
PatchZero: Defending against Adversarial Patch Attacks by Detecting and
Zeroing the Patch

Ke Xu∗ Yao Xiao∗ Zhaoheng Zheng Kaijie Cai
Ram Nevatia

{kxu47918, yxiao915, zhaoheng.zheng, kaijieca, nevatia}@usc.edu

Abstract

Adversarial patch attacks mislead neural networks by
injecting adversarial pixels within a local region. Patch
attacks can be highly effective in a variety of tasks and
physically realizable via attachment (e.g. a sticker) to the
real-world objects. Despite the diversity in attack patterns,
adversarial patches tend to be highly textured and differ-
ent in appearance from natural images. We exploit this
property and present PatchZero, a general defense pipeline
against white-box adversarial patches without retraining
the downstream classifier or detector. Specifically, our de-
fense detects adversaries at the pixel-level and “zeros out”
the patch region by repainting with mean pixel values. We
further design a two-stage adversarial training scheme to
defend against the stronger adaptive attacks. PatchZero
achieves SOTA defense performance on the image classi-
fication (ImageNet, RESISC45), object detection (PASCAL
VOC), and video classification (UCF101) tasks with little
degradation in benign performance. In addition, PatchZero
transfers to different patch shapes and attack types.

1. Introduction
Early adversarial image attacks [13, 5, 34] perturb pix-

els over the entire image; while these attacks are highly
effective, they are hard to realize in the physical environ-
ment. This has led to study of adversarial patch attacks
that inject adversarial pixels within specified local regions,
from the early Adversarial Patch [4], LaVAN [24], Masked
Carlini-Wagner [5], and Masked PGD [35] attacks to the
more recent DPatch [30], Robust DPatch [26], and Masked
AutoPGD [9] attacks. Patch attacks are physically realiz-
able as they can be printed and placed into the scene. Real-
world safety-critical computer vision systems, such as au-
tonomous driving and security surveillance, are vulnerable
to adversarial patches in the targeted scenes.

To tackle adversarial patch attacks in different domains,
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Figure 1: PatchZero defense for adversarial patch at-
tacks. PatchZero takes an adversarial image (left) as in-
put and outputs a processed image (right) with adversarial
pixels effectively removed. Our approach can be applied
to the image classification (top), object detection (middle),
and video classification (bottom) tasks without any retrain-
ing or modification of the downstream classifiers or detec-
tors. Green and red denote correct and incorrect predictions.

many patch defense methods have been proposed. Most of
the defenses focus on image classification [18, 36, 15, 27, 8,
49, 45, 48, 46], while object detection defenses [51, 7, 47]
and video classification defenses [1, 31, 33] are relatively
underexplored. Moreover, most of the defenses cannot be

4632



easily adapted to a different task and very few of them con-
sider adaptive attacks. Some [45, 46] also require prior
knowledge, such as adversarial patch size, to be effective.
In this study, we focus on adversarial patch attacks under
the white-box setting, as they are stronger [2, 43] than the
black-box counterparts. We aim to design a general defense
pipeline that can be easily applied to different classification
and detection tasks under adaptive attacks, and does not re-
quire any prior attack knowledge.

Our defense is based on the observation that although
adversarial patches are localized, they can mislead predic-
tions for objects far away in the image by exercising ab-
normally large influence on the spatial context due to their
highly textured patterns. As shown in the first column of
Figure 1, adversarial patches often have quite distinct tex-
ture and color distributions from those found in natural im-
ages. This observation leads to our idea to identify ad-
versarial pixels with pixel-level patch detector and replace
those pixels with mean pixel values (zero values after image
normalization) to reduce or even eliminate their influences.
Empirically, this process effectively “zeros out” the adver-
sary and restores most of the accuracy for the downstream
tasks. Therefore, we name our method “PatchZero”.

In an adaptive, white-box attack setting, the patch detec-
tor itself may be vulnerable to the attack. Since our patch
detector outputs a binary mask which is non-differentiable
during the backpropagation, we approximate the gradient of
the binary mask using the Backward Pass Differential Ap-
proximation (BPDA) [3] technique. We propose a two-stage
adversarial training scheme to efficiently train PatchZero
under BPDA attacks. The patch detector is first trained
with DO attack examples and then reinforced with BPDA
joint attack examples in successive stages. It is natural for
the adversary and defender to train their models iteratively;
however, it may be expected that this will always lead to a
win for the adversary as the attacker gets to make the last
call. One of our key contributions is in demonstrating that
after some iterations of alternate training, the defense model
becomes robust and able to detect the adaptive patches ef-
fectively.

