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Abstract

Restoring and inpainting the visual memories that are
present, but often impaired, in old photos remains an in-
triguing but unsolved research topic. Decades-old pho-
tos often suffer from severe and commingled degradation
such as cracks, defocus, and color-fading, which are dif-
ficult to treat individually and harder to repair when they
interact. Deep learning presents a plausible avenue, but
the lack of large-scale datasets of old photos makes ad-
dressing this restoration task very challenging. Here we
present a novel reference-based end-to-end learning frame-
work that is able to both repair and colorize old, degraded
pictures. Our proposed framework consists of three mod-
ules: a restoration sub-network that conducts restoration
from degradations, a similarity network that performs color
histogram matching and color transfer, and a colorization
subnet that learns to predict the chroma elements of images
conditioned on chromatic reference signals. The overall
system makes uses of color histogram priors from refer-
ence images, which greatly reduces the need for large-scale
training data. We have also created a first-of-a-kind pub-
lic dataset of real old photos that are paired with ground
truth “pristine” photos that have been manually restored
by PhotoShop experts. We conducted extensive experi-
ments on this dataset and synthetic datasets, and found that
our method significantly outperforms previous state-of-the-
art models using both qualitative comparisons and quan-
titative measurements. The code is available at https:
//github.com/DerrickXuNu/Pik-Fix.

1. Introduction
While our experience of the visual world are colorful, in

earlier days of photography pictures were usually captured
as “black and white”, i.e. as gray-scale. As time elapses, they
suffer other degradation as well. While consumer service

*Equal contribution. † Corresponding author.

Figure 1: Examples of old photo repair (restoration and col-
orization) generated by Pik-Fix. Pik-Fix is able of simulta-
neously repair multiple image degradations of a photograph
while also colorizing it.

are available for restoring and colorizing old photos, these
require significant expertise in image manipulation, which
is labour intensive, costly, and time-consuming. Thus, de-
veloping automated systems that can rapidly and accurately
colorize and restore old photos is of interest.

Recently, deep learning based techniques have achieved
high performance levels on a broad range of computer vision
problems [9, 18, 21, 35, 36, 44, 52, 54–57, 64, 70]. They have
also been successfully applied to image restoration such as
image denoising [7, 33], super-resolution [30, 32], deblur-
ring [34, 43], colorization [21, 64], and compression [3, 8].
However, learning-based colorization models generally re-
quire large-scale training datasets [64] to obtain favorable
performance, which is energy-inefficient, labor-intensive,
and time-consuming. Towards reducing large data require-
ments, the authors of [19, 21, 23, 60] proposed to employ
reference/example images to assist colorization of gray-scale
images. He et al. [21] uses separate similarity and coloriza-
tion networks. However, since there are inherent ambiguities
of the colors of natural objects because of the effects of am-
bient lighting. Better results than pixel-level color matching
may be obtained by deriving features that describe the sta-
tistical color distributions of the reference pictures. In this
direction, Yoo [59] deploy the means and variances of deep
color features, but do not utilize second-order (spatial) distri-
bution models, thereby discarding information descriptive of
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correlations that exist within image textures and their colors.
Since the spatial statistical color distribution is a very

likely a useful source of colorization features, we have devel-
oped a reference-based, multi-scale spatial color histogram
fusion method of image colorization. Using reference pic-
tures to guide the colorization of gray-scale photographs
relieves the need for large-scale training data. Precisely,
we devised a novel end-to-end deep learning framework for
old photo restoration which we dub Pik-Fix, which is com-
posed of 1) a convolutional sub-network that is trained to
conduct degradation restoration, 2) a similarity sub-network
that performs reference color matching, and 3) a colorization
sub-network that learns to render the final colorful image.
As illustrated in Fig. 1, Pik-fix can restore and colorize the
old degraded photos using only limited training data, making
it attractive for data-efficient applications. Previous meth-
ods [46] mainly use the quantitative results on synthetic data
with the restoration ground truth and qualitative results on
collected real data without the restoration ground truth for
experimental evaluations. To the best of our knowledge,
there exists no similar public dataset of authentic, real-world
degraded and gray-scale photos that are associated with pris-
tine reference versions of the same photos. Towards ad-
vancing research in this direction, we designed and built
a first-of-a-kind real-world old photo dataset consisting of
200 authentic old grayscale photos, where each old photo
is paired with a ‘pristine’ version of it that was manually
restored and colorized by Adobe Photoshop editors. Our
experimental results show that Pik-Fix can outperform state-
of-the-art methods on both existing public synthetic datasets
and on our real-world old photo datasets, even though it
requires much less training data. Our major contributions
are summarized as follows:

• We propose the first end-to-end deep learning framework
(Pik-Fix) that learns to simultaneously restore and colorize
old photos, only requiring a small amount of training data.

• A reference-based multi-scale color histogram fusion
method for image colorization that learns the content-
aware transfer functions between the input and reference.

• The first publicly available dataset of authentic, real-world
degraded old photographs. Each of these 200 authentic
contents is paired with a ’pristine’ version that were man-
ually restored and colorized by Photoshop editors.

• Our experimental results show that the model, called Pik-
Fix, achieves better visual and numerical performance than
state-of-the-art methods on existing synthetic data and on
our new real-world dataset.

2. Related Work
2.1. Image Colorization

Driven by deep neural networks, automatic image col-
orization have made great progress recently [10, 12, 67, 69].

Semantics analysis has been identified for successful col-
orization. For example, [22] and [69] design two-branch
architectures that explicitly learn to fuse the local image fea-
tures with global semantic predictions. The authors of [40]
argue that pixel-level analysis is insufficient to learn subtle
variations of object appearance and color, and shows that
incorporating object-level analysis into that regression ar-
chitecture yields better performance. Some works also try
to employ reference images to help colorization and use
a variety of ways to compute correspondence between the
input pictures and the reference data, including pixel com-
parison [31, 51], semantic matching [5, 23], and super-pixel
level [11, 19] similarities.

2.2. Image Restoration

There is a wide array of degradations that can affect older
photographs, including some that occurred during capture,
such as film grain and blur, and others that occur over time,
like stains, fading color, and cracks. Traditional computa-
tional approaches to restore photos that have been digitized
usually involve the application of prior constraints such as
non-local self-similarity [4], sparsity [16], or local smooth-
ness [50]. More recently, deep learning-based methods have
proved efficacious on many picture restoration tasks, such as
image denoising [61–63], super-resolution [15, 27, 30], and
deblurring [34,41,53]. The success of these methods derives
from the ability to simultaneously learn smooth semantics,
and perceptual and local image representations.

2.3. Old Photo Restoration.

Old Photo Restoration aims at removing the degradations
of old photos and colorizing them with natural colors. How-
ever, most of the existing models only address one particular
aspect of old photo restoration, color restoration, or degrada-
tion restoration. The authors [47] designed an image-level
pixel-to-pixel image translation framework using paired syn-
thetic and real images. A model called Deoldify [2] also
implements a pixel-to-pixel translation using a GAN. [45]
learns to conduct single-degradation image restoration in
an unsupervised manner. [46] first encodes image data into
latent representations that separate old photos, ground truth,
and synthetic images. It learns image restoration by produc-
ing the latent translation.

Although previous have been able to deliver perceptual
equality by solely conducting colorization or restoration, in
most instances old photo restoration requires both coloriza-
tion and distortion restoration. Our work leverages both
learning-based restoration and example-based color restora-
tion methods to obtain old photo restoration that addresses
both aspects. Importantly, our example-based colorization
technique requires much less training data.
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Figure 2: Flow diagram of the triplet networks (restoration, similarity and colorization) that define the flow of visual
information processing in Pik-Fix.

