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Abstract

Vision Transformer (ViT) has become one of the most
popular neural architectures due to its great scalability,
computational efficiency, and compelling performance in
many vision tasks. However, ViT has shown inferior per-
formance to Convolutional Neural Network (CNN) on med-
ical tasks due to its data-hungry nature and the lack of an-
notated medical data. In this paper, we pre-train ViTs on
266,340 chest X-rays using Masked Autoencoders (MAE)
which reconstruct missing pixels from a small part of each
image. For comparison, CNNs are also pre-trained on the
same 266,340 X-rays using advanced self-supervised meth-
ods (e.g. MoCo v2). The results show that our pre-trained
ViT performs comparably (sometimes better) to the state-
of-the-art CNN (DenseNet-121) for multi-label thorax dis-
ease classification. This performance is attributed to the
strong recipes extracted from our empirical studies for pre-
training and fine-tuning ViT. The pre-training recipe sig-
nifies that medical reconstruction requires a much smaller
proportion of an image (10% vs. 25%) and a more moder-
ate random resized crop range (0.5∼1.0 vs. 0.2∼1.0) com-
pared with natural imaging. Furthermore, we remark that
in-domain transfer learning is preferred whenever possible.
The fine-tuning recipe discloses that layer-wise LR decay,
RandAug magnitude, and DropPath rate are significant fac-
tors to consider. We hope that this study can direct future
research on the application of Transformers to a larger va-
riety of medical imaging tasks.

1. Introduction
There has been great progress in the Vision Transformer

(ViT) architecture [26] and its variants [62, 43, 37, 91],
showing that Transformers surpass and supersede Convolu-
tional Neural Networks (CNN) in various natural imaging
tasks. In comparison with CNNs, Transformers can better
leverage the rapidly increasing image data, long-range spa-
tial context of an image [21, 25], and share properties of the
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human visual system [71, 77, 30, 92]. Training Transform-
ers requires considerably more data than CNNs [83, 89],
but medical data are small and labels are hard to obtain. As
a result, directly applying Transformers to the medical do-
main is found to be problematic and challenging. There
are several early attempts [70, 99, 67], but their perfor-
mance is often inferior to state-of-the-art CNNs (elaborated
in §2). Recent surveys suggest that a range of successful
cases are using a hybrid architecture of Transformers and
CNNs [58, 81]. In contrast, the stand-alone and vanilla ViT
architecture remains the concentration of this study to strive
for simplicity. We ask: What is the full potential of ViT ar-
chitecture in medical imaging tasks? The answer, based on
our study, is that vanilla ViT can achieve a similar or even
better performance than state-of-the-art CNNs if equipped
with (I) a large-scale pre-training on unlabeled medical data
and (II) strong pre-training and fine-tuning recipes, cus-
tomized by unique characteristics of medical images.

The pre-training of CNNs has been widely investigated
in the medical domain [49], resulting in several publicly
available Foundation models [113, 17, 99]. Numerous pre-
training methods can enable CNNs to learn representation
from unlabeled images, including contrastive learning [84],
predictive learning [115], restorative learning [15], and their
combination [38, 39]. At the time this paper is written, how-
ever, neither contrastive nor predictive pre-training is ma-
ture for vanilla ViT architectures yet. The most popular pre-
training scheme for ViTs is called Masked Autoencoders
(MAE) [45]. Its task is to mask random patches of the input
image and reconstruct the missing pixels. We adopt MAE in
this paper because of its great scalability, computational ef-
ficiency, and compelling performance in many vision tasks.

This paper customizes the recipe of pre-training and fine-
tuning MAE for the medical domain and verifies its effec-
tiveness on three chest X-ray datasets. We have also made
the pre-training and fine-tuning code publicly available and
released ViT-Small and ViT-Base that are pre-trained on
510K X-ray images as well as the pre-trained CNNs. The
pre-trained ViT encoder can be fine-tuned to improve clas-
sification tasks (validated in §5) and detection tasks (see
Github). In summary, four contributions are made.
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1. The usefulness of ViT pre-trained on ImageNet (14M
data & labels) and chest X-rays (0.3M data) is evalu-
ated, underlining the opportunity of in-domain transfer
learning and self-supervised learning (Table 1).

2. A strong pre-training recipe, consisting of more unla-
beled data (266,340), a higher masking ratio (90%),
and a modest random cropping scale (0.5∼1.0), is de-
veloped for MAE to learn image representation from
chest X-rays efficiently (§4.2–4.4).

3. Three of the most important hyper-parameters are de-
termined to fine-tune ViT in multi-label thorax disease
classification: layer-wise LR decay, RandAug magni-
tude, and DropPath rate (Table 3).