We evaluate PatchZero under the Masked PGD, Masked
AutoPGD, and Masked CW attacks since they give a good
coverage of the white-box patch attacks and can be easily
applied to different tasks. PatchZero achieves state-of-the-
art performances on all three tasks compared with the pre-
vious work, with little degradation in benign performance.
Under the stronger BPDA adaptive attacks, the advantage
margin of our defense method is even larger. Note that a
recent paper [29] uses a similar defense approach for patch
attacks on the object detection task. We are unable to com-
pare with it directly as it uses different datasets and attack
conditions.

To summarize, our contributions are threefold:

1. We present PatchZero, a general defense pipeline
against white-box patch attacks that can be easily
adapted to the tasks of image classification, object de-
tection, and video classification without retraining of
the downstream classifier or detector.

2. We introduce a two-stage training scheme that rein-
forces PatchZero’s robustness under the stronger adap-
tive attacks and accelerates training in the early stages.

3. We evaluate our defense on multiple datasets and
demonstrate generalization to different patch shapes
and attack types.

2. Related Work
Patch Attacks: Perturbation attacks manipulate the

whole image to mislead neural networks. Patch Attacks,
on the other hand, only modify a restricted region of the
image. Brown et al. [4] first introduce the Adversarial
Patch attack that generates a universal and physically re-
alizable patch to mislead the image classification models.
LaVAN [24] is proposed at the same time but focuses on
the digital patch. After the introduction of the full-image
Carlini-Wagner (CW) [5], PGD [35] and AutoPGD [9] at-
tacks, Masked CW, Masked PGD and Masked AutoPGD
are three extensions to patch attacks by restricting the at-
tack region.

We would like to mention some task-specific attacks. In
the object detection domain, Liu et al. [30] design DPatch
against popular object detectors. Lee et al. [26] investi-
gate failure cases of DPatch and later introduce the Robust
DPatch. Furthermore, Saha et al. [40] introduce a blindness
attack against the classifier inside an object detector, while
Rao et al. [38] propose localization-optimized attacks. In
the video classification domain, the only patch attack we
can find besides Masked PGD and Masked AutoPGD at-
tacks is the MultAV attack by Lo et al. [32]. MultAV is very
similar to Masked PGD, but uses multiplication instead of
summation when applying the perturbation.

We select Masked PGD and Masked AutoPGD for our
experiments, since they can be easily applied across differ-
ent tasks. Empirically, we also find them to be stronger than
the task-specific attacks.

Patch Defenses for Image Classification: Digi-
tal Watermark(DW) [19] and Local Gradient Smoothing
(LGS) [36] are among the early patch defenses. Both are
later proved to be ineffective by Chiang et al. [8], who pro-
poses the first certified defense call Interval Bound Propaga-
tion (IBP). IBP limits the values of activation maps to guar-
antee a robustness lower bound. More recently, Xiang et al.
[45] put forward PatchGuard, a network with small recep-
tive field and outlier masking. It requires non-trivial mod-
ification of the backbone classifier. The same authors later
propose another defense called PatchCleanser [46] that can
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be applied to any classifier. PatchCleanser uses an ensemble
and exhaustive masking technique to identify the patch re-
gion. Both PatchGuard and PatchCleanser require the prior
knowledge of the attack patch size to compute the optimal
mask size and their certified robustness do not hold well
for large patches. In comparison, our approach can defend
against patch attacks of any patch sizes and shapes without
any prior knowledge.