3. Methodology

There are several major challenges that need to be ad-
dressed to further advance old photo restoration. Complex,
commingled degradations are often observed in real-world
old photos, which are impossible to model analytically, and
difficult to gather into large amounts of representative train-
ing data. Further, colorization is an ill-posed, ambiguous
problem [6], hence existing models require very large train-
ing datasets. The presence of complex distortions can make
colorization harder. While this has not been deeply studied,
the loss of real information likely impedes inferencing and
regression. Conversely, restoring degraded gray-scale photos
may be harder without clues supplied by color, which tends
to be smooth and regional. Solving both problems together
has the potential to improve the overall solution.

Towards overcoming these challenges, we propose an
end-to-end framework, as depicted in Fig. 2. Denoting the
input grayscale photo as IL ∈ RH×W×1, the restoration
sub-net attempts to reverse any degradations to produce a
restored gray-scale image I

′

L ∈ RH×W×1. Then, I
′

L and the
luminance channel of an associated reference picture RL ∈
RH×W×1 are both fed into the similarity sub-net, which
produces a similarity map. Then, the chromatic features from
the ab channels Rab ∈ RH×W×2 of the reference image are
projected onto the input image space. The colorization sub-
net accepts I

′

L and the projected reference color features
together as inputs, processing them to generate ab channels
Iab ∈ RH×W×2, finally concatenating it with I

′

L to obtain a
restored and colorized result ILab ∈ RH×W×3.

While previous methods operate by directly feeding the
raw ab channels of the reference image into a colorization
network [21, 60], or utilize low-order statistics (e.g., mean
and variance) of adaptive instance normalization of the refer-
ence image [58, 59], we instead employ a multi-scale fusion

method that combines a spatial-preserving color histogram
with deep features. The spatial-preserving color histogram
contains useful prior information regarding the spatial re-
lationships of color. The color features and deep features
are aggregated over multiple scales, enabling the learning of
the colorization process without a large number of training
samples. In the following sections, we detail the restora-
tion sub-net, similarity sub-net, colorization sub-net, and
reference selection algorithms.

3.1. Restoration Sub-Net

Broadly, the types of degradations that affect old photos
can be divided into two categories: physical defects (e.g.,
cracks, tears, smudges) and capture defects (e.g., blur, ex-
posure) [46]. Correcting physical defects typically requires
that the receptive fields of the analyzing neural network be
large enough to capture impairments that span much of the
photo dimensions. Yet it is also important that the network
accesses local information since capture distortions usually
manifect locally, even when globally present.

Here we address the bifurcated nature of old photo distor-
tions by developing a multi-level Residual Dense Network
(RDN [68]) that serves as the restortion sub-net. RDN mod-
els have previously demonstrated outstanding performance
on common image restoration tasks like super-resolution, de-
noising, and deblurring, mainly facilitated by a core module
called the residual dense block. The residual dense block
is able to extract abundant information via the use of dense
connections and contiguous memory mechanisms. While the
RDN architecture has been shown to be suitable for handling
capture defects, it processes images at a single resolution,
restricting the sizes of the filter receptive fields and weaken-
ing its ability to correct physical flaws. To enable RDN to
handle the broader range of distortions, we have formulated
a multi-level RDN that is able to analyze distorted pictures
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over an enlarged span of receptive field sizes.
As shown in Fig. 2, an original picture, along with 4×

and 8× downsampled versions of it are fed into the top,
second, and third levels of the RDN, respectively. Each level
consists of three residual dense blocks, each composed of
4 identical residual dense units. The outputs of the lower
levels are upsampled via bilinear interpolation and fused
via concatenation, then passed through another convolution
layer to generate the restored luminance I

′

L.