4. This is among the first efforts to approach vanilla ViT’s
performance to the state-of-the-art CNNs on three pre-
dominant chest X-ray benchmarks, yielding mAUC of
82.3%, 89.2%, 99.3% on NIH ChestX-ray14, Stanford
CheXpert, and COVIDx, respectively (§5.1–5.3).

By intention or non-intention, the empirical comparisons
between old and new techniques (e.g. CNN vs. ViT) are of-
ten biased to the newer one [63, 4]. In this paper, we try our
best not to over-sell or under-analyze the ViTs’ potential in
the medical domain. To provide a fair and comprehensive
benchmark, the performance of CNNs is truly state-of-the-
art in each dataset based on our extensive literature review.

2. Related Works
Preliminary. Radiography images possess unique charac-
teristics compared with photographic images, resulting in
considerable difficulties when switching computer vision
advancements to medical imaging [111, 112, 58, 81]. Pho-
tographic images, particularly those on ImageNet [23], con-
tain large, apparent objects in the center of the images, re-
siding in varying backgrounds. Learning discriminative fea-
tures (e.g. color, texture, and shape) primarily from the fore-
ground objects is important in computer vision. In contrast,
radiography images are generated from pre-defined imag-
ing protocols, so the background exhibits anatomical con-
sistency across images (see examples of the chest anatomy
in Figure 4). Clinically relevant information is dispersed
throughout the image, whereas the diseased region (as the
foreground) often encloses much more local, subtle, and
fine-grained variations than photographic images. As a re-
sult, the model must be able to extract both global and lo-
cal features to identify various diseases from the normal
anatomy. In the following sections, we describe the differ-
ence between computer vision and medical imaging in the
choice of model architectures and self-supervised methods,
followed by a review of current state-of-the-art solutions for
multi-label thorax disease classification.

ViTs or CNNs for medical imaging? Transformers have
gained prevalence in numerous AI applications (e.g. Al-
phaFold2 [53], Google Translate [8]). In computer vision,
there is a heated debate between the adoption of ViTs and
CNNs, in terms of performance [63, 110, 6, 97, 91, 25], ro-
bustness [4, 69, 105, 109], data requirement [26, 83, 89],
computational efficiency [74]. This discussion has finally
been converging to an agreement that ViTs could serve as
alternatives to CNNs in a variety of tasks [56, 42]. ViT has
substantial potential for radiography imaging tasks, but cur-
rently, the superior performance of ViT has not been trans-
lated to radiography imaging, where CNN is still the domi-
nant architecture. (1) ViTs’ performance has lagged behind
that of SOTA CNNs [72, 88], in which we believe the poorly
configured training recipe1 is one of the major causes; (2)
most existing studies report ViTs’ performance on medi-
cal tasks without comparing with CNN under an similar
experimental setting [70, 58]; and (3) multiple works fo-
cus on designing hybrid architectures by integrating bene-
fits of ViTs and CNNs to claim the superior performance
to CNNs [14, 107, 98, 86]. Conducting a fair compari-
son between ViTs and CNNs should take into account the
number of parameters, volumes of computations, usages of
GPUs, and suitable pre-training schemes. So far, there is
no broad benchmark to fairly compare ViTs and CNNs in
medical tasks, leaving us wondering whether we could triv-
ially switch to ViTs in medical tasks. Unlike the aforemen-
tioned studies, our objective is to faithfully benchmark be-
tween ViTs and SOTA CNNs in radiography imaging tasks;
to improve the recipe of existing ViTs with respect to data,
model, optimization aspects; and to visualize how ViTs and
CNNs interpret radiography images (§6).

Self-supervised methods in medical imaging. Self-
supervised learning has shown enormous potential in med-
ical imaging due to the sparsity of high-quality annota-
tion [111]. Two major trends are based on contrastive and
restorative pre-training. In computer vision, contrastive pre-
training [19, 18, 34, 11] holds state-of-the-art performance,
surpassing supervised ImageNet pre-training in some tasks;
while in medical imaging, restorative pre-training [113, 86,
29] presently reaches a new height in performance. We at-
tribute this popularity asymmetry to the marked difference
between photographic and radiography images. Since ra-
diography imaging protocols assess patients in a fairly con-
sistent orientation, the generated images have great simi-
larity across various patients [96, 39]. The inherent con-
sistency eases the analysis of numerous critical problems
but also causes a significant problem for contrastive pre-
training. Contrastive pre-training (e.g. MoCo [46, 19])
treats each image as a distinct class and minimizes the simi-