Patch Defenses for Object Detection: Similar to the
image classification defense, object detection patch defense
also receives a lot of attention recently. Liang et al. [28]
uses Grad-Cam to detect and filter out the unusual area of
the image. However, Grad-Cam can only provide a coarse
map and is subject to miss detection and false positives.
Zhou et al. [52] combine Grad-Cam gradient map and dis-
crete entropy to locate the adversarial pixels, but the detec-
tion results are still coarse and limited. DetectorGuard [47]
uses small receptive field CNN to output a robust objectness
map that indicates the probability of objects being present
at different locations. If the map results are different from
the basic predictions, they will raise an alert for the adver-
sary. However, this work only identifies but does not defend
against patch attacks. SAC [29] uses an approach of detect-
ing and removing adversarial patches for the object detec-
tion task that is similar to ours. SAC uses identity map-
ping for binary mask gradient estimation, which we believe
is weaker than our Sigmoid BPDA gradient estimation. It
was proposed almost the same time as our approach and the
code was not released, so we are not able to provide a direct
comparison.

Patch Defenses for Video Classification: Adversarial
patch defense is a relatively under explored research direc-
tion in video classification. Anand et al. [1] propose In-
painting with Laplacian Prior (ILP) to detect and inpaint
adversarial pixels in the Laplacian space. However, the
method only works for optical-flow based video classifiers.
Lo et al. propose to replace each Batch Normalization
(BN) [22] layer of a regular video classifier with three BNs.
The network needs to be retrained adversarially to learn a
“switch mechanism” to connect to the correct BN module.
The same authors later propose OUDefend [33] module as
an embedding feature denoiser to be inserted between the
layers of a video classifier. Both methods from Lo et al. re-
quire modification and retraining of the downstream classi-
fiers, while our approach can be plugged into any classifier.

3. Defense Against Adversarial Patch Attacks

In this section, we first introduce some related back-
ground in Section 3.1. Then we explain the PatchZero de-
fense in Section 3.2. Lastly, we elaborate on the two-stage
training scheme for robustness against the stronger adaptive
patch attacks in Section 3.3.

3.1. Background

Projected Gradient Descent (PGD) and AutoPGD: In-
troduced by Madry et al. [34], PGD attack is one of the
strongest perturbation attacks proven to be effective against
image classification models. Given an input image X , its
ground-truth label Y ∗, model weights θ and the loss func-
tion ℓ, PGD attack is generated by maximizing the loss
function in an iterative manner:

X
(t+1)
adv = Cϵ{X(t)

adv + αSign(∇Xℓ(X
(t)
adv, Y

∗, θ)}. (1)

Note that the clipping function C is utilized to prevent the
per-pixel modification from going beyond the threshold ϵ.
In addition, random initialization and restarts are adopted to
further strengthen the attack. AutoPGD [9] is later proposed
as a PGD with auto step size tuning and a refined objective
function. It is shown to be more effective than PGD under
the same attack budget.

Masked PGD and Masked AutoPGD: Although the
original PGD attack is designed for the full-image pertur-
bation attacks, it can be easily converted into a patch at-
tack. As shown in Eq. 2, only pixels inside the patch region
[x, y, h, w] will be modified by the PGD:

X
(t+1)
adv [patch] =

Cϵ{X(t)
adv + αSign(∇Xℓ(X

(t)
adv, Y

∗, θ)}[patch].
(2)

Here patch refers to the region defined as [x : x+ h, y :
y + w] with the given [x, y, h, w]. Masked PGD can attack
object detectors and video classifiers by deriving the gradi-
ents from corresponding loss functions. AutoPGD can be
converted to its patch attack counterpart Masked AutoPGD
in a similar manner.

Adversarial Training: Adversarial training [13, 34] has
proven to be effective against various adversarial attacks.
The key idea is to generate adversarial examples and inject
them into the mini-batches during training. Generally, the
effectiveness of adversarial training depends on the strength
of adversarial examples. In practice, several researchers
[42, 23, 41] have studied PGD attack and achieved sig-
nificant robustness through adversarial training. To tackle
adversarial patch attacks, we propose a two-stage training
scheme that adversarially trains our models in two stages
with samples produced by Masked PGD and Masked Au-
toPGD. The details are provided in Section 3.3.

