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Abstract

A promising direction for recovering the lost informa-
tion in low-resolution headshot images is utilizing a set of
high-resolution exemplars from the same identity. Comple-
mentary images in the reference set can improve the gen-
erated headshot quality across many different views and
poses. However, it is challenging to make the best use of
multiple exemplars: the quality and alignment of each ex-
emplar cannot be guaranteed. Using low-quality and mis-
matched images as references will impair the output re-
sults. To overcome these issues, we propose the Headshot
Image Super-Resolution with Multiple Exemplars network
(HIME) method. Compared with previous methods, our net-
work can effectively handle the misalignment between the
input and the reference without requiring facial priors and
learn the aggregated reference set representation in an end-
to-end manner. Furthermore, to reconstruct more detailed
facial features, we propose a correlation loss that provides
a rich representation of the local texture in a controllable
spatial range. Experimental results demonstrate that the
proposed framework not only has significantly fewer com-
putation cost than recent exemplar-guided methods but also
achieves better qualitative and quantitative performance.

1. Introduction
Numerous psychological and cognitive studies have

shown that face perception is one of the most important and
specialized aspects of social cognition [17, 35]. The facial
regions of a picture tend to draw the attention and interest
of observers immediately. Moreover, humans are suscepti-
ble to minor changes in familiar faces [38]. Thus, increas-
ing the quality of the face region in images and videos has
the potential to significantly enhance the user experience
of many social communication applications, e.g. real-time
video chat, mobile photo booth, etc.

*This work is done during the author’s internship at Meta.
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Figure 1: Headshot super-resolution that recovers the lost
information in the input using a set of exemplars.

For the above reasons, the machine learning commu-
nity has widely explored face hallucination [34, 50, 41, 8,
12, 6] as a domain-specific problem of single image super-
resolution(SISR) [2, 3, 47], which aims to restore realistic
details from a low-resolution (LR) face image to a high-
resolution (HR) one. Benefiting from the integration of face
structure and identity priors and recent progress in deep
neural network designs, it is now possible to generate vi-
sually pleasing results even for extremely tiny faces. When
the input LR headshot does not contain enough attribute or
identity information, using additional references can help
to achieve a more faithful reconstruction result. In this pa-
per, we explore a novel method that makes full use of an
arbitrarily-sized set of exemplar images to increase the fi-
delity of headshot image super-resolution.

One core problem is to search the matching regions from
references and transfer the corresponding features to the
output. Previous methods choose to conduct the global con-
text matching with registration [55], optical flow [45, 60,
30, 15] with a warping [39]. Still, these works assume
the exemplars share a similar viewpoint with the LR in-
put [39], which cannot always be guaranteed. Besides, their
performance depends on accurate motion estimation and
may poorly capture long-range correlations. Other meth-
ods [4, 59, 51, 49] conduct an exhaustive patch-wise com-
parison of LR and reference features, which require a large
amount of computation, especially when the reference res-
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olution is high. In addition, these methods cannot han-
dle inter-patch misalignment or non-rigid deformations. To
better use the information of faces from different poses or
views, we propose a Reference Feature Alignment module
(RFA) that combines optical flow and deformable alignment
to find the corresponding information in reference features
and align them with the LR content inspired by [31, 7, 9].

In practical applications like smart home cameras or
mobile photography, it is possible to acquire many high-
resolution images of different views when the user is close
to the camera. These images can naturally serve as good
exemplars to enhance far-away tiny faces. However, most
previous works focus on reference-based super-resolution
(RefSR) with one exemplar [59, 51, 39, 30, 15], which is a
simplified assumption. To handle a set of exemplars, these
methods require an extra step to select the most similar im-
age as the reference according to SIFT [33, 58] or facial
landmarks points [29], which is a poor representation of the
whole set. [43] devises a framework to process and com-
bine multi-exemplars with a weighted pixel average. Still, it
is not robust to the displacement or distortions in reference
images, as is our method. To utilize the reference set ef-
fectively and efficiently, we propose a Content-conditioned
Feature Aggregation module (CoFA) that simplifies the set-
to-image RefSR problem to a point-to-point RefSR by ag-
gregating feature maps in a set into a single representation.