1Isensee et al. [52] remark that most of the performance improvement
comes for medical imaging is choosing the perfect data process, model
training, and optimization strategy of the network (U-Net in their case).
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larity of representations derived from different images. This
concept, in theory, might not work properly for radiogra-
phy imaging because the negative pairs appear too sim-
ilar (empirically evidenced in our Table 1). In contrast,
restorative pre-training is good at conserving fine-grained
textures embedded in image context, so it has been widely
adopted in medical pre-training. Restorative pre-training
is formulated as the task of pixel-wise image reconstruc-
tion [2, 15, 114, 115, 16, 100]. Following this spirit, we
take masked autoencoders (MAE) [45] as pre-training task
for its simplicity, efficiency, scalability, and compelling per-
formance. We are among the first to configure a strong
recipe for both ViT pre-training and fine-tuning on enor-
mous chest X-rays. Besides, we extend MAE to pre-train
CNNs on the same scale medical data, establish the first di-
rect benchmark between ViTs and SOTA CNNs on public
radiography imaging datasets, and extract reusable insights
to the medical vision community.

3. Method

Data. Data from three public X-ray datasets are used to pre-
train ViTs (and CNNs as comparison): NIH ChestX-ray14
(75,312 X-rays), Stanford CheXpert (191,028 X-rays), and
MIMIC-CXR (243,334 X-rays). All data are in the pos-
teroanterior (PA) or anteroposterior (AP) view, and resized
to 256×256 as input. All the X-rays are standardized by
mean and standard deviation computed from ImageNet. We
perform random resized cropping with a scale range of
(0.5∼1.0) and random horizontal flipping. No other data
augmentation is applied unless noted. The pre-training does
not require any annotations shipped with the datasets.

Task. The ViT pre-training2 is analogous to the image re-
construction task proposed in MAE [45]: to reconstruct the
masked image patches from visible ones. Mean squared er-
ror is computed between the reconstructed and original im-
ages in the pixel space, averaged over masked patches [24].
An image is divided into regular non-overlapping patches
as a sequence of embeddings. We randomly sample patches
to be masked. The optimal masking ratio we observe is
90%, which substantially accelerates the pre-training by
2.5× compared with the original MAE [45]3 and enables us
to scale up ViTs with greater model capability (Figure 1a).

Model. The vanilla ViT [26] is used as encoder and ap-
plied only on the visible image patches. This design reduces
time and memory complexity [45]: a masking ratio of 90%
(used in our paper) can reduce the encoder complexity to
<1/10. The decoder is another ViT and only used during
pre-training to reconstruct the masked patches. Therefore,

2The MAE-style pre-training for CNNs (for comparison in Table 1) is
similar to the image in-painting task proposed in Models Genesis [113].

3It should have taken ∼16.7 GPU days for the original MAE to pre-
train ViT-S/16 (the smallest ViT) on 510K X-rays.

Figure 1: The pre-training recipe. (a) Using more images
for pre-training can enhance the transferability of ViTs to
some extent (§4.2). While ViT-S/16 (Params=22M) seems
to be saturated at 266K images, ViT-B/16 (Param=86M) has
the potential to scale up to more data. (b) MAE shows the
optimal performance at a 90% masking ratio (§4.3). Be-
sides, random resized crop (RRC) brings consistent perfor-
mance gain to MAE pre-training (§4.4).

the decoder is made to be more lightweight than the encoder
(depth=2, width=512). As a result, although the decoder
processes both visible and masked image patches, its com-
plexity is much smaller than the encoder. Positional embed-
dings are added to visible and masked patches in this full set
to preserve information about their original location in the
image. We use ViT-S/16 and ViT-B/16 to denote ViT-Small
and ViT-Base with a patch size of 16×16 for simplicity.

4. Pre-training: Recipe and Results
Implementation details. We adopt AdamW [65] optimizer
with β1 = 0.9, β1 = 0.95 and set the weight decay to 0.05.
Transformer blocks are initialized with xavier uniform [32].
We set learning rate (lr) and batch size to 1.5e-4 and 2048.
lr is warmed up for 20 epochs [33] and scheduled with co-
sine annealing strategy [64]. The pre-training stage takes
800 epochs in total. Random resized crop and horizontal
flip are used as data augmentation.