3.2. Similarity Sub-Net

After the refined luminance map I
′

L is obtained from
the restoration sub-net, it is passed to the similarity sub-net
along with the reference image’s luminance channel RL.
The similarity sub-net is designed to project the reference
image features onto the feature space of the input picture. As
illustrated in Fig. 2, a pre-trained ResNet34 [20] is employed
to retrieve layer1, layer2, layer3, layer4 feature maps from
the input and reference pictures, respectively. Note that these
feature maps have progressively smaller spatial resolutions
and a larger number of feature channels with increased net-
work depth. Then, four convolution layers are applied to
these intermediate features, yielding feature maps having the
same channel dimensions fi ∈ RHi×Wi×C (i = 1, 2, 3, 4).
We utilize similarity maps at multiple scales to later allow for
multi-level feature fusion in the colorization sub-net. Rather
than simply resizing and concatenating the four feature maps,
we propose to construct a learnable coefficient Ai ∈ R1×4,
where i =1 to 4, that assigns different weights to the feature
maps depending on the target similarity map size. These
weighted feature maps are then concatenated together to ob-
tain a feature tensor. For instance, the concatenated feature
Mi ∈ RHi×Wi×C at scale i would be:

Mi = W ⊛ [g(Ai1 ∗ f1)⊕ g(Ai2 ∗ f2)
⊕g(Ai3 ∗ f3)⊕ g(Ai4 ∗ f4)],

(1)

where W is the shared convolution filter for the convolu-
tion operator ⊛, g is an up-sampling or down-sampling
function that aligns the feature size to the target similar-
ity map size, ∗ indicates element-wise multiplication, and
⊕ denotes the concatenation operation. Subsequently, the
three-dimensional feature vector Mi will be reshaped to a
two-dimension matrix Mi ∈ RHiWi×C . Then, the similarity
map Φi

R↔I ∈ RHiWi×HiWi characterizing the correlation
structure between the reference picture R and the input pic-
ture I at scale level i is computed at each spatial location
(u, v) as follows:

Φi
R↔I(u, v) =

(M̄i
I(u)−µ

M̄i
I )·(M̄i

R(v)−µ
M̄i

R )

||M̄i
I(u)−µM̄i

||2||M̄i
R(u)−µ

M̄i
R ||2

, (2)

where µM̄i
I and µM̄i

R are mean feature vectors. The soft-
max function is then applied to the elements of the similarity

map along the x-axis so each mapped element lies within
[0,1]. This similarity map is then passed to the colorization
sub-net, whose task is simplified since the reference picture’s
information is aligned with that of the input image.

3.3. Colorization Sub-Net

To tackle the aforementioned colorization problem, we
develop a method of guiding the process using the color
prior in the reference picture. Specifically, we utilize a
space-preserving color histogram (SPHist) computed on the
reference pictures. Unlike the traditional color histogram,
the SPHist can retain spatial picture information while mod-
eling the probability that each pixel color falls within each
bin. Importantly, SPHist is differentiable, and thus, it can
be used in an end-to-end neural network trained using gra-
dient back-propagation. We accomplish this by using Gaus-
sian expansion [38] to separately approximate the SPHist
h ∈ RH×W×K of each channel, where K is the number of
histogram bins. Then, the probability of a pixel at location
(i, j) falling into the k-th bin is expressed as follows:

h(i, j, k) =
exp(−(Dij − uk)

2/2σ2)∑K
k=1 exp(−(Dij − uk)2/2σ2)

, (3)

where Dij is the value of a (or b) channel of the reference
picture at spatial coordinate (i, j); the spread of the Gaussian
distribution is fixed at σ = 0.1; uk is a learnable parameter
representing the center of bin k, which is initialized as:

u0
k = vmin + (vmax − vmin)/K ∗ k, (4)

where vmin and vmax are the minimum and maximum pos-
sible values of the ab channels (-1 and 1, respectively in our
experiments). Although the bins are equally distributed at
the start, after training over several iterations, their distribu-
tions become unequal, since some colors are rarer than others
‘in the wild’. The extracted color histogram is reshaped to
h ∈ RHW×K and down-sampled to the available four scales
to enable matrix multiplication with the corresponding scales
of similarity maps, leading to a warped SPHist that contains
similarity-guided space-preserved color histogram from the
reference picture. The warped SPHist is then fed into differ-
ent levels of the encoder in the colorization sub-network to
conduct color prediction.

