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Abstract

Visual geo-localization remains a challenging task due
to variations in the appearance and perspective among cap-
tured images. This paper introduces an efficient TransVLAD
module, which aggregates attention-based feature maps
into a discriminative and compact global descriptor. Un-
like existing methods that generate feature maps using only
convolutional neural networks (CNNs), we propose a sparse
transformer to encode global dependencies and compute
attention-based feature maps, which effectively reduces vi-
sual ambiguities that occurs in large-scale geo-localization
problems. A positional embedding mechanism is used to
learn the corresponding geometric configurations between
query and gallery images. A grouped VLAD layer is also
introduced to reduce the number of parameters, and thus
construct an efficient module. Finally, rather than only
learning from the global descriptors on entire images, we
propose a self-supervised learning method to further en-
code more information from multi-scale patches between
the query and positive gallery images. Extensive exper-
iments on three challenging large-scale datasets indicate
that our model outperforms state-of-the-art models, and has
lower computational complexity. The code is available at:
https://github.com/wacv-23/TVLAD.

1. Introduction

Visual geo-localization is an important task with a broad
range of applications in, e.g., automatic driving [14, 18]
and robot navigation [20, 26]. Given the rapid development
of deep CNNs [11, 33, 35] and vision transformers (ViTs)
[7, 25, 38], more discriminant and comprehensive feature
representation can be extracted from image data. There-
fore, image-based localization has attracted growing atten-
tion [1, 12, 17, 23, 31, 41]. In this paper, the visual geo-
localization problem is treated as an image retrieval task,
which aims to estimate the geospatial location of a query

image by matching it with a gallery of geo-tagged images.
The fundamental problem consists in learning discrim-

inative representations from images with variations in ap-
pearance and perspective [1, 12]. To address this prob-
lem, state-of-the-art methods [1, 17, 23, 41] typically utilize
CNNs with NetVLAD [1], inspired by the Vector of Locally
Aggregated Descriptors (VLAD) [19], to learn feature rep-
resentations. However, the locality assumption of the CNNs
hinders their performance in complex scenes, where there
may be visual complexities such as occlusions and tran-
sient objects (e.g. trees, cars and pedestrians). In contrast,
when visual signals are ambiguous or incomplete, the hu-
man visual system uses not only local information, but also
the global context for accurate predictions. Recent works
[9, 12] therefore, exploit ViTs [7, 25, 38] to solve image
retrieval tasks. However, ViTs perform poorly on our task
because: (1) transformers lack inductive biases of CNNs,
such as translation equivariance and locality [7]; and (2) the
geo-localization datasets only have noisy GPS tags, and the
current approaches design geo-localization models through
weakly-supervised learning [1].

Motivated by the above observations, we consider retain-
ing the CNN architecture with NetVLAD [1]. However, ex-
isting methods [1, 17, 23, 41] use VGG-16 [33], which is
intractable on compact embedded or mobile devices due to
model complexity. Therefore, we adopt a lightweight CNN,
like MobileNetV3 [13] as the CNN backbone, and introduce
an efficient TransVLAD module. More specifically, our
proposed TransVLAD is composed of a transformer mod-
ule, along with a grouped VLAD layer. The transformer im-
proves global contextual reasoning, and attention-based fea-
ture maps can be produced by exploiting its self-attention
properties. This can effectively reduce visual ambiguities or
incompleteness in large-scale geo-localization tasks. More-
over, the positional embedding mechanism in transformers
enables our TransVLAD module to encode corresponding
geometric configurations between query and gallery images
during training. Considering that ViTs are computationally
intensive [7, 38, 25, 12], we propose a sparse transformer
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based on the idea of sparse attention [4]. In addition, in-
spired by [21], the efficiency of our grouped VLAD layer
is improved by decomposing high-dimensional feature vec-
tors into groups of relatively low-dimensional vectors be-
fore performing VLAD aggregation.

The other key problem lies with the geo-localization
datasets [1, 36, 37] that have noisy GPS tags, and can only
be used for training in a weakly-supervised setting. There-
fore, state-of-the-art methods [1, 17, 23, 41] use the most
similar ones in the representation space as the first-ranked
positive images. In those works, the models are trained to
force feature representations from the queries images to be
close to those from the first-ranked positive gallery images.
However, these methods are not robust enough on large-
scale datasets due to variations in appearance, and limited
information in the first-ranked positive images. Therefore,
we considered using lower-ranked positive images to pro-
vide more diverse and representative information, and train
robust models. Lower-ranked positive images may have
fewer overlapping patches with the query images, which
can result in inaccurate learning of global descriptors if only
whole images are used. To address the above issue, we pro-
pose a self-supervised learning method to encode more in-
formation from multi-scale patches between the query and
positive gallery images. Specifically, we split and merge
feature maps from the query and positive images into multi-
scale patches, and produce corresponding local descriptors
through VLAD layers. By matching the local descriptors
between the query and positive gallery images, we estimate
the multi-scale similarity scores that provide refined self-
supervisions for training. We also separate the training into
several generations to progressively learn to provide more
accurate multi-scale similarity scores.