4.1. On the importance of in-domain transfer

Table 1 provides a comprehensive comparison on three
sets of model initialization: random, ImageNet pre-training,
and X-ray pre-training. Unlike CNNs, ViTs trained from
scratch show very poor performance even with a strong
training recipe and 2.7× larger number of training epochs
than fine-tuning. On the contrary, ViTs achieve compa-
rable and sometimes superior performance with the help
of pre-training on large-scale datasets (e.g. ImageNet and
X-rays). Specifically, after supervised pre-trained on Im-
ageNet (following [91]), ViT-S/16 shows acceptable per-
formance on the three datasets but is still distanced to the
state-of-the-art CNN-based methods. In-domain transfer
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Architecture Pre-training Dataset Method Annotation ChestX-ray14 CheXpert COVIDx

CNN
(DenseNet-121)

N/A Random 0 80.4 87.8 93.0

ImageNet (14M)

Categorization 14M 82.2 89.4 94.4
MoCo v2† [19] 0 80.9 87.9 95.5
BYOL† [34] 0 81.0 87.8 95.0
SwAV† [11] 0 81.5 88.0 95.8

X-rays (0.3M) MoCo v2 [19] 0 80.6 88.7 94.0
MAE†† 0 81.2 88.7 96.5

ViT
(ViT-S/16)

N/A Random 0 67.9 77.9 87.3

ImageNet (14M) Categorization 14M 79.6 88.1 94.3
MAE 0 78.6 88.3 88.8

X-rays (0.3M) MAE 0 82.3 89.2 95.2
†The pre-trained weights of ResNet-50 were taken from Ericsson et al. [27] (DenseNet is not available for advanced self-supervised ImageNet pre-training).
††MAE was developed for ViT (not directly applicable to CNN), so we implement it based on image in-painting [73, 113, 40, 41].

Table 1: Pre-training on ImageNet vs. X-rays. A direct comparison is performed between ViT and three groups of CNNs
on three public datasets, considering the number of parameters, volumes of computations, usages of GPUs, and suitable
pre-training schemes. The results suggest that ViT (I) consistently exceeds the CNNs that are pre-trained by state-of-the-art
pre-training schemes on ImageNet, underlining the importance of in-domain transfer learning (§4.1); (II) surpasses the CNNs
that are pre-trained by MAE and MoCo v2 on the same number of medical data (0.3M X-rays); (III) performs comparably
(or even better) than state-of-the-art CNNs reported in the literature (detailed in Tables 4–6). Additionally, several important
observations are obtained: (i) training from scratch takes longer epochs to converge than fine-tuning pre-trained weights
(200 vs. 75 epochs); (ii) ViT shows inferior performance to CNN when training from scratch on X-ray images or fine-tuning
from ImageNet; (iii) restorative pre-training (MAE) outperforms contrastive pre-training (MoCo v2) in radiography imaging.

RandomResizedCrop Crop Scale mAUC

MAE
✗ N/A 65.9
✓ (0.2, 1.0) 69.8
✓ (0.5, 1.0) 70.8

Table 2: A modest random cropping scale is preferred for
medical pre-training because the diseased regions (as fore-
ground) is more local than photographic images, and patho-
logical disorder could disperse over the entire X-rays [39]
(rather than the center of the image).

seeks to reduce domain disparities between photographic
and medical images [49]. In doing so, we bridge the do-
main gap and satisfy the ViTs/CNNs appetite for data by
pre-training on 0.3M unlabeled chest X-rays. ViTs benefit
more on the in-domain transfer (improved mAUC from 78.6
to 82.3 on ChestX-ray14), whereas ImageNet pre-trained
CNNs remain high performance compared with in-domain
pre-training (82.2 vs. 81.2 on ChestX-ray14).

4.2. Learning from 266,340 unlabeled X-rays

Training ViTs from scratch is harder than CNNs because
ViTs lack inductive bias in modeling local visual represen-
tation and generally require more data to figure out the im-
age content on their own [83, 63, 70]. As shown in Table 1,
supervised pre-training on ImageNet brings performance
gain from 67.9% to 79.6% for ViTs, and from 80.4% to
82.1% for CNNs on ChestX-ray14. We ask: How many X-
rays are needed for ViT pre-training? Figure 1a shows that
ViT-S/16 pre-trained on 75K, 191K, 266K, and 510K X-

rays achieve a mAUC of 79.3%, 81.9%, 82.3%, and 82.3%
on ChestX-ray14. The improvement from 75K to 266K is
statistically significant (p-value=1.2e-127), but the perfor-
mance gain is negligible from 266K to 510K—a bottleneck
for ViT-S/16 (with 22M parameters). Although larger ViTs
(e.g. ViT-B/16 with 86M parameters) can produce higher
performance, considering computational cost and the fair-
ness of the ViT vs. CNN, we end up pre-training ViT-S/16
using 266,340 unlabeled X-rays for benchmarking.