Benefiting from the module designs above, our network
is end-to-end trainable without requiring other face-specific
meta-information. Aiming to generate an SR output with
highly-detailed textures, we propose a novel correlation loss
inspired by the correlation layer in FlowNet2 [24, 37] to su-
pervise the reconstruction of texture patterns. We compute
the pixel-wise correlation across the channel dimension to
represent the local textures within a certain window size.

In summary, our contribution is four-fold: (1) we pro-
pose a novel headshot super-resolution network that takes
advantage of multiple exemplars. Our method is more ef-
fective than previous approaches by thoroughly integrating
the corresponding information in the exemplar set. It is also
computationally efficient since we conduct the matching
and transferring in the LR space with careful design; (2) we
propose a novel reference feature alignment network to find
and align corresponding reference features to the LR con-
tent based on flow-guided deformable sampling. We devise
a feature aggregation module conditioned on the LR con-
tent to explicitly improve the set representation by favoring
features that are high in quality and similarity; (3) we pro-
pose a novel correlation loss that helps represent the local
texture and reconstruct more realistic details; (4) compared
with previous approaches, our method achieves state-of-
the-art face hallucination performance on the CelebAMask-
HQ testset. It also has fewer parameters and computational
costs than recent exemplar-guided methods.

2. Related Works

2.1. Reference-based Super-Resolution

Reference-based SR (RefSR) [18] can reconstruct more
accurate structures and details benefiting from the reference
HR image. The general solution of RefSR includes two
steps: searching the matched textures between LR inputs
and HR references, and transferring the textures. Some of
the previous RefSR approaches choose to align the LR and
Ref images with either global registration [55] or optical
flow [45, 60]. Other methods choose to match by patches
with gradient features [4], or deep features extracted by
the CNN [59, 51, 49]. [39] change the feature matching
to LR space to reduce computation. [51] introduced the
transformer architecture in a cross-scale manner to improve
the accuracy of searching and transferring relevant textures.
The above works usually include pixel-wise reconstruction
loss, perceptual loss [40] and adversarial loss as the objec-
tive functions. Zhang et al. [58] introduce a Haar wavelet
loss and a degradation loss to avoid over-smoothing in final
results. Besides, CMSR [13] further expands the reference
source from a single image to a pre-built image pool and
searches the k−nearest patches from the pool. Since these
methods exhaustively conduct a patch-wise comparison of
LR and reference feature maps, they usually have a high
computational cost.

2.2. Face Hallucination

Face hallucination methods can be roughly divided into
two categories: blind face hallucination and exemplar-
guided restoration. The first category focuses more on inte-
grating face priors in designing the reconstruction network
and loss functions: some works include sub-branches for fa-
cial landmarks or face structures [61, 41, 5, 54, 25, 52], or
face parsing map [12, 11]. Using face structure priors may
bring advantages, including the better recovery of the face
shape, as reflected by fewer errors on face alignment and
parsing. However, the reconstruction results might not look
like the same person, especially when the input images con-
tain barely any identifying information. To solve this prob-
lem, [56, 23, 20] employ identity information to supervise
the training of the reconstruction network. However, these
blind reconstruction methods are heavily influenced by the
bias within the distribution of training data, and usually fail
to generate satisfying results for minority groups.

The second category, exemplar-guided restoration, aims
to use another HR image of the same person to improve
the visual content quality of the generated images. [30, 15]
include a warping sub-network in using the HR guidance,
which increases the training steps as well as the computa-
tion cost of the network. [29] uses moving least-squares
to align the input and guidance images in the feature space
and applies AdaIN for feature transfer. It selects a single
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Figure 2: Overview of our Headshot Image Super-Resolution with Multiple Exemplars (HIME) framework. Given an input
LR image and any number of exemplars, it matches, aligns, and aggregates the features of the reference images conditioned
on the input content to reconstruct the SR output.

exemplar from the guidance images, thus cannot fully use
the rich information in the guidance face sets. [43] takes a
step forward by using multiple exemplars with a weighted
pixel average module in the network. But, it cannot handle
the large deformation between unaligned faces.

