mes-
sage passing, if argmaxjLij 6= yi, which means the sam-
ple’s current label is inconsistent with its neighbors on the
graph, we regard the sample is wrongly annotated. Then,
we explicitly rectify the label by

yi := argmax
j

Lij , j = 1...C. (7)

where C is the number of identity.
In the graph-based label correction, each sample “votes”

for the labels of its neighbors according to their similarity.
After label correction, the network is provided with labels
with higher quality. The rectified labels boost the network to
learn more discriminative features which can help to correct
more labels in the next iteration. The whole algorithm is
summarized in Algorithm 1.
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Algorithm 1 Graph-Based Self-Learning (GBSL)
Input: Training dataset X with noisy labels Ỹ , initialized net-

work parameters Θ, set of correction epoch TC .
Output: Optimized network parameter Θ, rectified labels Y .
1: for t = 1; t <= num of epoch; t++ do
2: if t ∈ TC then
3: Extract features Z with network encoder.
4: Construct (update) relational graph A* by Eq. (4-5)
5: Optimize label matrix with first-order message passing

by L := D−
1
2 (A∗ + λI)D−

1
2L (Eq. (6))

6: Detect and rectify inconsistent labels with Eq. (7)
7: end if
8: Optimize Θ with y1, y2, ..., yn (Eq. (3))
9: end for

10: return Y , Θ.

3. Experiments
3.1. Datasets and Evaluation Protocols

Benchmark datasets. To follow with the previous works
on robust person Re-ID [42, 41] and analyze different types
of label noise, we evaluate our method on two large-scale
benchmark datasets for person Re-ID: Market-1501 and
DukeMTMC-reID. Market-1501 [47] has 32,688 labeled
person images of 1,501 identities collected from 6 differ-
ent cameras. DukeMTMC-reID [48, 29] contains 36,411
labeled images of 1,404 people from 8 camera views. The
images in the two image-based datasets contain the in-
formation of camera ids and tracklet from their image
names. Taking Market-1501 for example, in image name
“0001 c1s1 001051 00.jpg”, “0001” is identity. “c1” is the
camera id. “s1” is sequence(tracklet) id. In TLN generation,
the images of Market-1501 are divided into 3,262 tracklets
(and 2,195 tracklets for DukeMTMC-reID).
Evaluation metric. We report the results of the rank-1 ac-
curacy (R1) and mean average precision (mAP) following
the standard protocols in [47, 48] without post-processing
technique, like re-ranking [49] or multiple query retrieval
[47]. We also evaluate the quality of label correction by
precision (Pre.) and recall (Rec.). We classify the correc-
tion operation into three types: true correction, false cor-
rection, and switch correction, as shown in Fig. 3. True
correction (TC) means a noisy (incorrect) label is corrected
by the algorithm. False correction (FC) means a clean label
is changed to a wrong label. Switch correction (SC) means
a noisy label is modified to another incorrect label. Then the
precision and recall rate of label correction is defined as:

Precision =
TC

TC + FC + SC
× 100% (8)

Recall =
TC − FC
ρnoise × |I|

× 100% (9)

where |I| is the size of image dataset.

Corrected
Object

Nearest Neighbors

True
Correction

(TC)

False
Correction

(FC)

Switch
Correction

(SC)
00

0

0

0

Figure 3. Examples of true correction (TC), false correction (FC)
and switch correction (SC) by graph-based message passing. The
green box denotes a true label with the object image while the red
box denotes a false label with the object.