3.2. PatchZero Network

The full pipeline of PatchZero is shown in Figure 2. Our
method consists of two steps. In the first step, the input
image X ∈ RH×W×C is processed by the patch detector
d : RH×W×C → [0, 1]H×W , which yields a probability
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Figure 2: Defense Pipeline of PatchZero. The patch de-
tector takes one or multiple attack images X and predicts
pixel-wise adversarial binary mask M (black for adversar-
ial pixels and white for benign pixels). We “zero out” the
patch by multiplying X with M and fill the patch region
with the mean pixel values. The preprocessed image X ′ is
passed to the downstream model for final predictions.

map describing the possibilities for each pixel not being ma-
nipulated. We then binarize through a threshold ϵp the prob-
ability map to a binary mask M ∈ {0, 1}H×W , where patch
pixels are denoted zeros. For the second step, we remove
the identified patch region via element-wise multiplication
between X and M . The masked region is then filled with
mean pixel value X computed from the dataset to generate:

X ′ = X ⊙M +X ⊙ ¬M. (3)

After the zero-out step, the downstream model f takes the
sanitized image X ′ and makes the final prediction Y .

We generate adversarial patches of random locations
and sizes and the corresponding ground truth binary mask
for each image. We construct the training set for d by
equally mixing attack images and benign images. During
the patch detector training, we follow the loss function of
PSPNet [50], which consists of a main cross entropy loss
and two auxiliary loss terms. During inference, the patch
detector can detect and “zero out” the adversarial pixels
most of the time, but occasionally misses some pixels at
the border. To this end, we use morphological dilation to
slightly enlarge the predicted mask by a few pixels.

3.3. Adaptive Attack and Two-stage Training

When generating adversarial patches, there are two at-
tack strategies. In the Downstream-only (DO) attack, only
gradients from the downstream classifier f are considered.
However, the patch detector d itself is vulnerable to ad-
versarial attacks, especially under the white-box setting,
where attackers have full knowledge of the pipeline. In the
stronger adaptive attack, both the gradients from the down-
stream classifier f and from the patch detector d are consid-
ered. As defined in Eq. 3, the zero-out step includes the non-
differentiable binarization operation. The pixel-level gradi-

ent ∇Xℓ(X
(t)
adv, Y

∗, θ) cannot be computed directly through
back-propagation.

BPDA Adaptive Attack: Proposed by Athalye et al.
[3], BPDA is an approximation strategy to bypass non-
differentiable layers inside a network and achieve effective
adaptive attacks. Given a non-differentiable operation h,
BPDA finds a differentiable approximation h′ that satisfies
h(x) ≈ h′(x). The original operation h is used in the for-
ward pass but replaced by the approximation h′ in the back-
ward pass. To apply BPDA to PatchZero, we approximate
the binarization operation by the Sigmoid function, since
the binarization is essentially a Step function. With this ap-
proximation, we can utilize gradients from both the patch
detector and the victim classifier or detector to generate at-
tacks.

Two-stage Adversarial Training: The BPDA adaptive
attack introduces some difficulty to the training process of
the patch detector. In the early stages, the patch detector is
immature and creates random gradients. Since the adaptive
attack passes the gradients from the downstream classifier
through the patch detector, the resulting gradients will be
misleading. To resolve this issue, we propose a two-stage
training scheme as described below:

• Training Stage 1: We first generate adversarial
patches using the DO attack, which only consider the
gradients from the downstream classifier or detector
(Figure 2 green box). We train the patch detector d
with a mixture of benign and adversarial images.

• Training Stage 2: When the patch detector starts to
converge on the DO attack images, we switch to the
2nd stage of training. We generate adversarial patches
using the BPDA adaptive attack, which considers gra-
dients from both parts (blue and green box of Figure 2)
of the pipeline. We generate online adversarial attacks
at every training step with updated model weights.
This practice creates an attacker-defender race and fur-
ther fortifies the effectiveness of the patch detector.

The two-stage training mechanism greatly acceler-
ates the training process and improves the robustness of
PatchZero under the stronger BPDA adaptive attacks.