The key contributions of this paper can be summarized
as follows. (1) An efficient TransVLAD module is in-
troduced that aggregates attention-based feature maps into
a discriminative and compact global descriptor. We pro-
pose a sparse transformer to encode global dependencies,
and employ the positional embedding mechanism to en-
code geometric configurations between query and gallery
images. For efficiency, we also introduce a grouped VLAD
layer. (2) A self-supervised learning method is proposed
to encode more information from multi-scale patches be-
tween the query and positive gallery images, rather than
only learning from the global descriptors extracted from the
whole images. (3) An extensive set of experiments on three
challenging large-scale datasets [1, 36, 37] indicating that
our proposed TransVLAD model outperforms state-of-the-
art models, with lower computational complexity.

2. Related Work
VLAD Layers. The Vector of Locally Aggregated Descrip-
tors (VLAD) [2, 19] is one of the early global image de-

scriptor to aggregate local features based on learnable se-
mantic centers. Based on the dense sampling of an im-
age grid, DenseVLAD [36] aggregates local features into
a compact feature representation. NetVLAD [1] was pro-
posed to change the original VLAD layer [19] into a learn-
able layer, which easily can be added to other network struc-
tures. For video classification, NeXtVLAD [21] decom-
poses the input features into groups to improve efficiency
by aggregating temporal information. SPE-VLAD [42] ex-
ploits the spatial pyramid structure of the images to enhance
the VLAD, which can make the feature representation re-
flect the structural information of the images. Moreover,
Patch-NetVLAD [10] is a new method that combines the
advantages of both local and global descriptors by exploit-
ing patch-level features from NetVLAD residuals. Distinct
from existing approaches only considering aggregating lo-
cal features, this paper introduces TransVLAD, which both
improves global contextual reasoning and aggregates a dis-
criminative and compact global descriptor.

Vision Transformers (ViTs). The Transformer [39] is first
model proposed for machine translation, and has developed
into saved variants that provide high performances in vari-
ous Natural Language Processing (NLP) tasks [3, 6, 29, 30].
For image classification, the ViT [7] applies a Transformer
Encoder on non-overlapping medium-sized image patches.
DeiT [38] uses knowledge distillation to effectively train the
ViT with small datasets. To use ViTs for more general-
purposes of computer vision, Swin Transformer [25] pro-
poses a hierarchical transformer which exploits shifted win-
dows to compute feature representations. For cross-view
geo-localization, L2LTR [12] proposes a self-cross atten-
tion mechanism to interact features between adjacent layers.
Given the power of ViTs in global contextual reasoning, we
propose a novel TransVLAD module by combining the ViT
and VLAD layer. Besides, this paper introduces a sparse
transformer since the ViTs are computationally intensive.

Image-Based Localization (IBL). The IBL methods can
be subdivided into two directions, the 2D image retrieval
methods [1, 12, 17, 23, 41] and 2D-3D matching methods
[22, 31, 32]. In this paper, we consider the visual geo-
localization problem as a 2D image retrieval task. With the
development of deep CNNs [11, 33, 35], features extraction
from images has become more dense. Thus, NetVLAD [1]
exploits the dense features to effectively produce a global
descriptor based on learnable semantic centers for visual
geo-localization. Based on the CNNs with NetVLAD,
several works have proposed some representation learn-
ing models to further improve the geo-localization per-
formance, such as Contextual Reweighting Network [17],
SARE loss [23] and HAF networks [41]. Since ViTs
[7, 38, 25] have attracted much attentions, recent works
[12, 9, 40] exploit ViTs instead of CNNs to deal with image
retrieval task, and achieve higher matching accuracy.
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Figure 1. Overview of training architecture. A given feature map extracted using a CNN is input to the TransVLAD module, which
aggregates attention-based feature maps into a compact global descriptor, and generates multi-scale similarity scores from local descriptors.

3. Methods

Our model is composed of a CNN backbone and the
proposed TransVLAD module (see the architecture in Fig-
ure 1). This section provides additional details of our
TransVLAD module and self-supervised learning method.

3.1. Sparse Transformer of TransVLAD

Considering that transformers are computation-intensive
and lack of the inductive biases inherent in CNNs, such as
translation invariance and locality [7], we use a CNN back-
bone to extract local features, and propose a sparse trans-
former as shown in Figure 2 to compute attention-based
feature maps. In general, the ViT receives a sequence of
1D token embeddings as input [7, 25, 38]. For the 2D fea-
ture maps, we split a feature map m ∈ RC×H×W into a
sequence of 2D patches mp ∈ RN×P 2·C , and down-sample
the patches into single pixels (vectors) xp ∈ RN×C , where
C is the number of channels, (H,W ) is the resolution of the
feature map, N = HW/P 2 is the total number of patches,
and P is the down sampling rate. Then, xp is employed as
the input embeddings.