The backbone of our colorization network employs a
global U-Net shape [37] with densenet blocks [42]. There
are four dense blocks in the encoder containing 6, 12, 24,
and 16 dense units. The decoder shares a similar structure
as the encoder, and bi-linear interpolation is employed to
upscale the forwarding features between the dense blocks.
The warped SPHist extracted from the reference picture is
concatenated with the intermediate features after each dense
block in the encoder, yielding inputs to the fusion module.
The fusion module contains a dense block with six dense
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units and a 3∗3 convolution layer, which is responsible for ef-
ficiently combining the traditional color heuristics and deep
features to enable accurate colorization. Since the reference
information of reference is fused during the intermediate
stages instead of at the start, the model learns to deal with
dissimilarities between the input and reference pictures in a
multi-scale manner.

3.4. Training Objective

In order to 1) simultaneously train the restoration and col-
orization nets, 2) exploit the rich color information available
in the reference pictures, and 3) improve the visual quality of
the overall restored output, we employed a weighted sum of
diverse objectives functions against which the entire Pik-Fix
system can be trained end-to-end. Among these, the lumi-
nance reconstruction loss between the restored luminances
I

′

L and the ground truth luminances GL are used to supervise
the training of restoration subnet: Lrec,L = ||I ′

L −GL||1.
However, it is well-known that relying on ℓp norms as

loss function tends to generate blurred estimates of picture
restoration [30]. Hence, we also used a measure of per-
ceptual loss that has been shown to deliver better quality
visual results on a variety of restoration tasks [14, 30, 48]:
Lperc,L =

∑
j

1
CjHjWj

||ϕj(I
′

L) − ϕj(GL)||22, where ϕj is
a feature map of shape Cj ×Hj ×Wj .

The colorization subnet is intended to transfer color dis-
tributions from the reference picture to the predicted output
pictures. Thus, we also use the histogram loss to measure
the distribution distance between the color histograms of
the output and reference pictures as expressed by the Earth
Mover’s Distance (EMD): LEMD,ℏ =

∑K
k=1(CDFℏ

I
′ (k)−

CDFℏR
(k))2, where CDFp(k) is the k-th element of the

cumulative density function of the probability mass function
p. ℏI′ and ℏR are one-dimensional differentiable histograms
formed by globally pooling over the SPHist features hI′ and
hR in Eq. (3), respectively.

We also use the chroma reconstruction loss to impose the
spatial consistency between the predicted chromatic chan-
nels ab and the ground truth ab channels, supplementing the
histogram loss by directly controlling the pixel-wise chro-
matic loss: Lrec,ab = ||I ′

ab −Gab||1.
The adversarial loss is a recipe that is often used to

enhance the visual quality of images synthesized using
GANs [26, 29, 30]. We utilize a PatchGAN [24] structure
to ensure that all of the local patches of the enhanced out-
put channels are visually similar to realistic chroma maps.
The adversarial loss is expressed as: mathcalLadv,ab =

EGab
[logD(G)] + EI

′
ab
[log (1−D(I

′
, R))].

Finally, we combine all of the above directed loss func-
tions into an overall loss under which Pik-Fix is trained:
L = αLrec,L+βLperc,L+λLEMD,ℏ+γLrec,ab+ηLadv,ab.

3.5. Reference Picture Selection

As discussed earlier, Pik-Fix requires color reference
pictures as additional inputs to guide the colorization process.
Thus, we developed an automatic reference curation model
that generates good reference pictures from a given database,
given an input grayscale picture during either the training
and or inferencing phases.