3.2. Implementation Details

We adopt ImageNet [8] pre-trained ResNet-50 [14] as
the backbone of feature encoder, and a linear classifier with
BNNeck [26] is added in the last of the network. All images
are resized to 256 × 128 with random flipping and random
erasing [50] for argumentation. The stride of the last stage
in backbone to 1. Adam optimizer [19] is adopted with the
batch size of 64 and an initial learning rate of 3.5 × 10−4,
decreasing with a factor of 0.1 in 40th and 70th epoch of 80
epochs in total. We perform label correction every 2 epoch
in the first 40 epochs until the labels remain stable after 40th

epoch (i.e., TC = {2, 4, ..., 40} in Algorithm 1). The k-
reciprocal encoding [49] is adopted as the distance metric
in Eq. (5). We implement our experiments with Pytorch 1.6
on a regular PC with a Tesla P40 GPU. The label correction
process is implemented on GPU and needs about 30 minutes
in the whole training process. After a simple grid search, we
set k = 8 and λ = 2 in all the experiments unless otherwise
specified. For a fair comparison, the generated label noise
for models of all competing methods is fixed.

3.3. Comparison With State-of-the-Arts

We compare our method with two existing methods for
robust Re-ID (PurifyNet [41] and DistributionNet [42])
and four popular methods (MeanTeacher [32], Co-Teaching
[11], DSL [12] and SEAL [3]) for robust deep learning on
Re-ID benchmarks. For a fair comparison, we implement
these methods and report the results with the same backbone
(the strong baseline for re-ID [26]), except for the robust ar-
chitecture method DistributionNet. The “noise-free” model
is training the baseline model with the original labels of the
benchmarks, whose performance is considered as the upper
bound in our settings. We evaluate the methods of learning
with three different types of label noise in Re-ID, including
uniformly distributed CCN, IDN, and the proposed TLN.
The results are shown in Table 2 - Table 4.
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Impact of different types of label noise. By comparing the
baseline model with the noise-free model in Table 2 - 4, we
have the following observations: (1) The baseline method
suffers from an obvious decline of performance with all
kinds of label noise. (2) CCN noise is more destructive to
the model performance than the same proportion of IDN or
TLN. The reason is that CCN has stronger randomness that
assigns a random label to a noisy sample which may cause
severe feature distortion. (3) An equal proportion of IDN
and TLN has a similar impact on the baseline. They have
the common operation in assigning the same label to images
of a different person with a similar appearance.
Robustness against image-level label noise. The results
shown in Table 2-4 demonstrate that our GBSL achieves
the best performance among all the compared methods in
all types of noisy label settings. In the setting of learning
with image-level label noise (CCN and IDN), our method
surpasses the competitors by a clear margin and has high
precision and recall in label correction (as shown in Fig. 5).
We also observe that the image-level instance-dependent la-
bel noise in Re-ID is not evidently more difficult than the
random CCN for our method, which leads to a different
conclusion from that in general image classification with
instance-dependent noisy labels. The main reason for that is
the person images within a tracklet are usually have high vi-
sual similarity, i.e., lies in a narrow region of feature space.
If only a small part of image samples in a tracklet are ac-
cidentally assigned wrong labels, they can be readily de-
tected and rectify by aggregating label information from
their neighbors in GBSL. Neighborhood relationship is not
exploited in all compared methods except DSL, resulting in
their inferior performance in the task of Re-ID with label
noise.
Analysis on tracklet-level label noise. Although TLN is
less destructive to the baseline method, it is also prone to
be overfitted by the models and it is more difficult to handle
through robust deep learning methods. As shown in Table
4, all the methods have a small improvement on the baseline
model. Our method outperforms all the competitors on both
benchmarks, but still obtains lower performance than that in
the setting with the same proportion of CCN or IDN. The
intermediate representations learned by the models are not
view-invariant, which are only effective in rectifying noisy
samples within tracklets.
Evaluation on label correction. Fig. 4 illustrates the label
correction during training iterations and Fig. 5 shows the
results of GBSL’s precision and recall on label correction
with comparison to naive k-NN classifier and DSL. We can
observe that our method can effectively correct the labels
of both CCN and IDN, where IDN is only slightly more
difficult to detect than CCN even the generation is quite dif-
ferent. The correction precision of CCN and ICN is approx-
imately 90% with a recall over 80%, which means our label
correction method can significantly improve the label qual-

Table 2. Comparison with other methods on noisily-supervised
learning of person Re-ID benchmarks with uniform class-
conditional (random) label noise (CCN).