Similar to ViT [7], we use standard learnable 1D position
embeddings xpos ∈ RN×C . The embedding mechanism
retains positional information, and lets our TransVLAD
encode corresponding geometric configurations between
query and gallery images during training. Therefore, we
can produce the resulting sequence of embedding vectors
x0 = xp + xpos, which is used as the input for the L-layer
transformer encoder.

We adopt the ViT as a background for our L-layer trans-
former encoder. Each layer consists of a multihead self-
attention (MSA) module, a multi-layer perceptron (MLP),
and Layernorm (LN) blocks. For the MSA module, which
can effectively reduce visual ambiguities or incompleteness
in large-scale geo-localization, we use the self-cross atten-
tion mechanism in L2LTR [12] to transfer features between
adjacent layers. xl−1 represents the input sequence of layer
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Figure 2. Sparse transformer of the proposed TransVLAD. the fea-
ture map using a CNN is split into uniform patches, which are
down-sampled into single pixels (vectors). A position embedding
is assigned to each vector, and then the sequence of vectors is fed
to a transformer encoder. The output sequence of vectors are up-
sampled and added with the input patches, and then merged into
an attention-based feature map.

l, where l ∈ {1, 2, · · · , L}, and a single self-cross attention
head is formulated as follows:

zl = LN(xl−1), zl−1 = LN(xl−2), (1)

Ql = zlWq
l , Kl = zl−1Wk

l , Vl = zlWv
l , (2)

Al = softmax(QlKT
l√

D
)Vl. (3)

where Wq
l , Wk

l and Wv
l are linear projection matrices.

Our sparse transformer can be expressed as:

xp = DSL(mp), x0 = xp + xpos, (4)

z′l = MSA(LN(zl−1), LN(zl−2)) + zl−1, z0 = x0 (5)

zl = MLP(LN(z′l)) + z′l, l = 1, 2, · · · , L (6)

xout = LN(zL), mout = mp + USL(xout). (7)

where DSL refers to the down sampling layer, which is av-
erage pooling. USL represents the up sampling layer, which
is depthwise separable transposed convolution. The MLP is
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Figure 3. Grouped VLAD layer of our TransVLAD module. It
is composed of standard neural networks (fully-connected layer,
convolution layer) and a VLAD core layer to perform aggregation
as illustrated in Eq. (8). The main parameters for the layers are
shown in brackets.

used to alleviate the rank collapse issue. It contains two
linear layers, and a GELU non-linearity activation layer be-
tween the two layers. LN blocks are utilized before MSA
modules, MLP, and residual connections.

Finally the output sequence mout is merged back into an
attention-based feature map ma ∈ RC×H×W .

3.2. Grouped VLAD of TransVLAD

The original NetVLAD [1] utilizes the VLAD layer to
generate a compact global descriptor of an image by aggre-
gating the local feature maps extracted from CNNs. How-
ever, the dimension of global descriptors is usually high for
image retrieval tasks, and a PCA layer with whitening [15]
is added to convert it to an appropriate dimension N

′
, which

needs hundreds of millions parameters. For instance, a
NetVLAD layer with 64 clusters will encode a feature map
of 1024 dimensions as a 65536-dimensional vector. A PCA
layer with 4096-dimensional outputs will result in about
268M parameters, making the model intractable on com-
pact devices with limited resources. To alleviate this prob-
lem, we decompose these high-dimensional input feature
vectors into groups of relatively low-dimensional vectors
before VLAD aggregation to reduce the output dimension
of the VLAD layer. In addition, we introduce a grouped
weight β̄ to maintain the non-linearity of the VLAD layer.

The architecture of the grouped VLAD layer of our
TransVLAD module is shown in Figure 3. Specifically, the
input attention-based feature map ma ∈ RC×H×W is rep-
resented as D

′
(D

′
= HW ) C-dimensional local image

descriptors. The descriptor vectors are first expanded to λ
times through a fully-connected layer. Then the dimension
of high-dimensional vectors {x̂i} are divided into G groups.
The lower-dimensional descriptor vectors are represented as
{x̂gi}, g = 1, · · · , G, i = 1, · · · , D′

. Given K cluster cen-
ters {ck} as the parameters of the VLAD core layer, the
output global descriptor V is λC

G × K-dimensional vector.
To simplify the expression, V is converted to an λC

G × K

size matrix, and the element (j, k) of V is calculated as:

V (j, k) =
∑G

g=1

∑D
′

i=1 ᾱk(x̂gi)β̄g(x̂i)(x̂gi(j)− ck(j)),
(8)

where x̂gi(j) and ck(j) are the j-th dimension of descriptor
x̂gi and cluster k respectively. The proximity measurement
of the lower-dimensional vector x̂gi with the cluster centre
ck is composed of two parts:

ᾱk(x̂gi) =
e

wT
gk x̂gi+bgk∑K

k′=1
e

wT
gk′ x̂gi+b

gk′
, (9)

β̄g(x̂i) = σ(wT
g x̂i + bg). (10)

where σ(·) represents a sigmoid function with output from
0 to 1. Similar to the original NetVLAD, our grouped
VLAD layer aggregates the first-order statistics of residuals
(x̂gi(j)− ck(j)) in different parts of the feature descriptors
weighted by ᾱk(x̂gi) and β̄g(x̂i). The first part ᾱk(x̂gi) is
the soft-assignment of descriptor x̂gi to cluster k, while the
second part β̄g(x̂i) is a weight coefficient on all groups.

Then, the matrix V obtained via Intra-Normalization [2]
is converted into a λC

G ×K-dimensional vector, and finally
L2-normalized as a global descriptor. The dimension of
global descriptors is finally converted to an appropriate di-
mension N

′
through a PCA layer. The number of parame-

ters in our grouped VLAD layer with a PCA layer is about
λ
G times smaller than that of vanilla NetVLAD.

3.3. Self-supervised Learning Method

State-of-the-art models [1, 17, 23, 41] only utilize the
first-ranked positive images for the most similar ones in rep-
resentation space as the positive training samples. We pro-
pose a self-supervised learning method to further encode
more representative information from multi-scale patches
between the query and lower-ranked positive gallery im-
ages. This is used to train our TransVLAD module
with a CNN backbone. Given one query image q and
one lower-ranked positive image p1, we get the corre-
sponding attention-based feature maps {mθ0

q ,mθ0
p1}, where

θ0 is the parameters of the initial network. To achieve
multi-scale patches, we split and merge the feature maps
{mθ0

q ,mθ0
p1} as shown in Figure 4. Then, the feature maps

{mθ0
q ,mθ0

q1 , · · · ,mθ0
q20 ,mθ0

p1 ,mθ0
p1
1
, · · · ,mθ0

p1
20
} are fed into

the grouped VLAD layer to get corresponding global and
local descriptors {fθ0

q , fθ0
q1 , · · · , f

θ0
q20 , f

θ0
p1 , f

θ0
p1
1
, · · · , fθ0

p1
20
}.

Given one query image q and top-k lower-ranked positive
images {p1, · · · , pk}, the multi-scale similarity scores is es-
timated as follows:

Rθ0(τ0) = softmax([⟨fθ0
q , fθ0

p1 ⟩/τ0, ⟨fθ0
q , fθ0

p1
1
⟩/τ0, · · · ,

⟨fθ0
q , fθ0

p1
20
⟩/τ0, · · · , ⟨fθ0

q1 , f
θ0
p1 ⟩/τ0, · · · , ⟨fθ0

q1 , f
θ0
p1
20
⟩/τ0,

· · · , ⟨fθ0
q20 , f

θ0
p1 ⟩/τ0, ⟨fθ0

q20 , f
θ0
p1
1
⟩/τ0, · · · , ⟨fθ0

q20 , f
θ0
p1
20
⟩/τ0]),

(11)
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Figure 4. The splitting and merging of feature maps to produce
multi-scale patches. The feature maps of these patches are fed to
the grouped VLAD layer to generate corresponding descriptors.
Cross-matching of these local descriptors are performed across
query and gallery images to compute multi-scale similarity scores.
We show part of the results in this figure. Green lines indicate high
similarity scores, while red lines indicate low ones.

where ⟨·, ·⟩ represents the inner product between two fea-
ture vectors. τ0 is the temperature hyper-parameter which
controls the smoothness of the multi-scale similarity scores
Rθ0 in the initial network.

The multi-scale similarity scores Rθ0 estimated by the
initial network are used to supervise the 1st generation net-
work through a cross-entropy loss. Thus, the multi-scale
similarity loss is expressed as:

Lθ1
s (q, p1, · · · , pk) = ℓce(Rθ1(1),Rθ0(τ0)). (12)

where ℓce represents the cross-entropy loss, which is given
by ℓce(y, ŷ) = −

∑
i ŷ(i) log(y(i)). θ1 and θ0 are the pa-

rameters of the 1st generation and initial networks respec-
tively. Note that only the target similarity vector Rθ0 adopts
the temperature hyper-parameter to control its smoothness.