An ideal reference should be both visually and seman-
tically similar to the target image to be colorized, while
providing rich and appropriate color information for the col-
orizing process. Inspired by the deep perceptual similarity
models [13, 65], we leveraged a pre-trained VGG19 net [39]
as backbone to extract intermediate deep feature maps. Then,
we measured the degrees of textural and the structural sim-
ilarity between each given grayscale input image and each
of the available color images using the global means and
variance/covariances of their feature maps, respectively [13].
Finally, a weighted summation of the texture and structure
similarities is used to determine which of the color reference
pictures in the training set has the greatest similarity to the
grayscale input picture to be repaired and colorized. When
deploying the trained Pik-Fik system, user may either auto-
matically select a recommended reference picture retrieved
from an available corpus, or they may choose to manually
select a reference picture, according to their preference.

4. Experiments
4.1. Experimental Setting

Dataset We trained and evaluated our method on three
datasets: Div2K [1], Pascal [17], and RealOld. In our ex-
periments, we used the Div2K training and validation sets
(800/100) for model training and testing, respectively. For
Pascal, we randomly selected 10,000/1000 images to serve
as training data and testing data. Two different experiments
were conducted: simultaneous image restoration and col-
orization, and only image colorization. In order to produce
realistic defect pictures, similar to those used in [46], we
hired Photoshop experts to mimic the degradation patterns
in real old photos (but not from our newly created RealOld
dataset) on images from the Pascal dataset, using alpha com-
positing with randomized transparency levels, thereby gener-
ating synthetic old photos. We also added Gaussian blur, and
simulated severe photo damage by randomly setting polygo-
nal picture regions to pure white. We restrict that reference
images can only be retrieved from the training set.

Real-World Old Photos (RealOld): To validate the effi-
cacy and generalizability of our model under realistic con-
ditions, we collected digitized copies of 200 real old black
& white photographs. Each of these photos were digitally
manually restored and colorized by Photoshop experts. To
the best of our knowledge, this is the first real-world old
photo dataset that has aligned “ground truth” ‘pristine’ pho-
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Input Reference Pix2pix [47] Deoldify [2] InstColor [40] He et al. [21] Ours
Figure 3: Visual comparisons against state-of-the-art colorization methods on DIV2K. It shows that with only 800 training
images, our method is able to accomplish visually pleasant colorization and our result is significantly better than others.

Table 1: Quantitative comparison on the DIV2K and Pascal VOC validation datasets. Up-ward arrows indicate that a higher
score denotes a good image quality. We highlight the best score for each measure.

Dataset DIV2K (w/o degradation) Pascal VOC (w/o degradation) Pascal VOC (w/ degradation)

Metric PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Pix2pix 21.12 0.872 0.138 20.89 0.782 0.200 20.37 0.732 0.231
DeOldify 23.65 0.913 0.128 23.96 0.873 0.117 21.45 0.789 0.192
He et al. 23.53 0.918 0.125 23.85 0.925 0.114 - - -
InstColorization 22.45 0.914 0.131 23.95 0.932 0.111 - - -
Wan et al. - - - - - - - 18.01 0.598 0.421

Ours 23.95 0.925 0.120 24.01 0.940 0.100 22.22 0.828 0.186

tos to enable pixel-to-pixel processing and comparison. We
are making this dataset publicly available to allow other
researchers to develop advanced algorithms that can both
colorize and repair old photos impaired by scratches, blur,
cracks, wear, film grain noise, and physical and capture dis-
tortions. In our experiments, RealOld is used for testing
models that have been trained on Pascal. Furthermore, we
randomly downloaded 2,000 RGB portraits from Google
Images, and utilize our picture selection algorithm to pick
the best references among them, when testing on ReadOld.

Evaluation Metrics. We report PSNR and SSIM [49] scores
between the reference and restored/colorized pictures. As an
alternative, we also use the learned perceptual image patch
similarity (LPIPS) metric [66].