Compared with the approaches above, our method can
take full advantage of an unaligned exemplar set as a refer-
ence in headshot reconstruction, and our network is end-to-
end trainable without requiring face-specific metadata.

3. HIME Framework

Given a low-resolution input IL and a set of high-
resolution headshot images Iref = {Irefi }, i = 1, 2, . . .
from the same identity, our goal is to generate the corre-
sponding high-resolution image ISR. To efficiently and
accurately transfer the matching information from the un-
aligned reference sets of arbitrary length, we propose the
HIME framework as illustrated in Figure 2. This framework
consists of four main components: feature extractor, refer-
ence feature alignment module (RFA), content-conditioned
feature aggregation module (CoFA), and HR reconstructor,
as introduced in Sections 3.1, 3.2, 3.3 and 3.4.

We first use an LR feature extractor to get the feature
map FL from IL and an HR feature extractor to get feature
maps {F ref

i }ni=1 from the reference set with n HR images.
For efficient feature matching and transfer, the reference
images and features are converted to the LR space. Then
we feed IL, FL, {Irefi }ni=1 and {F ref

i }ni=1 to the proposed
RFA module for alignment. Furthermore, to better utilize
the face set information, we use a CoFA module to aggre-
gate the refined features into one. Finally, we reconstruct
the HR face image from the aggregated feature map.

3.1. Feature Extractors

We adopt an HR feature extractor and an LR feature ex-
tractor to handle images in HR space and LR space, respec-
tively. The HR feature extractor turns the HR reference
images into a set of feature maps: {F ref

i }ni=1. The RGB
images are first converted into a mono-channel feature map
since the color information of the reference images is not
needed. Then, we adopt a space-to-depth operation to con-
vert the HR feature maps into the same spatial resolution
as the input without discarding any information. Next, we
apply a convolution layer and kh residual blocks [22] to ex-
tract the HR reference feature maps. The LR feature extrac-
tor generates feature maps for the input LR image with a
convolutional layer and kl residual blocks [22].

3.2. Reference Feature Alignment

Given extracted feature maps FL from the input LR im-
age and {F ref

i }ni=1 from the reference images, we want to
acquire guiding features that are well-aligned with the con-
tents of the LR image to mitigate any mismatches in view
or pose. To achieve this goal, We propose learning a feature
alignment function f(·) to directly align the reference fea-
ture maps F ref

i as shown in Figure 3. A general form of the
alignment function can be formulated as:

F refA
i = f(F ref

i , IrefLi , IL, FL) = T (F ref
i ,Φi), (1)

where F refA
i denotes the i-th aligned reference feature,

T (·) is the sampling function, and Φi is the correspond-
ing sampling parameters. Inspired by the deformable align-
ment [14, 62] in [44, 42, 48] for spatial and temporal super-
resolution, we propose to use deformable sampling func-
tions to implicitly capture the similarities between LR con-
tent and reference images. However, the training of de-
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Figure 3: Reference feature alignment (RFA): Optical flow
is integrated as part of the offset field to align the reference
feature map. Then the aligned features are used to estimate
the offset residue. In this way, we can thoroughly exploit
the similarities between the LR and reference images.

formable alignment module is hard and full of instability,
which might impair the model’s final performance. To over-
come this issue, we combine the optical flow as guidance.

The offset for the deformable sampling function should
be learned based on the correspondences between the refer-
ence image and the input LR image, which is very similar to
the goal of optical flow. Thus, we directly merge the optical
flow into the offset of deformable alignment, and compute
the offset residue to further improve the accuracy. We first
estimate the optical flow oi between IL and IrefLi , and use
it to warp the reference features:

F refW
i = warp(F ref

i , oi) (2)

Then the warped reference feature is used to predict the
offset residual ∆pi, along with the LR feature FL:

∆pi = g([F refL
i , FL]), (3)

where g(·) denotes a general operation of convolution lay-
ers for the offset estimation; [·, ·] denotes channel-wise con-
catenation. Then we can acquire the sampling parameters
Φi = oi + ∆pi. With the flow-guided offset, the sampling
function in Equation 1 can be performed with a deformable
convolution [14, 62]:

F refA
i = T (F ref

i ,Φi) = DConv(F ref
i ,Φi). (4)

We denote the RFA module without optical flow guid-
ance network as the HIME (small), which directly estimat-
ing the offset. The network with flow-guided RFA module
is demoted as HIME (large).
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Figure 4: Content-conditioned feature aggregation (CoFA):
For each aligned reference feature, we compute a similarity
score µ with the input FL and then aggregate all features
F refA with a weighted average.