4. Experiments
We adopt the PSPNet [50] with the ResNet-50 [20] back-

bone as the patch detector of PatchZero. We initialize the
PSPNet with weights pre-trained on the ImageNet[10] and
follow the loss function for image segmentation. We train
our PSPNet patch detector through the two-stage adver-
sarial training introduced in Section 3.3. Regarding the
binarization threshold, we set ϵp as 0.5. We developed
the PatchZero and the two-stage training scheme in Py-
Torch [37] and use the Adversarial Robustness Toolbox
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Defense Benign MPGD MAPGD MCW

Undefended 81.62% 14.35% 9.40% 49.57%
GT Mask 81.60% 81.42% 81.34% 81.37%

PG [45] 60.40% 49.41% 48.91% 56.95%
PC [46] 80.54% 64.30% 63.57% 73.12%
PZ (DO) 81.47% 75.60% 76.80% 74.24%

PZ (BPDA) 81.48% 55.46% 70.02% -

Table 1: Benign and robust accuracy on the ImageNet
classification dataset. PG, PC, and PZ stand for Patch-
Guard, PatchCleanser, and PatchZero respectively.

(ART)1 for generating attacks. For the two-stage training,
we use a learning rate of 0.0001, the Adam [25] optimizer,
and a batch size of 64 for image classification, 16 for object
detection, and 36 for video classification.

4.1. Image Classification

Implementation Details: We conduct our image classifi-
cation experiments on two datasets. We use the validation
split of the ImageNet [10] dataset with 50,000 images and
1000 classes. We also evaluate on the RESISC-45 [6] re-
mote sensing dataset that contains 31,500 images and 45
scene classes. Compared with the ImageNet, RESISC-45
has a larger image size (256x256) and provides a remote
sensing perspective. On the ImageNet, we use ResNet50-v2
as the backbone image classifier for all the defense methods.
On the RESISC-45, we use DenseNet121 [21] as the image
classifier. We use the top1 accuracy for evaluation.
Attacks: For the Masked PGD (MPGD) attack, we use a
perturbation strength of 1.0, a step size of 0.01 and 100 iter-
ations. For the Masked AutoPGD (MAPGD) attack, we use
a perturbation strength of 0.3, a step size of 0.1 and 100 iter-
ations. For the Masked Carlini-Wagner (MCW) attack, we
use a perturbation confidence of 0.5, a learning rate of 0.1
and 100 iterations. Following the same settings as the pre-
vious works, we use 2% rectangular patches for ImageNet
and 9% square patches for RESISC-45. The patch sizes are
w.r.t. the image area and patch locations are random.
Baseline Defenses:

• PatchGuard: PatchGuard [45] is a certified defense
with small receptive field and outlier masking. We em-
pirically evaluate the robustness under the same attack
settings. Note that the method requires prior knowl-
edge of the attack patch size to estimate the defense
mask window size.

• PatchCleanser: PatchCleanser [46] is another certi-
fied defense against adversarial patches via two rounds

1https://github.com/Trusted-AI/adversarial-robustness-toolbox

Defense Benign MPGD MAPGD

Undefended 92.9% 3.0% 1.7%
GT Mask 92.9% 87.8% 87.2%

JPEG Comp [11] 91.0% 4.1% 1.7%
Adv Training [14] 83.9% 71.8% 67.2%
PZ (DO) 92.9% 87.5% 85.0%

PZ (BPDA) 92.9% 81.2% 76.4%

Table 2: Benign and robust accuracy on the RESISC-45
classification dataset.

of exhaustive masking and ensemble. We empirically
evaluate the robustness under the same attack settings.
This defense method also requires prior knowledge of
attack patch size.

• JPEG Compression: Guo et al. [16] propose to de-
fend against adversarial attacks through image trans-
formations, including JPEG compression. Here we use
JPEG compression as a preprocessor defense.

• Adversarial Training: For each downstream model
f , we follow a typical adversarial training scheme [34]
and train the downstream classifier with a mixture of
clean and adversarial images.

Defense Results: We first present the undefended baseline
and GT Mask baseline which assume perfect adversarial
patch detection. As shown in Table 1, the GT baseline re-
covers most of the robustness accuracy compared with no
attack, showing the potential of our approach. The two
certified defense baselines, PatchGuard and PatchCleanser,
both require prior knowledge of attack patch size and the ro-
bustness declines as the patch size increases. Our method’s
performance is not strongly dependent on the patch size (ex-
cept for occlusion effects) but we tested with 2% patch size
for fair comparison.