We separate the training into ω generations to progres-
sively provide more accurate multi-scale similarity scores
for training more discriminative global descriptors. The
similarity vector Rθν is distributed equally with a larger
τν , ν = 0, · · · , ω, which means the multi-scale similarity
loss Lθν

s focuses on a large number of lower-ranked posi-
tive images. Therefore, the temperature τν is set to be rel-
atively large in early generations given the lower accuracy
of the multi-scale similarity scores. As the similarity scores
in later generations will be more accurate, the multi-scale
similarity loss Lθν

s is pushed to focus on a small number of
true positive patches by reducing the temperature τν .

Similar to the recent visual geo-localization methods
[1, 17, 23], we use a base loss to supervise the network by
feeding triplets. Each triplet consists of a single query im-
age q, its first-ranked positive image p∗ and several high-
ranked negative images {ni|Mi=1}. The rank of the posi-
tive or negative images is based on the distances between
the global descriptor vectors aggregated by our TransVLAD

module. Therefore, the vanilla triplet loss written as:

Lθ
t0(q, p

∗, n) =

M∑
i=1

max(0, ||fθ
q −fθ

p∗ ||22−||fθ
q −fθ

ni
||22+ϵ),

(13)
where ϵ is the minimum offset between distances of similar
versus dissimilar pairs. As in [41], p∗ is the first-ranked
gallery image within 10 meters of the query q. {ni|Mi=1} are
randomly selected from the top-500 gallery images more
than 25 meters away from the query q.

The above triplet loss can be used to optimize our
TransVLAD module with a CNN backbone. However, it
is not very robust, and relies greatly in the accurate choice
of negative images to improve performance. Therefore, we
exploit a softmax-based triplet loss [23] to better maximize
the ratio between the most similar pair and several dissimi-
lar pairs. We can write this assumption as follows:

Lθ
t (q, p

∗, n) = −
∑M

i=1 log
exp⟨fθ

q ,f
θ
p∗ ⟩

exp⟨fθ
q ,f

θ
p∗ ⟩+exp⟨fθ

q ,f
θ
ni

⟩ ,

(14)
Therefore, our TransVLAD module with a CNN backbone
is supervised by both softmax-based triplet loss, and the
multi-scale similarity loss. The total loss in each genera-
tion is expressed as:

Lθν
total = Lθν

t (q, p∗, n) + λsL
θν
s (q, p1, · · · , pk). (15)

where θν is the parameters of the ν-th generation network,
and λs is the loss weighting factor.

4. Experiments
In this section, we present and discuss the experimental

results obtained when applying our proposed TransVLAD
module on challenging geo-localization and image retrieval
datasets. Its performance is evaluated and compared against
related state-of-the-art methods.

4.1. Datasets

The TransVLAD is evaluted on three challenging geo-
localization benchmarks – the Pitts30k/250k-test [37],
TokyoTM-val [1], and Tokyo 24/7 [36] – which only have
GPS tags. These datasets contain changeable appearances
and perspectives of the actual images. Testing is performed
on these datasets in their recommended configuration. In
addition, the generalization ability of our model is evaluated
on three standard image retrieval benchmarks – the Oxford
5K [27], Paris 6K [28] and Holidays [16].

4.2. Implementation Details

The proposed TransVLAD module was implemented in
PyTorch. In our experiments, all the networks are trained on
the Pitts30k-train [37], the same dataset as the other works
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Table 1. Complexity and accuracy of the proposed and state-of-art models on Pitts30k/250k-test, TokyoTM-val, and Tokyo 24/7 datasets.

Method Model Complexity Pitts30k-test Pitts250k-test TokyoTM-val Tokyo 24/7
Parmas(M) FLOPs(G) R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

NetVLAD [1] 148.97 94.35 85.6 92.9 94.9 86.0 93.2 95.1 93.9 96.8 97.6 73.3 82.9 86.0
CRN [17] 148.97 94.35 - - - 85.5 93.5 95.5 - - - 75.2 83.8 87.3
SARE [23] 148.97 94.35 - - - 89.0 95.5 96.8 94.5 96.7 97.3 79.7 86.7 90.5
HAF [41] 158.87 1791.27 - - - 89.4 95.8 97.1 94.8 97.8 98.2 78.2 84.4 87.8
Patch-NetVLAD [10] 148.97 94.22 88.7 94.5 95.9 89.8 95.9 97.0 95.2 97.8 98.3 86.0 88.6 90.5
Ours-VGG16 84.74 95.60 89.3 94.5 96.0 91.1 96.3 97.5 96.0 98.3 98.8 85.4 89.8 91.7
Ours-MobileNetV3 80.14 7.91 89.1 94.9 96.1 90.7 96.2 97.4 95.4 98.0 98.7 83.5 90.5 92.1

[1, 17, 23, 41, 10], and tested on several other datasets
[37, 1, 36, 27, 28, 16]. For the evaluation and compar-
ison, our TransVLAD was trained with a minor-modified
MobileNetV3 [13] CNN backbone. Specifically, we use the
ImageNet-pretrained MobileNetV3-Large as the backbone,
in which the stride of its last stride-2 convolution layer is
changed from 2 to 1, and the final channels from 960 to
1024. We also use the same VGG-16 backbone as the other
works for fair comparisons. For the sparse transformer, the
down sampling rate is set to 2. For the grouped VLAD
layer, we set λ = 2, G = 8.