Method
Market-1501 DukeMTMC

10% noise 20% noise 10% noise 20% noise
R1 mAP R1 mAP R1 mAP R1 mAP

Noise-free 94.1 86.7 94.1 86.7 86.3 75.9 86.3 75.9
Baseline 87.7 72.8 78.1 58.2 77.3 63.2 65.8 51.2

Dist. Net [42] 82.3 61.5 77.0 53.4 68.6 48.0 62.4 40.9
PurifyNet [41] 85.2 66.2 84.1 64.8 76.5 61.3 74.5 56.2
Co-Teach [11] 84.5 65.3 83.2 63.8 74.2 57.1 62.5 43.8

MeanTeach [32] 87.0 72.3 77.0 57.5 76.0 62.1 64.0 49.3
SEAL [3] 90.2 79.1 84.6 68.7 80.1 66.2 78.2 65.8
DSL [12] 91.2 80.3 89.7 78.6 82.1 71.3 81.5 72.0

Ours 93.7 84.8 92.2 82.2 85.9 74.5 85.2 73.9

Table 3. Comparison with other methods on noisily-supervised
learning of person Re-ID benchmarks with instance-dependent
(patterned) label noise (IDN).

Method
Market-1501 DukeMTMC

10% noise 20% noise 10% noise 20% noise
R1 mAP R1 mAP R1 mAP R1 mAP

Noise-free 94.1 86.7 94.1 86.7 86.3 75.9 86.3 75.9
Baseline 89.6 76.7 84.1 67.1 79.6 66.7 71.7 57.3

Dist. Net [42] 52.4 27.0 49.3 24.4 37.7 20.8 34.5 18.5
PurifyNet [41] 86.7 70.2 85.3 66.5 77.9 65.1 75.6 60.8
Co-teach [11] 85.2 67.0 84.2 65.3 74.8 58.3 68.3 53.0

MeanTeach [32] 88.7 75.3 83.2 64.6 78.7 65.9 69.9 55.6
SEAL [3] 90.5 78.9 86.6 71.3 81.2 69.1 79.6 67.4
DSL [12] 91.5 81.0 90.2 79.6 84.0 73.0 83.5 72.7

Ours 93.6 84.8 91.9 82.3 86.2 75.4 85.5 74.1

Table 4. Comparison with other methods on noisily-supervised
learning of person Re-ID benchmarks with the proposed tracklet-
level label noise (TLN).

Method
Market-1501 DukeMTMC

10% noise 20% noise 10% noise 20% noise
R1 mAP R1 mAP R1 mAP R1 mAP

Noise-free 94.1 86.7 94.1 86.7 86.3 75.9 86.3 75.9
Baseline 90.4 78.8 85.3 69.9 81.6 68.9 74.5 60.7

PurifyNet [41] 87.2 71.8 86.5 69.2 78.1 66.1 74.2 59.8
Co-teach [11] 86.3 68.8 83.3 64.7 75.1 60.2 71.2 57.6

MeanTeach [32] 89.8 76.8 84.3 66.8 80.2 68.3 73.4 58.9
SEAL [3] 89.4 77.0 85.4 70.3 81.5 68.3 74.0 59.2
DSL [12] 90.5 79.8 86.1 71.5 81.9 69.9 75.3 62.3

Ours 92.0 81.7 88.8 76.6 82.3 70.8 76.5 65.6

ity of the corrupted dataset. We can also see that only 17%
corrupted labels are successfully rectified by the GBSL and
the results of the other two methods are even lower, show-
ing that such type of label noise is much more difficult to
detect by the models than the image-level label noise (i.e.,
CCN and IDN.).
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Table 5. Ablation study of propagation model on Market-1501 with both types of label noise.

Method Propagation Model
20% IDN noise 20% TLN noise

ReID Label Correction ReID Label Correction
R1 mAP Pre. Rec. R1 mAP Pre Rec.