PatchZero outperforms PatchGuard by 26% and Patch-
Cleanser by 13% on both the MPGD and MAPGD attacks.
PatchZero has similar performance as PatchCleanser and
both outperform PatchGuard by 17% on the MCW attack.
Compared with the GT Mask results, PatchZero has almost
no drop in accuracy in all attacks except for MCW under the
DO attack, but larger gaps under the stronger BPDA adap-
tive attack. Note that neither PatchGuard nor PatchCleanser
can be easily adapted for adaptive attack.

We also evaluated PatchZero on the RESISC-45 dataset
to test robustness under higher image resolution and much
larger patch sizes (9% of image size), as shown in Table 2.
We compare with JPEG compression and adversarial train-
ing baselines. JPEG compression performs poorly; adver-
sarial training shows much better defense but PatchZero
performs better by a large margin, even under the stronger
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Defense
Benign MPGD

AP AP50 AP75 AP AP50 AP75

Undefended 49.20% 76.4% 52.6% 6.5% 10.9% 6.7%
GT Mask 49.2% 76.4% 52.6% 43.0 % 68.8% 44.4%

JPEG Comp [11] 47.7% 75.0% 51.4% 30.0% 48.1% 32.3%
Adv Training [14] 47.7% 75.1% 51.7% 16.8% 31.9% 15.2%
PZ (DO) 48.4% 75.3% 51.8% 41.5% 66.1% 43.8%

PZ (BPDA) 48.4% 75.3% 51.8% 35.1% 60.0 % 35.5 %

Table 3: Benign and robust AP on the PASCAL VOC object detection dataset.

Defense Benign
MPGD MAPGD

5% 10% 5% 10%

Undefended 94.55% 8.42% 3.96% 18.81% 0.00%
GT Mask 94.55% 91.58% 93.07% 91.58% 93.07%

Video Comp [17] 94.55% 21.29% 6.44% 12.87% 0.99%
PZ (BPDA) 94.55% 81.68% 82.67% 73.27% 76.24%

Table 4: Benign and robust accuracy on the UCF101 video classification dataset.

BPDA adaptive attack. Also, adversarial training reduces
benign accuracy substantially (by 9%), while PatchZero
maintains the benign accuracy of the undefended model.

For both datasets, we can see that the BPDA accuracy
drops from GT accuracy, more seriously in ImageNet than
in RESISC-45, likely due to much larger variety in the for-
mer. Nonetheless, substantial improvements are achieved
over undefended model and available alternatives. Further
improvements in the patch detection performance will be a
consideration in our future research.

4.2. Object Detection

Implementation Details: For the object detection task,
we evaluate on the PASCAL VOC [12] dataset, which has
20 object categories. Following the same setting as previ-
ous works [44], our models are trained on VOC 2007 plus
VOC 2012 and tested on VOC 2007. We use the Faster-
RCNN [39] with ResNet-50 [20] as the downstream detec-
tor. For evaluation, we use the standard Average Precision
(AP), AP50, and AP75 metrics.
Attacks: We defend against Masked PGD attack with a per-
turbation strength of 0.3, step size of 0.1, and 100 iterations.
Patch sizes are 120× 120 and patch locations are random.
Baseline Defense: We adopt Adversarial Training, JPEG
Compression as the baseline defense methods, since we are
unable to find any other patch defense baselines and the two
image classification baselines do not obviously transfer to
the detection task.
Defense Results: Table 3 shows evaluation results against

the Masked PGD attack on PASCAL VOC. Similarly, the
GT Mask baseline assumes perfect patch detection and
recovers most of the accuracy compared with no attack.
PatchZero achieves an AP of 41.5%, around 8% lower than
the benign performance, while JPEG compression and ad-
versarial training only get 30.0% and 16.8% AP, respec-
tively. The DO attack results of PatchZero are very close
to the GT Mask results. PatchZero also outperforms the
other baselines on the benign images. The BPDA results
are lower compared with our DO results, but still 5% higher
than JPEG Compression and 18% higher than Adversarial
Training, even though they use the much weaker DO attack.