3.3. Content-conditioned Feature Aggregation

Now we have a set of aligned reference feature maps:
{F refA

i }ni=1 for the following feature transferring and re-
construction steps. As shown in Figure 4, the CoFA module
aims to map this feature map set to a representation with
fixed dimension. In this way, the reference image set with a
different number of images can be represented in a unified
manner. The representation is determined by all items in
the set and conditioned on the LR content. Therefore it can
be denoted as:Fa = F(F refA

1 , F refA
2 , . . . , F refA

n |FL),
where F(·) is the aggregation function that maps an
arbitrary-sized set to a representation of fixed dimension.

It is challenging to find a proper F(·) that aggregates fea-
tures from the whole reference set to obtain an optimized
representation. Based on the intuition that references with
higher similarity and quality should contribute more to fea-
ture transfer, while faces with mismatched features and low-
quality features should have less effect on the set represen-
tation, we denote F(·) as:

F(F refA
1 , . . . , F refA

n |FL) =

∑n
i=1 µiF

refA
i∑n

i µi
, (5)

µi = S(F refA
i , FL), (6)

where S(·) generates a similarity score µi for the aligned
reference feature map F refA

i that is acquired in the same
manner as shown by Equation 4. Therefore, the final rep-
resentation of the set is a fusion of each feature weighted
by its similarity score. For each aligned reference feature
F refA
i , the pixel-wise similarity score is calculated as:

S(F refA
i , FL) = σ(g1(F

refA)T g2(F
L)), (7)

where σ(·) is sigmoid function that is used for bounding
the outputs to the range [0, 1] and stabilizing the gradient
propagation; and g1(·) and g2(·) denotes general convolu-
tion layers. The similarity score can also be regarded as an
attention mask conditioned on the input content.
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Finally, the summation Fa and LR feature map is sent to
HR image reconstruction: Ff = Fa + FL. The similarity
computation and weighted aggregation steps are parameter-
free. Thus, the CoFA module is light-weighted by design.

3.4. High-Resolution Image Reconstruction

The HR reconstruction module takes the fused feature
Ff as input and generates the residual of our target HR out-
put. It is composed of kr stacked residual blocks [22] for
learning deep features and a sub-pixel upsampling module
with PixelShuffle [21] initialized using the ICNR method as
in [1, 47]. To encourage the network to focus on learning
high-frequency information that is not present in the LR in-
put, we introduce a long-range skip connection to form the
final SR output: ISR = IL ↑s +R(Ff ), where ↑ denotes
the bicubic upscaling operation and s denotes the scale fac-
tor; R(·) denotes the reconstruction operations as described
above. Allowing the low-frequency information in the LR
input to bypass the reconstruction network lowers the diffi-
culty of reconstruction learning and accelerates the conver-
gence of the optimization process.

Since the input and reference images are highly related
in the face domain, our model can simultaneously learn the
feature alignment and similarity score with only supervision
from the HR ground truths through the end-to-end training.

4. Correlation Loss

Motivation. The commonly used pixel-wise reconstruc-
tion losses inevitably lead to over-smoothing of outputs and
don’t match the human visual perception of natural im-
ages [26], since they fail to capture the underlying local re-
lationships between pixels. While the perceptual loss [40]
and style loss [19] have been introduced to provide more
perception-oriented supervision, they require a pretrained
network from another high-level vision task, and are not
versatile for representing textures of very high-resolution
images due to the limits of training data. To effectively
represent the local texture patterns of different scales in a
controllable manner, we devise the correlation loss. It first
builds a correlation map from the correlation between the
center pixel and its neighbors to represent the spatial pat-
terns. Thus, matching the correlation map can help the net-
work reconstruct more realistic details and improve the per-
ceptual quality of the output images.
Design of Correlation Loss. As shown in Figure 5,
each image I can be represented by a 3D tensor of size
(C,H,W ), where C is the number of channels and (H,W )
denotes the spatial resolution. We first subtract the mean of
each channel to center the data around 0. For a given pixel
I(x, y), we calculate its inner product with the neighboring
pixels I(x−i, y−j) as well as itself within a k×k window:

𝐶

𝐻

𝑊

𝑘

𝑊

𝐻

𝑘!

dot product

Image 𝐼 Correlation map 𝑀

Figure 5: Illustration of the proposed correlation loss. The
correlation operator is used for both generated and ground-
truth images. Then we take the corresponding output corre-
lation maps to calculate the correlation loss.

cor(i, j, x, y) =
1

k2
⟨I(x, y), I(x− i, y − j)⟩, (8)

where ⟨, ⟩ denotes inner product, i, j ∈ ⌊−k + 1

2
,
k + 1

2
⌋,

and
1

k2
is for normalization. k is the maximal displacement

for computing the local correlation. As a result, we can
acquire a correlation map Mcor of size (k × k,H,W ). The
correlation loss is the distance between the correlation maps
from the ground truth HR and the generated SR images:

Lcor = ||MHR
cor −MSR

cor ||. (9)

In our implementation, we adopt the L1−distance for
this loss term. A larger window size k can encode more in-
formation while quadratically increasing the computational
cost. Thus, we define the dilated correlation following the
same manner as the dilated convolution [53]. By increasing
the dilation factor d, we can enlarge the correlation window
from k × k to (kd− d+ 1)× (kd− d+ 1).
Visualizing Correlation Maps. To better understand the
correlation operation, we visualize the correlation maps
of the HR image with different correlation kernel window
sizes k ∈ {3, 5, 7}. In Figure 6, we observe that the cor-
relation map encodes the original image based on the lo-
cal textures. In each correlation map, the blue areas cor-
respond to the regions with more high-frequency features,
like furs and the background, regardless of the color dif-
ference. While the red regions are more smooth, e.g., the
brightest and darkest part of the fur. With the increase of
window size k, the correlation operator perceives and en-
codes features within a broader area, and thus looks more
coarse-grained in the visualized results.

5. Experiment
5.1. Implementation Details

In our implementation, kl = 5, kh = 3, and kr = 20
residual blocks are used in LR feature extraction, HR fea-
ture extraction, and HR image reconstruction modules, re-
spectively. For each LR input, we randomly select three
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Image k = 3 k = 5 k = 7

Figure 6: Visualization of correlation maps of different win-
dow sizes. The image is 128× 128-resolution.

different HR images to build the reference set during train-
ing. We adopt SPyNet [36] as the optical flow estimator in
HIME (large). More details can be found in the supplemen-
tary materials.
Objective Function. For a fair comparison with previous
methods, we train two types of models: (1) reconstruction-
oriented models HIMErec with the pixel-wise reconstruc-
tion loss Lrec and our proposed correlation loss Lcor. W
the Charbonnier penalty function [26] as the loss term
for pixel-wise reconstruction to optimize our framework:
Lrec =

√
||IHR − ISR||2 + ϵ2, where IHR denotes the

ground-truth HR frame, and ϵ is empirically set to 1×10−3.
(2) perception-oriented models HIMEP include Lrec, Lcor,
and the adversarial loss Ladv , the perceptual loss Lper:

LP = λrecLrec+λadvLadv+λperLper+λcorLcor, (10)

where λs are the weights for each loss term.
Datasets. CelebAMask-HQ is used as the training and eval-
uation datasets [27], including over 30,000 high-resolution
headshots selected from the CelebA dataset [32]. We ac-
quire the identity information from the original CelebA
dataset and remove 3,300 out of 6,217 identities with < 4
images, which are not enough to construct a set of multi-
ple references. The remaining identities are randomly split
into a training set and an evaluation set, including 2,600 and
287 identities, respectively. We generate images of different
scales by bicubic downsampling with factor = s.
Evaluation Metrics. We adopt the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM) [46]
metrics to evaluate the reconstruction performance on all
RGB channels. We also compare the perceptual quality
with LPIPS [57]. To measure the efficiency of the differ-
ent methods, we report the model parameters and computa-
tional cost for each setting.