4.3. Masking out 90% X-ray content

The optimal masking ratio is related to the information
redundancy in the data: BERT [55] uses a masking ratio
of 15% for language and MAE [45] uses a ratio of 75%
for images. Most recent study suggests that videos, due to
its greater redundancy in the temporal dimension, can ap-
ply only 90% masking ratio for pre-training [28]. Given the
great similarity in the chest anatomy, naturally, we hypoth-
esize that chest X-rays require even larger masking ratio for
pre-training. This is in line with the assumption that chest
X-rays are more information-redundant than photographic
images. We experimented with masking ratios ranging from
75% to 95%, incremented by intervals of 5%. Figure 1b
indicates that 90% is the optimal masking ratio for MAE
pre-training on chest X-rays. The larger masking ratio re-
sults in a more efficient pre-training, which is 2.5× faster
than the original MAE. The efficient pre-training, in turn,
enables us to scale up to larger ViT architectures and more
diverse datasets.
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Layer-wise LR decay mAUC (%)

45 82.1
55 82.3
65 82

(a) Layer-wise LR decay. Learning rate
decay in layer-wise needs to be tuned
closely.

RandAug magnitude mAUC (%)

4 82.0
6 82.2
8 82.1

(b) RandAug magnitude. A modest
level of augmentation is preferred for
fine-tuning.

DropPath rate mAUC (%)

0.1 81.5
0.2 82.3
0.3 82.1

(c) DropPath rate. Fine-tuning on Chest
X-ray images needs stronger regulariza-
tion than natural images.

Table 3: The fine-tuning recipe. The ablation studies are conducted using ViT-S/16 on NIH Chest X-ray14. We report the
14-class average AUC (%). Except for (b) using Layer-wise LR decay 0.65, all the experiments adopt the optimal value for
the hyper-parameters (Layer-wise LR decay 0.55, RandAug magnitude 6, and DropPath rate 0.2).

Figure 2: Reconstruction of ChestX-ray14 validation images. Pre-trained with a masking ratio of 75%, ViTs generalizes
better than CNNs to the input images that are applied with higher masking ratios.

4.4. Cropping patches scaled of (0.5∼1.0)

As the spatial consistency of medical images is much
higher than photographic images, there is a need to analyze
the effectiveness of spatial data augmentation (e.g. random
resized crop). Figure 1b suggests that RandomResizedCrop
operation has consistent and noticeable benefit to MAE pre-
training on chest X-ray imaging under different masking ra-
tios. It enables ViTs to learn multiscale features from X-
rays and to avoid the over-fitting problem due to the lack of
training examples. More importantly, a relatively smaller
cropping ratio than natural imaging is preferred (Table 2).
Cropping patches scaled of (0.5∼1.0) yields 1.0% higher
mAUC than those of (0.2∼1.0) (as suggested in [45]). It is
intuitive that strong spatial augmentation is harmful since
the informative lesions or organs could be cropped and bi-
ased and models will be learned with noisy annotations.

4.5. Quality assessment of image reconstruction

We assess reconstruction quality using validation images
in Figure 2 for both ViT and CNN. The models are pre-
trained on ChestX-ray14 and evaluated on the inputs with
varying masking ratios, spanning from 75% to 90%, incre-
mented by intervals of 5%. Both ViTs and CNNs can pre-
dict the overall anatomical structures in X-rays, but fail to
reconstruct detailed texture such as shoulder bones. This is
expected because the ViTs/CNNs only see 10% of the input

image and attempt to reconstruct the rest 90% during the
training—it is difficult even for expert radiologists. There
is no clear evidence showing that the reconstruction capa-
bility is positively correlated to the transfer learning per-
formance. On the contrary, the original autoencoders [48]
(with a masking ratio of 0%) can certainly reconstruct im-
ages better than masked autoencoders, but their resulting
representation is not as effective as the masked counter-
parts [113]. Moreover, studies in both CNNs [87, 113] and
ViTs [45, 101] indicate that alternative loss functions (e.g.
l1, smooth-l1, SSIM, and adversarial losses) for reconstruc-
tion would not contribute to the transfer learning perfor-
mance. Therefore, we used l2 loss as default. Finally, we
should remark that our ultimate goal is not the task of image
reconstruction per se. While reconstructing patches is advo-
cated and investigated as a pre-training scheme for ViTs/C-
NNs, the usefulness of the learned representation must be
assessed objectively based on its generalizability and trans-
ferability to various downstream tasks (presented in §5).

5. Fine-tuning: Recipe and Results
Fine-tuning. The optimizer and lr scheduler are the same
as pre-training. The choices of layer-wise LR decay, Ran-
dAug [22] magnitude4, and DropPath [50] rate are crucial

4No improvement is obtained by more aggressive augmentation strate-
gies (i.e. mixup [106] and cutmix [104]) since they could produce noisy
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Method Architecture Atelectasis Cardiomegaly Consolidation Edema Effusion mAUC (%)
Allaouzi et al. [3]