Baseline - 84.1 67.1 - - 85.3 69.9 - -
Model prediction argmaxj f(x|Θ)j 85.1 68.4 32.5 22.1 85.6 71.4 25.6 5.4
k-NN classifier argmaxy

∑C
i=1 1[yi = y, xi ∈ Nk(x)] 87.2 73.9 36.5 26.6 84.9 67.0 23.0 6.9

Label Spread [51] (I− αA)
−1

L 90.5 79.5 68.5 71.2 86.4 71.2 43.2 11.2
Ours w/o λI D−

1
2 A∗D−

1
2 L 88.1 75.8 40.2 28.9 85.6 71.0 25.1 7.8

Ours w/o symmetric A∗ D
− 1

2

l (A + λI)D
− 1

2
r L 90.8 79.7 70.2 74.6 86.9 73.2 47.8 16.3

Ours D−
1
2 (A∗ + λI)D−

1
2 L 91.9 82.3 89.7 84.2 88.8 76.6 56.3 17.0
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Figure 4. Accumulated corrections (left), correction precision and
recall (right) on Market-1501 with 20% IDN noise and TLN noise
during training epoch by the proposed method.
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Figure 5. Evaluation of label correction precision (Pre.) and recall
(Rec.) on Market-1501 with 20% different types of label noise.

3.4. Component Evaluation and Discussion

Propagation model. We conduct an ablation study us-
ing different propagation models in the graph-based self-
learning framework, which can be regarded as variants of
the proposed GBSL model. The results are shown in Ta-
ble 5. We have the following observations: (1) Relying on
model classifier prediction or naive k-NN classifier to pre-
dict labels without considering the similarities among sam-
ples, which is easily affected by the noisy labels and ren-
ders the spread of noisy label, and causes a low correction
precision. (2) Our method surpasses the diffusion model
of label propagation for semi-supervised learning, which it-
eratively passes label information from labeled data to un-
labeled data. The reason is that propagating labels mes-
sage repeatedly within a collection iteration also propagates
more noisy labels, resulting in lower correction accuracy.
(3) Both self-reinforcement and symmetric affinity matrix

4 6 8 10 12 14 16
k

65

70

75

80

85

90

95

%

(Rank-1, mAP) - k

rank-1, nr=0.1
mAP,    nr=0.1
rank-1, nr=0.2

mAP,    nr=0.2
rank-1, nr=0.3
mAP,    nr=0.3

4 6 8 10 12 14 16
k

30

40

50

60

70

80

90

100

%

(Pre., Rec.) - k

precision, nr=0.1
recall,       nr=0.1
precision, nr=0.2

recall,       nr=0.2
precision, nr=0.3
recall,       nr=0.3

(a) k: number of nearest neighbors

1.0 1.5 2.0 2.5 3.0 3.5 4.0

65

70

75

80

85

90

95

%

(Rank-1, mAP) - 

rank-1, nr=0.1
mAP,    nr=0.1
rank-1, nr=0.2

mAP,    nr=0.2
rank-1, nr=0.3
mAP,    nr=0.3

1.0 1.5 2.0 2.5 3.0 3.5 4.0

50

60

70

80

90

100

%

(Pre., Rec.) - 

Precision, nr=0.1
Recall,      nr=0.1
Precision, nr=0.2

Recall,    nr=0.2
Precision, nr=0.3
Recall,    nr=0.3

(b) λ: degree of self-reinforcemen

Figure 6. Hyperparameter analysis with different noise rates (nr).

improve the performance of label correction.
Sensitivity to k. In Fig. 6 (a), we vary k, i.e., the number of
nearest neighbors, from 4 to 16 under different noise ratio
(CCN) from 10% to 30%. It should be noticed that k should
not be too small otherwise the correction is easily affected
by local noisy samples. We observe that the performance is
robust when k ≥ 8. We also observe that the optimal choice
for k is 8 and independent from the noise rate.
Sensitivity to λ. In Fig. 6 (b), we analyze another im-
portant hyperparameter in our method, the degree of self-
reinforcement λ. We find that λ = 2 is best for all noise
rates on both datasets. Using a small λ producing more
false correction, resulting in low precision in label correc-
tion and the recall is also low because lots of new noisy
labels are produced by false correction. Using a large λ
will have high precision because we only correct the labels
when we are highly confident but will have a low recall rate
of noisy correction. Similar to k, the optimal value of λ is
also independent of the noise rate.
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Figure 7. t-SNE visualization of IDN and TLN. We use different colors to denote different identities and crosses to denotes samples with
incorrect labels.