4.3. Video Classification

Implementation Details: We conduct our video classifi-
cation experiments on the UCF101, an action recognition
dataset that has 13,320 short trimmed videos from 101 ac-
tion categories. Since adversarial defense is computation-
ally expensive on the video domain, we randomly select 202
video from the test dataset. We adopt the MARS [21] model
as the downstream classifier. We use the top1 and top5 clas-
sification accuracy as the evaluation metrics.
Attacks: For video classification, we consider the Masked
PGD and Masked AutoPGD attacks, with perturbation
strength of 1.0, step size of 0.2, and 20 iterations. All at-
tacks use BPDA and have patch sizes of 5% and 10%. The
patch locations are fixed for all frames of the same video
but random for each video.
Baseline Defenses: Due to the lack of reliable adversarial
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Figure 3: Transfer across patch shapes on the DAPRI-
COT object detection dataset.

patch defense methods in video classification, we pick the
H.264 video compression [17] as the baseline defense.
Defense Results: We compare the defense performance of
different defense methods in Table 4. All methods use the
MARS model as the downstream classifier. The GT base-
line assumes perfect patch detection and recovers most of
the robustness accuracy compared with no attack. For the
benign videos, neither PatchZero nor the video compression
degrade accuracy compared with the undefended MARS
classifier. For the attack scenarios, Masked AutoPGD attack
is stronger than the Masked PGD attack and attacks with
larger patch sizes (10%) are stronger. PatchZero signifi-
cantly outperforms the video compression baseline under
all attack combinations. The margin is even larger for the
stronger Masked AutoPGD attacks and larger patch sizes.
For example, for the 10% Masked AutoPGD attacks, our
method outperforms the Video Compression baseline by a
margin of 75.25% on the top1 accuracy. Compared with the
GT Mask, PatchZero still has some performance gap, but
already outperforms the other baseline by a large margin.

Lo et al. proposed “3-BN” [22] and “OUDefend” [33]
modules as defense for multiple video attacks. The authors
do not provide implementation for either method, so we
cannot thoroughly compare with them. In their only patch
attack experiment, they use a much weaker, Downstream-
only Masked PGD attack with patch size of 1.2% , perturba-
tion strength of 1.0, and 5 iterations. The “3-BN” achieves
a 63.8% accuracy and OUDefend achieves a 42.00% accu-
racy. In comparison, we use the adaptive version of Masked
PGD attack and with stronger attack parameters: patch sizes
of 5% and 10%, perturbation strength of 1.0, and 20 itera-
tions. PatchZero achieves 81.68% top1 accuracy, almost
20% higher. Also, both methods require modification and
adversarial training of the downstream video classifier. Nei-
ther of them can be easily applied across tasks.

4.4. Discussion

Effectiveness of the Patch Detector: To figure out how
the patch detector performs in identifying the corrupted pix-

Recall Prec Acc F1

DO 99.8% 99.1% 99.9% 99.5%
BPDA 98.8% 99.1% 99.8% 99.0%

Table 5: Adversarial pixel segmentation performance of
the patch detector on RESISC-45.

MPGD MAPGD MCW

MPGD 81.07% 80.18% 71.67%
MAPGD 81.07% 81.13% 66.97%
MCW 80.71% 80.72% 77.41%

Table 6: Generalization to different attacks on Ima-
geNet. Each row and column represents a model trained
with and tested on a specific type of attack.

Model Time GPU Param

ResNet-50 8 mins 1.96 GB 25.5M
PC [46] 758 mins 7.32 GB 25.5M
PZ 12 mins 3.33 GB 72.2M

Table 7: Memory cost and speed. Inference time is on the
entire ImageNet validation dataset with one Nvidia 2080Ti.

els, we conduct quantitative evaluations on the RESISC-45
dataset. Attacks are generated by Masked AutoPGD under
the DO and BPDA attack modes. We report the precision,
recall, accuracy, and F1 of the adversarial pixel segmenta-
tion task on attack images. According to Table 5, our patch
detector can effectively identify manipulated pixels under
both attack modes, although there is a 1% drop in Recall
from DO attack to the stronger BPDA attack. Empirically,
we observe that these 1% uncovered pixels, especially at the
patch border, can have some influence on the overall accu-
racy. We also evaluated our patch detector on the benign
images. The false positive detection rate is 5.05e-06.