5.2. Comparison to the State of the Art

We evaluate the performance of our HIME network
under the 4× and 8× upsampling setting following the
previous approaches. For 4× upscale, we compare two
SOTA RefSR methods: SRNTT [59]1 and TTSR [51], and
three recent face restoration method SPARNet [10], PSFR-
GAN [11] and DFDNet [28]. We did not test DFDNet [28]

1PyTorch implementation: https://github.com/S-aiueo32/srntt-pytorch

on the 32 × 4 setting since its face and landmark detec-
tors cannot handle such tiny faces. For 8× upsampling, we
compare our method with five face hallucination methods:
PFSR [6], FSRNet [12]2, GWAInet [15], SPARNet [10] and
PSFR-GAN [11]. Quantitative results are shown in Table 1.

(LR, s) Methods PSNR SSIM LPIPS Params (M) GMACs

(32, 4)
Bicubic 25.64 0.7752 0.3229 - -

SRNTT [59] 28.02 0.8434 0.0682 6.30 36.47
TTSR [51] 27.31 0.8346 0.0633 6.73 26.62

SPARNet [10] 20.50 0.6118 0.1617 85.73 45.25
PSFR-GAN [11] 25.47 0.7709 0.0981 67.05 117.84
HIMErec (small) 29.11 0.8794 0.1136 0.87 1.86
HIMEP (small) 27.16 0.8269 0.0464 0.87 1.86
HIMErec (large) 29.23 0.8817 0.1102 9.23 6.06
HIMEP (large) 27.05 0.8224 0.0461 9.23 6.06

(64, 4)
Bicubic 28.40 0.8169 0.2860 - -

SRNTT [59] 30.41 0.8552 0.0906 6.30 145.89
TTSR [51] 29.87 0.8484 0.0851 6.73 106.48

SPARNet [10] 23.26 0.6990 0.1341 85.73 180.99
PSFR-GAN [11] 26.62 0.7685 0.1039 67.05 161.89

DFDNet [28] 21.55 0.6587 0.1581 133.34 601.04
HIMErec (small) 31.24 0.8785 0.1611 0.87 7.48
HIMEP (small) 29.06 0.8262 0.0633 0.87 7.48
HIMErec (large) 31.28 0.8789 0.1600 9.23 24.24
HIMEP (large) 29.16 0.8272 0.0641 9.23 24.24

(16, 8)
Bicubic 21.83 0.5929 0.5247 - -
PFSR[6] 21.44 0.5778 0.2065 10.08 8.97

FSRNet [12] 20.03 0.5749 0.2865 15.52 3.20
GWAINet [15] 21.96 0.5844 0.2056 4.29 6.55
SPARNet [10] 19.00 0.5022 0.2576 85.73 45.25

PSFR-GAN [11] 22.05 0.6102 0.2062 67.05 117.84
HIMErec (small) 24.54 0.7411 0.2433 0.90 0.49
HIMEP (small) 22.45 0.6338 0.1297 0.90 0.49
HIMErec (large) 24.68 0.7467 0.2361 9.26 4.49
HIMEP (large) 23.35 0.6744 0.1313 9.26 4.49

Table 1: Quantitative comparison of our results and other
SOTA methods. The best results are shown in bold.

From Table 1, we can learn the following facts: (1)
reference-based SR methods, like SRNTT, TTSR and our
HIME, demonstrate better performance than other non-
reference approaches on both distortion-oriented metrics
and perception-oriented metrics, which validate that using
references can improve the SR fidelity. Our network out-
performs the other result by 1.21/1.09 dB on (32, 4), and
0.87/0.83 dB on (64, 4); (2) Although SRNTT and TTSR
have fewer parameters than other compared methods, their
computational costs are relatively high due to the exhaustive
search during feature matching. With the learnable feature
extractors, our small model is over 7× smaller than SRNTT
and TTSR. The reference feature alignment in LR space
make our network have 14.3 and 4.39 × fewer GMACs
than TTSR. For the (16, 8) setting, we can observe that our
method performs well even under the very challenging 8×
upsampling setting.