Table 6. Evaluation of label correction precision (Pre.) and recall
(Rec.) on Market-1501 with 20% different types of label noise.

Method CCN IDN TLN
rank-1 mAP rank-1 mAP rank-1 mAP

Soft re-labeling 85.3 68.2 86.2 70.5 85.2 68.8
Hard (Ours) 92.2 82.2 91.9 82.3 88.8 76.6

Hard correction vs. soft re-labeling. We validate
the effect by training the network with softmax logits
of the label matrix after message passing (i.e., Lid =

− 1
n

∑n
i=1 pij log f(xi|Θ), pij =

exp(Lij/τ)∑
j exp(Lij/τ)

, j =

1...C). The comparison is in Table 6. We find that using
a soft re-labeling obtain inferior performance than hard la-
bel correction. We believe the reason is that using a soft
re-labeling may make the model easier overfit to the label
noise and lose useful information of hard samples. Using
the hard correction in our first-order propagation model can
cut off the transmission of noisy labels.
Visualization. We randomly choose 10 persons from
Market-1501 and visualize their features with t-SNE [33]
in Fig. 7. We have the following observations: (1) The
baseline method overfits both IDN and TLN with different
patterns. Samples with IDN distribute in outlying regions
of other samples with the same identity, while samples with
TLN prefer to gather in separate regions from other samples
with the same identity. (2) Our GBSL model can produce
more compact feature clusters than the baseline model, in-
dicating that the proposed method can facilitate robustness
against label noise.
Robustness test on clean dataset. We also evaluate
our method with the original labels of Market-1501 and
DukeMTMC-reID benchmarks, which are relatively clean
with limited annotation errors. We observe that the per-
formance is stable compared with the baseline model. On
DukeMTMC-reID, the performance is slightly improved,
indicating that its training set may be originally noisy. Al-
though GBSL may wrongly modify some of the clean labels
in primitive iterations of training, most of them will be later
corrected during the self-learning process as the learning of
more discriminative features. The rest samples that have
been modified but not be corrected lately are mostly out-
liers of each identity. Their labels will change to an iden-
tity of a pedestrian who has a similar appearance to them

Table 7. Robust test on clean training set of Re-ID benchmarks.

Method Market-1501 DukeMTMC-reID
rank-1 mAP rank-1 mAP

Baseline 94.1 86.7 86.3 75.9
Ours 94.0 85.9 86.7 76.8

Figure 8. Examples with incorrect annotations in the existing Re-
ID benchmarks detected by our method.

and such errors may not cause significant harm to the per-
formance. Notably, the proposed method can detect some
originally incorrect labels in the benchmark datasets with
the proposed algorithm, as shown in Fig. 8. For example,
an image of a man wearing a black sling bag, white breast
piece, and white shoes is assigned to ID 0939 of Market-
1501 who wears black shoes with a similar appearance.

4. Conclusion

In this paper, we study the problem of robust person
Re-ID with noisy labels. Based on characteristics of the
annotation process in person Re-ID, we propose a type of
more realistic and challenging noise, TLN. To handle la-
bel noise with limited training samples for each identity, we
propose a graph-based self-learning framework for robust
person Re-ID to iteratively learn discriminative representa-
tion and correct inconsistent labels. The proposed method
can effectively reduce the IDN and TLN for robust person
Re-ID and significantly improve the robustness of a baseline
model against label noise. Although our method can well
address the image-level label noise in Re-ID, the proposed
TLN remains challenging and deserves further investigation
in the future.
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