Transfer across Patch Shapes: The patch detector in
PatchZero operates at the pixel-level, so it can generalize
well to different patch shapes. We evaluate a version of
PatchZero, trained using only square patches, on the Dy-
namic APRICOT dataset2, which contains a mixture of dia-
mond, octagon, and rectangle shape patches. We use Faster-
RCNN as the downstream detector and the Masked PGD at-
tack with 100 iterations. As shown in Figure 3, PatchZero
can detect and remove adversarial pixels accurately across
the three different shapes. Quantitatively, the mAP of the
undefended baseline drops from 27.33% to 0%; in con-
trast, PatchZero has the same benign accuracy of 27.33%

2https://armory.readthedocs.io/en/latest/scenarios/#dapricot-object-
detection-updated-july-2021

4638



Figure 4: Attack visualization. We compare the MAPGD
attack patterns under the DO (top) and BPDA adaptive at-
tacks (bottom) in the image classification (left), object de-
tection (middle), and video classification tasks (right).

and maintains 20.67% mAP after attack.
Transfer across Attack Types: We performed exper-

iments of training PatchZero on one of the three attacks
(MPGD, MAPGD, and MCW) and evaluating the defense
performance on all three; results are shown in Table 6. The
attacks are DO only on the Imagenet classification task (the
numbers are a bit different than those reported in Table 1 of
the submitted paper as those results were the BPDA trained
models). The results show that, in general, PatchZero
trained on one type of attack defends against another attack
quite effectively, with only small drops compared to train-
ing on the seen attacks. This is particularly the case for the
model trained with the MCW attack.

It is noteworthy that MCW attack is the weakest of
the three (it drops the undefended accuracy less) but is
harder to defend against and provides the best generaliza-
tion. A likely explanation for this behavior is that the
MPGD and MAPGD patches have high pixel values and
produce more distinct patterns from natural images than the
MCW patches. A detector that can detect subtle patches
generalizes to more distinct patches.

Computation Overhead: We analyze the memory
cost and inference speed of PatchZero in Table 7. Both
PatchZero and PatchCleanser use ResNet50 as backbone.
Although Patchzero has more model parameters, it has a
faster (60x) inference speed and lower (2x) GPU memory.

DO vs. BPDA Attack Patterns: We compare the DO
(top) and BPDA adaptive attack patterns (bottom) in Fig-
ure 4. The left column shows adversarial patches in the im-
age classification task. The BPDA attack pattern seems to
be more colorful and granular than the DO attack pattern.
For the object detection task (middle), BPDA attack pat-
terns are more structured, rather than a seemingly random
appearance. For the video classification task (right), the
DO patch shows some “grid-like” pattern, while the BPDA
patch is denser and more granular.

In all cases, the two types of attack patterns are very dif-

(a) DOG, CAR (b) TAICHI, YOYO (c) BLOWDRYHAIR, HAIRCUT

Figure 5: Three common failure cases of PatchZero. (a)
miss patch detection, (b) leaking adversarial pixels, (c) oc-
clusion. Green denotes ground truth labels and red denotes
incorrect predictions. Figure best viewed when zoomed in.

ferent. The BPDA attack patterns start with the DO patterns
and gradually evolve into the granular patterns. The chang-
ing appearance requires the patch detector to be updated at
each iteration. It is not at all obvious that the process should
converge but, thanks to the two-stage training, the trained
patch detector becomes robust against the BPDA patches.

Failure Cases and Limitations: We present three com-
mon failure cases of PatchZero in Figure 5. As shown in
part (a), missed patch detection can lead to defense failure,
since repainting cannot be effectively applied without a cor-
rect patch detection. In the example shown, the adversarial
patch has a similar texture as the background, leading to a
missed detection. Leaking adversarial pixels in (b) is an-
other failure case though morphological operations applied
to the binary mask prediction can reduce the effects. Final
failure cases in part (c) arises due to significant occlusion
caused by random patch location falling on top of the main
object in the scene, regardless of correct patch detection.

5. Conclusions
In this paper, we proposed PatchZero, a general defense

pipeline against white-box patch attacks. PatchZero first de-
tects the adversarial pixels and then “zeros out” the patch
region by repainting with mean pixel values. We further
propose a two-stage training scheme to defend against the
stronger adaptive attacks. Extensive experiments demon-
strate the state-of-the-art robustness of PatchZero across
the tasks of image classification, object detection, and
video classification, with little degradation in benign perfor-
mance. PatchZero transfers well to different patch shapes
and attack types.
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