DN121

72.0 88.0 77.0 87.0 90.0 82.8
Irvin et al. [51] 81.8 82.8 93.8 93.4 92.8 88.9
Seyyedkalantari et al. [80] 81.2 83.0 90.0 88.3 93.8 87.3
Pham et al. [75] 82.5 85.5 93.7 93.0 92.3 89.4
Hosseinzadeh et al. [49] - - - - - 87.1
Haghighi et al. [39] - - - - - 87.6
Kang et al. [54] 82.1 85.9 94.4 89.2 93.6 89.0

Ours

MoCo v2 DN121 78.5 77.9 92.5 92.8 92.7 88.7
MAE DN121 81.5 77.6 89.4 92.3 92.0 88.7
MAE ViT-S/16 83.5 81.8 93.5 94.0 93.2 89.2
MAE ViT-B/16 82.7 83.5 92.5 93.8 94.1 89.3

Table 4: CheXpert benchmark. ViT achieves comparable performance to the state-of-the-art CNNs on CheXpert (official
val) over all five thorax diseases and the best o “Atelectasis” and “Edema” diseases.

Method Input Resolution # Params (M) MACs (G) Accuracy COVID-19 Sensitivity
COVIDNet-CXR-3

480×480

29 29.1 98.3 97.5
COVIDNet-CXR-2 9 5.6 96.3 95.5
COVIDNet-CXR4-A 40 23.6 94.3 95.0
COVIDNet-CXR4-B 12 7.5 93.7 93.0
COVIDNet-CXR4-C 9 5.6 93.3 96.0
COVIDNet-CXR3-A 40 23.6 93.3 94.0
COVIDNet-CXR3-B 12 7.5 93.3 91.0
COVIDNet-CXR3-C 9 5.6 92.3 95.0

Ours

MoCo v2 DN121
448×448

7 11.6 96.0 96.5
MAE DN121 7 11.6 96.3 98.0
MAE ViT-S/16 22 16.9 95.3 95.0
MAE ViT-B/16 448×448 86 67.2 97.3 98.0

COVIDNet-CXR Small 224×224 117 2.3 92.6 87.1†

COVIDNet-CXR Large 127 3.6 94.4 96.8†

Ours

MoCo v2 DN121
224×224

7 2.9 94.0 94.5
MAE DN121 7 2.9 96.5 97.0
MAE ViT-S/16 22 4.2 95.2 94.5
MAE ViT-B/16 224×224 86 16.9 95.3 95.5

†The results are evaluated on 31 images; otherwise, the results are evaluated on the latest official testing set (400 images).

Table 5: COVIDx benchmark. ViTs show comparable performance to state-of-the-art CNNs on COVIDx (official val).

to fine-tune the pre-trained ViTs. The optimal settings are
given by extensive studies in Table 3 and we reuse them for
all three radiography imaging tasks in §5.3–5.2. Models are
fine-tuned with 75 epochs on all three datasets.

Linear-probing. LARS [103] optimizer is used with mo-
mentum=0.9. We set learning rate (lr) and batch size to 0.1
and 16,384. lr is warmed up [33] for 10 epochs and sched-
uled with cosine annealing strategy [64]. The ViT is trained
with 100 epochs. Linear-probing is used in Figure 1b.

5.1. Stanford CheXpert

Experimental setup. CheXpert is a large scale dataset con-
taining 191,028 frontal-view chest X-rays. 14 diseases in
radiology reports exist in the dataset and five common dis-
eases are for benchmarking. We resized the images into
224×224 and the test is done on the official validation set.
Mean Area Under the Curve (AUC) on five classes is re-
ported for comparison.

labels by removing or overlapping thorax diseases in X-rays.

Results and analysis. As shown in Table 4, vanilla ViT-S
achieves 89.2% mAUC which is very competitive to the best
performance of 89.4%. Moreover, ViT-S yields the best per-
formance on diseases of Atel (83.5%) and Edem (94.0%).

5.2. COVIDx

Experimental setup. COVIDx (version 9A) provides over
30,000 images containing 16,490 positive COVID-19 im-
ages. The dataset is annotated with 4 different classes for
the training set of 30,130 images while the testing set only
has 400 images of 3 classes. To ensure a fair comparison
with previous methods, Accuracy and COVID-19 sensitiv-
ity on the testing set (3 classes) are reported.