Training is separated into 4 generations with 5 epochs
each. The stochastic gradient descent (SGD) algorithm is
exploited to optimize the total loss function, with learn-
ing rate = 0.0001, weight decay = 0.001 and momentum =
0.9. To achieve better hyper-parameters, we perform a grid
search to find the training configuration that performs best
on the Pitts30k-val dataset. We set the loss weighting factor
λs = 0.5 and temperatures τν = 0.04 ∼ 0.07.

4.3. Comparison with the State-of-Art

To assess the performance of our model, we compare
it with five state-of-the-art models for the geo-localization
task: NetVLAD [1], CRN [17], SARE [23], HAF [41] and
Patch-NetVLAD [10]. For fair comparisons, we also set the
number of clusters K = 64, and use the 4096-dimensional
global descriptors to perform image retrieval.
Geo-localization Benchmarks. Table 1 shows experimen-
tal results comparing our models with others on both the
model complexity and the precision-recall on the three geo-
localization datasets. The number of model parameters con-
sists of parameters in the backbone, VLAD layers, and a
PCA layer with whitening. The floating-point operations
per second (FLOPs) is calculated by the input image size
(640, 480) during testing. The top-k recall is the percentage
of successfully retrieved query images. Our model outper-
forms state-of-the-art models on almost all the benchmarks.
For example, our model with VGG-16 achieves 91.1%
rank-1 recall on Pitts250k-test dataset with an improvement
of 1.3% compared to Patch-NetVLAD. On the challenging
Tokyo 24/7 dataset, our model with VGG-16 has a robust
generalization ability and achieves 85.4% rank-1 recall, up
to 5.7% accuracy improvement against SARE. In terms of

complexity, our model with VGG-16 has about half the pa-
rameters compared to the other models with the same back-
bone. In addition, our model with MobileNetV3 has lower
model complexity, with an accuracy that is comparable to
our model with VGG-16, of which the model complexity is
as low as 80.14M parameters and 7.91G FLOPs in testing.
Image Retrieval Benchmarks. Table 2 reports our exper-
imental results in terms of mean Average Precision (mAP).
To evaluate the generalization performance, our models
are tested them on three image retrieval datasets without
any fine-tuning and compare the results with other five ap-
proaches [1, 17, 23, 41, 10]. For Oxford 5K [27] and Paris
6K [28] datasets, we test on both full and cropped query
images. For Holidays [16] dataset, we only use the origi-
nal query images for testing. ”Full” means the whole image
is directly used as a query image, while ”Crop” means the
query image only uses the landmark region of the whole im-
age. Compared to others, our model with VGG-16 shows
good generalization ability, and outperforms the second-
best Patch-NetVLAD with 0.5% to 1.1% improvements on
all three datasets. In addition, our model with MobileNetV3
also has good generalization ability and performs compara-
bly to our model with VGG-16. On the Holidays dataset,
our model with VGG-16 performs lower than NetVLAD
since Pitts30k-train dataset lacks images with natural scenes
like those in Holidays dataset.

4.4. Qualitative Evaluation

Figure 5 shows the the top-1 retrieval gallery images,
and the attention maps of query images by our model with
VGG-16, SARE, and NetVLAD on challenging Tokyo 24/7
dataset. The results show the performance of our model

Table 2. Mean Average Precision (mAP) of our proposed and state-
of-art methods on image retrieval datasets.

Method Oxford 5K Paris 6K Holidaysfull crop full crop
NetVLAD [1] 69.1 71.6 78.5 79.7 83.1
CRN [17] 69.2 - - - -
SARE [23] 71.7 75.5 82.0 81.1 80.7
HAF [41] 71.9 75.8 82.3 81.5 81.4
Patch-NetVLAD [10] 72.1 75.9 82.1 81.8 81.7
Ours-VGG16 73.2 76.4 82.8 82.3 82.5
Ours-MobileNetV3 72.8 76.2 82.5 82.1 82.2
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Query Image Our-AttentionMap SARE-AttentionMap NetVLAD-AttentionMap Our-Top1 SARE-Top1 NetVLAD-Top1

Figure 5. Examples of challenging cases for retrieval results from the Tokyo 24/7 dataset. The attention maps of query images are generated
to show the regions where the models focus. We compare the attention maps and the top-1 retrieved gallery images. Green and red borders
indicate correct and incorrect retrieval results, respectively. (Best viewed in color.)