The visual results on the DFDC dataset [16] are shown
in Figure 7, which validates our observations above. RefSR
methods like SRNTT, TTSR and ours can generate more ro-
bust and visually pleasing results. For the GAN-based face
enhancement methods SPARNet and PFSR-GAN, while

2PyTorch implementation: https://github.com/cydiachen/FSRNET pytorch
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Input/Refs GT SRNTT [59] TTSR [51] SPARNet [10] PFSR-GAN [11] HIMErec HIMEP

Figure 7: Qualitative comparison with SOTA methods for 4× upscale setting. Input resolution: 32× 32.

their results are rich in details, sometimes they fail on tiny
faces with deformations.

5.3. Ablation Study

We perform comprehensive ablation studies to further
demonstrate the effectiveness of each modules in our net-
work, the influence of exemplars and the correlation loss.
Experiments below are conducted under 8× upscale with
input size 16× 16 images, if not specified otherwise.
Effectiveness of Reference Feature Alignment. To inves-
tigate the proposed RFA module, we compare three models:
(a), (b), and (c), where (a) replaces the deformable convolu-
tion in the RFA module with common convolution that does
not have the capability of feature alignment, and (b) is our
small model by removing the optical flow guidance, and di-
rectly estimate the offset with F ref

i and FL, (c) is our large
model as illustrated in Section 3.2

Methods PSNR↑ SSIM↑ LPIPS↓
Conv 24.33 0.7311 0.2605
Dconv 24.54 0.7411 0.2433

Dconv-flow 24.68 0.7467 0.2361

Table 2: Ablation study of feature alignment methods.

From Table 2, we can see that adopting the deformable
alignment brings up the performance on all metrics com-
pared with using the common convolution. And the flow-
guided deformable alignment can further improve the per-
formance. The results demonstrate that our RFA module
can better match the features between the LR content and
the references and is more robust to the misalignment and
distortion. Our network conducts the offset computation
and feature matching in the LR space, achieving a better
performance while reducing the computational cost.
Set Feature Aggregation. To validate the effect of our pro-
posed feature aggregation mechanism in the CoFA module,
we compare three different models: (a) averages the fea-

tures without content conditioning, (b) aggregates the fea-
tures by max-pooling across the set, and (c) is our proposed
aggregation method weighted by the learned content simi-
larity. The quantitative results are shown in the Tabel 3.

Methods PSNR↑ SSIM↑ LPIPS↓
Average 22.120 0.6350 0.4332

Max-pool 22.118 0.6349 0.4331
CoFA 24.381 0.7339 0.2533

Table 3: Ablation study of feature aggregation methods.

From Table 3, we can see that the model with our
content-conditioned feature aggregation module outper-
forms the average and max pooling by over 2 dB in terms
of PSNR. Adopting the CoFA module greatly improves per-
formance on all metrics, which indicates that our designed
module can extract a better set representation, helping to
restore the LR information and enhance the output quality.
Effect of Multiple Exemplars. To validate whether using
an exemplar set can improve the face super-resolution re-
sult, we conduct the following experiments: (a) non-ref: a
baseline SR network without references and removing the
HR matching and aggregation modules, (b) training and
testing with one reference image and (c) with three refer-
ence images. From the results in Table 4, we can observe
that using references significantly increases the PSNR by
0.49 dB while using multiple references further improves
it by 0.19 dB. Such improvements also apply to the SSIM
and LPIPS. These results verify that our model can benefit
from the rich information in the exemplar set, and can ef-
fectively utilize the corresponding features to improve the
output quality.
Influence of Exemplar Similarity. Our method has the
potential to be applied on video calling, where the close-to-
camera headshots can be used to enhance the far-away ones
when zooming in. For this scenario, we recorded several
video calls from ourselves and collected over 5,000 frames
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Num of Ref PSNR↑ SSIM↑ LPIPS↓
0 23.84 0.7088 0.3440
1 24.35 0.7318 0.2572
3 24.54 0.7409 0.2433

Table 4: Ablation study of multiple exemplars by changing
the number of references during training and testing.

to verify the influence of the temporal gap. Intuitively, with
the increase of interval j, the Ref is less similar to the LR
inputs due to the motion in natural videos. We downsam-
ple these frames 4× to construct LR inputs, and pick an HR
image as Ref every j frame. We also experiment on using a
blank image as a reference, which does not provide any sim-
ilar features. From Table 5, we can observe that the perfor-
mance decreases with the larger temporal interval and less
similarity, and gracefully descends to a lower bound. Still,
using Refs shows better results than blank Ref in terms of
PSNR and SSIM.