Results and analysis. We compare our vanilla ViT-S model
with the state-of-the-art models provided on the official
github repository5. Our method beats the two other mod-
els when input resolution is 224×224 while achieving a
very high accuracy of 95.2% and COVID-19 sensitivity of

5github.com/lindawangg/COVID-Net/blob/master/docs/models.md
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Method Architecture Pre-training mAUC
Wang et al. [95] RN50

ImageNet (14M)

74.5
Yao et al. [102] RN&DN 76.1
Li et al. [59] RN50 75.5
Tang et al. [85] RN50 80.3
Guendel et al. [36] DN121 80.7
Guan et al. [35] DN121 81.6
Wang et al. [93] R152 78.8
Ma et al. [68] R101 79.4
Baltruschat et al. [5] RN50 80.6
Seyyed et al. [80] DN121 81.2
Ma et al. [66] DN121(×2) 81.7
Hermoza et al. [47] DN121 82.1
Kim et al. [57] DN121 82.2
Haghighi et al. [39] DN121 81.7
Liu et al. [61] DN121 81.8
Taslimi et al. [88] SwinT 81.0

Ours

MoCo v2 DN121
X-rays (0.3M)

80.6
MAE DN121 81.2
MAE ViT-S/16 82.3
MAE ViT-B/16 X-rays (0.5M) 83.0

Table 6: ChestX-ray14 benchmark. ViT-S/16 achieves
comparable performance to previous state-of-the-art CNN-
based and Transformer-based methods on ChestX-ray14
(official split) reported in the literature. With the same
pre-training scheme (MAE) on 0.3M X-rays, ViT signifi-
cantly outperforms its CNN counterparts. In addition, ViT-
B/16, pre-trained on 0.5M X-rays, hits a new record of 83.0
mAUC. RN, DN, and SwinT denote ResNet, DenseNet, and
Swin Transformer.

94.5%. ViT-S shows a great balance between the model
size, computation cost, and the performance.

5.3. NIH ChestX-ray14

Experimental setup. ChestX-ray14 has 112,120 frontal-
view X-rays of 30,805 unique patients with the text-mined
fourteen disease labels (where each image can have multi-
ple labels). We follow the official data split which assigns
75,312 images for training and 25,596 images for testing.
We resize the original images from size 1024×1024 into
224×224. Mean AUC on 14 classes is reported and 17 most
popular and compelling baseline methods are compared.
Results and analysis. Table 6 provides a systematic com-
parison with state-of-the-art CNN and Transformer mod-
els on NIH ChestX-ray14 over years. The previous best
CNN performance was obtained by DenseNet-121 [94] with
a mean AUC of 82.6%. The previous best performance
of Transformers was 81.0% [88], which was distanced to
CNN’s performance. Our vanilla ViT-S shows a very com-
petitive result of 82.3% mean AUC over 14 diseases with
the best classification performance on 6 out of 14 thorax
diseases. It is worth noting that the research community
took four years to improve the AUC score from 74.5 to 82.2
for CNN-type architectures, largely due to the difficulty of
the training recipe.

Figure 3: MAE could reveal anomalies. We input a chest
X-ray (with anomalies) to the trained MAE and plot the dif-
ference map of the reconstructed output and original X-ray.
Interestingly, we observe that the MAE happens to “heal”
those anomalies by replacing them with normal patterns.

6. Discussion

Can MAE detect anomalies from an image? Anomalies
are something that appear differently from the normal X-
rays—can be diseases, medical devices, and clinical nota-
tions (e.g. arrows, numbers, letters). Since MAE is trained
using the original X-rays as ground truth and the majority
pixels in an X-ray are normal, the MAE should be able to
overfit the normal anatomical patterns. Now, if an anomaly
is masked out, can MAE reconstruct a normal pattern? If
so, by subtracting the reconstructed output and the origi-
nal X-ray, the anomaly can be detected and localized. A
similar point has been discussed in Zhou et al. [113], but
was illustrated using CNNs. Specifically, we input an orig-
inal X-ray to the trained MAE and plot the difference map
between reconstructed output and the original image. As
shown in Figure 3, MAE happens to “heal” those anomalies
and reconstruct with normal patterns. This behavior can
be thought of as an attempt to detect and localize anoma-
lies. More importantly, unlike weakly-supervised detection
strategies [108, 7, 9, 82, 96], neither image-level nor pixel-
level annotation is required for this approach, making it an
attractive and challenging direction to explore [76, 90].

Weakly-supervised disease localization by ViT and CNN.
With the help of Grad-CAM6 [31], we are able to check
which part of the X-ray image is responsible for the model
prediction (the diseased region). We use the last dense-
block (4th) of DenseNet-121 and the LayerNorm layer in
the last transformer block (12th) of ViT-S/16 as the “tar-
get layers” for Grad-CAM. The experiments are done in a
small subset of ChestX-ray14, which offers 787 cases with
bounding-box of a total of eight thorax diseases. The fi-
nal predicted bounding-box of the diseased region is gen-
erated with the thresholded Grad-CAM heatmap, largest
connected component, and box regression. The results are
evaluated by IoU between ground truth bounding box and
the bounding box of the largest connected component in