Table 3. Ablation studies with our TransVLAD module and self-supervised learning (SSL) method on the Pitts250k-test and Tokyo 24/7
datasets. Note that G-TransVLAD refers to the proposed TransVLAD module, while V-TransVLAD refers to the TransVLAD module with
the vanilla NetVLAD. S-Triplet refers to the softmax-base triplet loss while V-Triplet means the vanilla triplet loss.

Method Pitts250k-test Tokyo 24/7
R@1 R@5 R@10 R@1 R@5 R@10

Baseline (VGG16 + NetVLAD + V-Triplet) 86.5 93.9 95.8 75.3 83.9 87.4
Ours (VGG16 + V-TransVLAD + V-Triplet) 87.4 94.4 96.1 77.2 84.9 88.5
Ours (VGG16 + G-TransVLAD + V-Triplet) 87.3 94.6 96.4 77.4 85.2 88.7
Baseline (VGG16 + NetVLAD + S-Triplet) 89.0 95.5 96.8 79.7 86.7 90.5
Ours (VGG16 + V-TransVLAD + S-Triplet) 90.0 95.8 96.8 80.9 87.9 90.9
Ours (VGG16 + G-TransVLAD + S-Triplet) 89.8 95.7 96.9 81.2 88.3 91.0
Ours (VGG16 + NetVLAD + SSL) 90.1 95.9 97.1 82.1 89.0 91.5
Ours (VGG16 + V-TransVLAD + SSL) 90.8 96.2 97.5 83.4 89.5 91.5
Ours (VGG16 + G-TransVLAD + SSL) 91.1 96.3 97.5 85.4 89.8 91.7
Ours (MobileNetV3 + NetVLAD + S-Triplet) 86.8 94.4 96.0 76.7 84.3 88.3
Ours (MobileNetV3 + G-TransVLAD + S-Triplet) 87.7 94.7 96.5 77.8 85.5 89.1
Ours (MobileNetV3 + NetVLAD + SSL) 89.3 95.4 96.8 81.3 88.1 90.9
Ours (MobileNetV3 + G-TransVLAD + SSL) 90.7 96.2 97.4 83.5 90.5 92.1

with VGG-16 on the geo-localization datasets with com-
plex environments and variable lighting conditions. We use
the feature maps before the grouped VLAD layer and adopt
the method in [34] to generate the attention maps.

From the results of three difficult query images, our
model with VGG-16 is shown to focus on the discrimina-
tive regions (e.g. buildings, signs), while the other two mod-
els incorrectly focus on changeable objects (e.g. trees, cars,
pedestrians and light). This misdirection by changeable ob-
jects results in false retrieval results, since the objects may
shift or vanish from the right gallery images, or appear in
the incorrect gallery images. Therefore, our model with
VGG-16 appears to pay more attention to the discrimina-
tive landmarks rather than changeable objects.

4.5. Ablation Studies

To verify the effectiveness of our TransVLAD module
and self-supervised learning (SSL) method, we use the net-
works (VGG-16 + NetVLAD) and the results of the SARE

as the baseline, and perform ablation studies by compar-
ing different methods on models with both VGG-16 and
MobileNetV3 backbones. For fair comparisons, all models
have K = 64 clustering centers and use 4096-dimensional
global descriptors to perform image retrieval.

The ablation studies on Pitts250k-test and Tokyo 24/7
datasets are reported in Table 3. From the results, we can
draw the following conclusions.
Softmax-based Triplet Loss is more robust than the vanilla
triplet loss and can better help the model to converge. For
example, exploiting the softmax-based triplet loss improves
the R@1 performance of the SARE from 86.5% to 89.0%
on Pitts250k-test dataset and achieves 4.4% improvement at
R@1 on Tokyo 24/7 dataset.
TransVLAD Module can improve global contextual rea-
soning and enable the model to encode corresponding ge-
ometric configurations between query and gallery images.
In particular, using TransVLAD module to replace the
NetVLAD improves the R@1 performance of our model
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from 90.1% to 91.1% on Pitts250k-test dataset and achieves
3.3% improvement at R@1 on Tokyo 24/7 dataset.
Grouped VLAD provides marginally higher accuracy than
the vanilla NetVLAD while the total number of parameters
is about four times (as mentioned in Section 3.2) smaller
than that of NetVLAD.
Self-supervised Learning Method can effectively exploit
the potential of lower-ranked positive images, and incite
the model to encode more accurate information from multi-
scale patches between the query and positive gallery im-
ages. Specifically, adopting our SSL method improves the
R@1 performance of the SARE from 89.0% to 90.1% on
Pitts250k-test dataset and achieves 2.4% improvement at
R@1 on Tokyo 24/7 dataset. In addition, our TransVLAD
module and SSL method are also effective in the models
with MobileNetV3.