Interval j 30 60 120 Blank Ref
PSNR 37.34 37.24 37.12 36.81
SSIM 0.9250 0.9241 0.9227 0.9207

Table 5: Influence of temporal gap (interval) between input
and reference images.

Effect of Correlation Loss. To justify the effectiveness of
correlation loss, we experimentally compare different con-
figurations of HIME in Table 6. We consider the follow-
ing models: (a) reconstruction loss only; (b) reconstruction
loss + correlation loss; (c) multiple losses in GAN training
(without correlation loss); (d) correlation loss + (c).

From Table 6, by comparing the first two rows, we can
observe that introducing the correlation loss slightly de-
creases the PSNR. However, it improves the structural and
perceptual metrics SSIM and LPIPS, which demonstrates
that the proposed correlation loss benefits the reconstruc-
tion of local textures. Comparing the last two rows, training
with the correlation loss greatly leverages the perception-
oriented model’s performance on all metrics, which fur-
ther validates the effectiveness of the correlation loss as
perception-oriented supervision.

Figure 8 shows the performance of HIME for different
correlation window sizes k ∈ {1, 3, 5, 7, 9}, where k = 1
degrades to the common L1 loss of the squared pixel val-
ues. We conduct two types of experiments: (a) training

Methods PSNR↑ SSIM↑ LPIPS↓
Lrec 24.38 0.7339 0.2533

Lrec + Lcor 24.35 0.7346 0.2437
LP w/o Lcor 22.44 0.6204 0.1543
LP w/ Lcor 23.28 0.6673 0.1389

Table 6: Effectiveness of our proposed correlation loss.

PSNR SSIM LPIPS

Figure 8: Effect of correlation window size k on output
quality in terms of PSNR, SSIM, and LPIPS: (a) training
with Lcor only, (b) fine-tuning with both Lrec and Lcor.

with correlation-loss only (plotted in blue), (b) fine-tuning
with both Lrec and Lcor (plotted in red). Viewing the blue
plots, we can observe that with the growth of k, the model
performs better in terms of PSNR and SSIM. These results
demonstrate that the correlation map itself is a good repre-
sentation of the RGB image. With a larger window size,
the correlation map can encode more information. Still,
such improvement becomes more marginal when k is large
enough. When k = 9, the LPIPS even increases. As for
the red plots, we can see a similar trend: when k ≥ 3, the
improvement on PSNR and SSIM is very trivial. These re-
sults indicate that for a certain scale, there exists a range of
k that work best in representing the local patterns. Within
this range, the LPIPS scores keep decreasing with the in-
crease of k. It implies that the correlation loss is more
like perception-oriented supervision, which validates our
description in Section 4.

6. Conclusion and Future Work
In this paper, we propose an effective framework for

headshot image super-resolution with multiple exemplars
without face structure priors. To achieve this, we intro-
duce a reference feature alignment module to search and
align corresponding features to the LR content. To con-
struct an optimized set representation, we propose a feature
aggregation network conditioned on the input content. With
such a design, our network can learn to fully utilize the rich
information in the exemplar set and be robust to misalign-
ment and deformations. Furthermore, we propose a correla-
tion loss that supervises the reconstruction of local textures
with correlation maps. We believe that our new Headshot
Image Super-Resolution with Multiple Exemplars network
(HIME) provides a novel idea to efficiently utilize a set of
data for the reference-based super-resolution and face hallu-
cination task. In future works, we will explore other aggre-
gation methods to generate a better set representation with
the aid of face priors. In addition, we will further validate
the effectiveness of the correlation loss as generic supervi-
sion for other low-level tasks, e.g. image denoising, video
frame interpolation, style transfer, etc.
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