6github.com/jacobgil/pytorch-grad-cam

3594

https://github.com/jacobgil/pytorch-grad-cam


Size DenseNet-121 ViT-S/16
Disease (# of px) AP25 AP50 AP25 AP50

Nodule 224 0.0 0.0 9.2 3.9
Mass 756 25.4 1.6 27.0 11.1
Atelectasis 924 10.1 2.0 31.5 8.1
Pneumothorax 1899 11.6 2.3 4.7 0.0
Infiltrate 2754 32.9 12.7 11.4 1.3
Effusion 2925 24.5 2.9 8.8 1.0
Pneumonia 2944 32.0 6.2 27.8 9.3
Cardiomegaly 8670 89.6 53.3 16.3 3.0
All 2300 31.0 12.3 18.0 4.7

Table 7: Weakly-supervised disease localization. We re-
port the average precision (AP) on 25% and 50% IoUs. The
IoU is calculated between the ground truth bounding box
and bounding box of the largest connected component in
the Grad-CAM heatmap. We also present the statistics of
disease sizes, measured by the number of pixels within the
bounding box, showing that CNN can detect large diseases
(e.g. Cardiomegaly, Pneumonia) better than ViT, while ViT
can capture smaller diseases (e.g. nodule).

the attention response. We then compute Average Preci-
sion (AP) as the detection metric [60]. Precision is de-
fined as tp/(tp + fp), where tp and fp denote the num-
ber of true positives and false positives, respectively. AP25

considers cases with IoU>25% as true positives and AP50

with IoU>50%. Table 7 shows the detection results (in-
cluding disease-wise results and all diseases). We observe
that the CNN provides better localization of diseases in a
larger size (e.g. Cardiomegaly and Pneumonia) while ViT
is robust to diseases in a smaller size (e.g. Nodule). Al-
though the classification performance of CNN and ViT is
comparable (82.1% vs. 82.3% AUC), CNN significantly
exceeds the localization ability to ViT, and their attention
maps generated by Grad-CAM behave differently. Figure 4
provides examples of GradCAM of CNN and ViT. Atten-
tions in CNN are relatively larger and more concentrated
than those in ViT. This observation is consistent with those
in Chefer et al. [13]. This study suggests that class acti-
vation maps are more suitable for visualizing the explain-
ability of CNN-type models. In the future, other than class
activation maps, we will seek to explore the explainability
for Vision Transformers in multi-label classification tasks,
with the help of self-attention derived from the Transformer
architectures [12, 79, 1, 13].

7. Conclusion and Future Work

This paper has unleashed the potential of stand-alone,
vanilla ViT by devising strong pre-training and fine-tuning
recipes. We overcome several technical barriers and bring
reusable insights for the medical vision community. Specif-
ically, we (i) improve computational efficiency; (ii) cus-
tomize data augmentation; (iii) explore larger data scale;

Figure 4: Grad-CAM of CNN and ViT. [Better viewed
on-line, in color, and zoomed in for details] ChestX-ray14
provides bounding boxes for some of the thorax diseases,
shown in white boxes. Left and right panels display suc-
cessful cases predicted by CNN and ViT, respectively.

and (iv) optimize learning parameters. As a result, the
vanilla ViT achieves a comparable (sometimes better) per-
formance to state-of-the-art CNNs. Code and pre-trained
models are available.

This paper has also presented an up-to-date benchmark
on three predominant chest X-ray datasets. Taking into
account the number of parameters, volumes of computa-
tions, usages of GPUs, and suitable pre-training schemes,
we have performed a fair and comprehensive comparison
between vanilla ViT and (i) state-of-the-art CNNs reported
in the literature, (ii) CNNs that are pre-trained by advanced
pre-training schemes on ImageNet, (iii) CNNs that are pre-
trained on the same number of medical data. We hope this
study can direct future research on the application of Trans-
formers to a larger variety of medical imaging tasks.

As future work, we will consider three extensions to our
current study. First, assembling more publicly available
X-ray datasets for pre-training (which account for a total
of ∼1M images [10]). Scaling up the data is perhaps the
most straightforward way to enhance larger ViTs (e.g. ViT-
Large, ViT/Huge) in terms of performance and generaliz-
ability based on Figure 1a. Second, extending ViT to its 3D
form for higher dimensional medical modalities (e.g. CT,
MRI), which is expected to take a considerable computa-
tional resource [44] and larger data for pre-training [86],
therefore requiring a more efficient method. Third, ex-
ploiting paired information of radiology reports and image
data for pre-training. We acknowledge the unique ability of
Transformers in processing multi-modality data [78, 20].
Acknowledgements. This work was supported by the Lust-
garten Foundation for Pancreatic Cancer Research. We
thank Y. Zhang for providing data loader of the COVIDx
dataset; A. Delaney for improving the writing of this paper.
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