Training Details. We trained Pik-Fix in an end-to-end
manner using the Adam solver [28], with β1 = 0.99 and
β2 = 0.999. The initial learning rate was set to 0.0001 and
exponentially decreased at the end of each epoch using a
decay rate of 0.99. The loss balance weights were fixed as
follows: α = 1.0, β = 0.2, λ = 0.5, γ = 1.0, η = 0.2. For
data augmentation, randomly cropped 256 × 256 patches
were included in the training data. At each epoch, we

selected one of the following two methods of reference
patch/picture generation: 1) a patch was cropped from an
RGB image at a location different from that of the patch
used as input, and processed with color jittering and a small
affine transformation to create a reference picture; 2) one
picture was randomly selected from the training set (exclud-
ing the ground-truth) and treated as the reference. All of the
compared models were trained on DIV2K and Pascal for 20
epochs, respectively, on a single GTX 3090Ti GPU.

4.2. Experimental Results

Since no existing work has explicitly considered the si-
multaneous correction of picture degradation and coloriza-
tion, we compared Pik-Fix with models developed for image-
to-image translation (denoted as Pix2pix [25]), image restora-
tion (denoted as Wan et al. [46]), and colorization (denoted
as Deoldify [2], He et al. [21] and InstColorization [40]).
For fair comparisons, we do not evaluate InstColorization
and He et al. (which do not restore degradation) on Pas-
cal VOC with degradation. Likewise, we did not compare
against Wan et al. (which does not colorize), on DIV2K
without degradation or on Pascal VOC without degradation.

1729



Input Expert Repair Wan et al. [46] Deoldify [2] InstColor [40] He et al. [21] Ours
Figure 4: Visual comparisons against state-of-the-art colorization and restoration methods on RealOld. It shows that with
limited synthetic training data from Pascal, our model is able to fix most of the degradation and deliver plausible colorization.

All the compared methods were trained from scratch using
the training strategies and code provided by those authors.

4.2.1 Quantitative Comparison

Table 1 compares Pik-Fix and the other models’ perfor-
mances on two public datasets under two scenarios: DIV2K
without degradation, Pascal VOC without degradation, and
Pascal VOC with degradation. Pik-Fix delivered the best
results against all three evaluation metrics as compared with
these state-of-the-art models. For example, on the DIV2K
dataset without degradation, Pik-Fix achieved much better
scores of 23.95 PSNR, 0.925 SSIM, and 0.120 LPIPS, than
any of the compared models.

Table 2 shows the results obtained on the RealOld dataset,
where again, Pik-Fix generated the highest performance
scores among all compared models. These results strongly
highlight the performance resilience by Pik-Fix when trans-
ferring from synthetic dataset to real-world old photo dataset.

4.2.2 Qualitative Comparison

Figure 3 provides qualitative comparison on Divk2K. Pik-
Fix produced pictures having vivid, realistic colors, while
compared models delivered incomplete colorization. Fig. 4
shows results on the RealOld dataset, showing that Pik-Fix
can simultaneously perform picture restoration and coloriza-
tion, producing perceptually satisfying results.

4.2.3 User Study

We conducted a user study to compare the visual results of
all the methods. We randomly selected 100 old photos from
the RealOld dataset, and asked 15 users to rank the results
based on their subjective visual impressions. We gathered
reports from these 15 people with the results presented in
Table 3. Pik-Fix attained a high probability of 50.6% of
being selected as the single top performer, outperforming all
of the other methods over all rankings, further illustrating
the strong performance of the Pik-Fix picture restoration and
colorization engine.
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Table 2: Quantitative comparisons of restora-
tion/colorization performance on the RealOld dataset.

Dataset Real old photo

Metric PSNR↑ SSIM↑ LPIPS↓

Pix2pix 16.80 0.684 0.320
DeOldify 17.14 0.723 0.287
He et al. 16.72 0.707 0.314
InstColorization 16.86 0.715 0.312
Wan et al. 16.99 0.709 0.303

Ours 17.20 0.758 0.258

Table 3: User rankings of algorithm performance on the
RealOld dataset. The percentage (%) of users choosing each
model ranking is shown.

Method Top 1 Top 2 Top 3 Top 4 Top 5

Pix2Pix [25] 3.1 11.8 24.3 41.6 67.7
Deoldify [2] 10.5 33.9 56.5 79.3 92.8
He et al. [21] 4.6 26.3 44.1 61.9 83.2
InstColorization [40] 8.0 26.3 53.6 75.5 92.2
Wan et al. [46] 23.1 38.6 48.9 59.1 72.0

Ours 50.6 65.9 75.3 85.1 94.4

Figure 5: Sensitivity analysis of reference image selection.

4.3. Ablation Studies

Multi-scale SPHist. We conducted three experiments on
the Div2k dataset to evaluate the effectiveness of multi-scale
SPHist: 1) following [21], the transferred ab channels of
the reference picture and the L channel of the input are
concatenated and fed into the backbone of the colorization
sub-net; 2) instead of computing the multi-scale SPHist of
the reference image, the multi-scale raw ab channels of the
reference image are used as input; 3) only a single-scale color
histogram is fused with the shallower layers of the encoder.
The results reported in Table 4 has validated the importance
and usefulness of the proposed multi-scale SPHist.
Multi-scale Similarity Maps. To validate the efficacy of
multi-scale similarity maps relative to using a single simi-
larity map, we conducted two experiments: 1) we use the
single-scale similarity map proposed in [60]; 2) no similarity
map is applied to the reference image. Table 5 reflects the
benefits brought by the use of multi-scale similarity maps.
Multi-scale RDN. To study the possible performance gains

Table 4: Ablation study of multi-scale SPHist on Div2k.
Method PSNR↑ SSIM↑ LPIPS↓

Input ab fusion 22.978 0.902 0.130
Multi-scale ab fusion 23.233 0.910 0.127
Single-scale histogram fusion 23.631 0.906 0.125
Multi-scale histogram fusion 23.952 0.925 0.120

Table 5: Ablation study of multi-scale similarity maps.
Method PSNR↑ SSIM↑ LPIPS↓

No similarity map 22.817 0.910 0.131
Single-scale similarity map 23.803 0.922 0.126
Multi-scale similarity map 23.952 0.925 0.120

Table 6: Ablation study of multi-level RDN on Pascal.
Method PSNR↑ SSIM↑ LPIPS↓

Single-level RDN 21.89 0.818 0.190
Multi-level RDN 22.22 0.828 0.186

brought by building a multi-level Residual Dense Network,
we also tried the origin RDN [68] as the backbone for old
photo restoration and tested the modified system on the
Pascal dataset [17] with degradation. The results in Table 6
show that the multi-level design significantly improve the
quality of the restored outputs.
Sensitivity to Reference Image Selection.To examine the
robustness of our model relative to the selection of reference
images, we compared the results obtained on the DIV2K
dataset using different reference pictures than the computed
“most similar” one (rank 1) to the least similar one (rank
10) among the ten selected reference pictures. As shown in
Fig. 5, the performance of Pik-Fix is robust against reference
picture selection, with only slight performance drops, viz.,
from 23.95 (rank 1) to 22.25 (rank 10) of PSNR, from 0.925
(rank 1) to 0.899 (rank 10) of SSIM, and from 0.12 (rank 1)
to 0.15 (rank 10) of LPIPS.

5. Concluding Remarks
We propose a first end-to-end trainable system called

Pik-Fix that is able to simultaneously restore and colorize
old photos. The overall system contains several subnet-
works, each designed to handle a single defect, but trained
holistically. A hierarchical restoration subnet recovers the
luminance channel from physical and capture distortions,
followed by a colorization subnet that uses space-preserving
color histograms to estimate the chroma components. Ex-
tensive experimental results show that Pik-Fix attains excel-
lent performance both visually and numerically on synthetic
and real old photo datasets, as compared with state-of-the-
art models. Moreover, we created the first publicly avail-
able real-world old photo dataset repaired by Photoshop
experts, which we hope will facilitate further research on
deep learning-based old photo restoration problems.
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