Table 4. Ablation studies with different down sampling methods
in the sparse transformer module.

Method Pitts250k-test Tokyo 24/7
R@1 R@5 R@10 R@1 R@5 R@10

Avg Pooling 91.1 96.3 97.5 85.4 89.8 91.7
Max Pooling 91.0 96.4 97.4 85.0 89.4 91.4
Center Pooling 90.7 96.1 97.4 84.5 89.0 91.3

We also perform ablation studies with different down
sampling methods in the sparse transformer module. We
use our model with VGG-16 and test on Pitts250k-test and
Tokyo 24/7 datasets. Table 4 shows that our model with
average pooling achieves the highest level of accuracy.

Query Image Feature Map Attention-based 
Feature Map

Figure 6. Comparison of feature maps and attention-based feature
maps from the query images of Pitts30k/250k-test datasets.

To show the impact of the TransVLAD module on global
contextual reasoning, we compare the feature maps ver-
sus attention-based feature maps from the query images in
Pitts30k/250k-test. As shown in Figure 6, feature maps ex-
tracted by the VGG-16, and attention-based feature maps
are the output of the sparse transformer of our TransVLAD
module. Results show that attention-based feature maps pay
more attention to the global information of a landmark.

(a) DFM with our backbone (b) DFM (c) GIFT (d) Superpoint

Figure 7. Qualitative matching results of four models. The correct
matches are drawn in green lines.

4.6. Generalization on Matching Keypoints

To further assess the performance of our network (VGG-
16 + sparse transformer of our TransVLAD module) trained
by proposed self-supervised learning method, we adopt the
DFM [8] and replace the VGG-16 backbone with our net-
work trained on Pitts30k-train dataset for feature extrac-
tion. Apart from the backbone, we do not fine-tuning the
DFM to improve matching. As shown in Figure 7, we es-
timate matching results on both day and night image pairs
and compare them with the results of three state-of-the-art
models – DFM, GIFT [24], and Superpoint [5]. The results
show that DFM with our CNN backbone generates more
dense and accurate matching in comparison with the other
three models, which can attest to the stronger generalization
ability of our network.

5. Conclusions

In this paper, a novel TransVLAD module is introduced
for aggregating local features into a discriminative and
compact global descriptor. A sparse transformer is pro-
posed, and high-dimensional feature vectors are decom-
posed into groups of relatively low-dimensional vectors be-
fore performing VLAD aggregation to construct an effi-
cient module. Finally, a self-supervised learning method is
proposed to further encode more information from multi-
scale patches between the query and lower-ranked posi-
tive gallery images. We evaluated our model on both geo-
localization and image retrieval benchmarks. Experimental
results indicate that our model can achieve higher accuracy
and efficiency compare to related state-of-art methods.
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[15] Hervé Jégou and Ondřej Chum. Negative evidences and co-
occurences in image retrieval: The benefit of pca and whiten-
ing. In Eur. Conf. Comput. Vis., 2012.

[16] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Ham-
ming embedding and weak geometric consistency for large

scale image search. In Eur. Conf. Comput. Vis., pages 304–
317, 2008.

[17] Hyo Jin Kim, Enrique Dunn, and Jan-Michael Frahm.
Learned contextual feature reweighting for image geo-
localization. In IEEE Conf. Comput. Vis. Pattern Recog.,
2017.

[18] Youngran Jo, Jinbeum Jang, and Joonki Paik. Camera ori-
entation estimation using motion based vanishing point de-
tection for automatic driving assistance system. In IEEE Int.
Conf. Consum. Electron., pages 1–2, 2018.
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Pérez. Aggregating local descriptors into a compact image
representation. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 3304–3311, 2010.

[20] Ahmad Khaliq, Shoaib Ehsan, Zetao Chen, Michael Milford,
and Klaus McDonald-Maier. A holistic visual place recog-
nition approach using lightweight cnns for significant view-
point and appearance changes. IEEE Trans. Robot., pages
561–569, 2020.

[21] Rongcheng Lin, Jing Xiao, and Jianping Fan. Nextvlad: An
efficient neural network to aggregate frame-level features for
large-scale video classification. In Eur. Conf. Comput. Vis.
Workshops, 2018.

[22] Liu Liu, Hongdong Li, and Yuchao Dai. Efficient global 2d-
3d matching for camera localization in a large-scale 3d map.
In Int. Conf. Comput. Vis., 2017.

[23] Liu Liu, Hongdong Li, and Yuchao Dai. Stochastic
attraction-repulsion embedding for large scale image local-
ization. In Int. Conf. Comput. Vis., 2019.

[24] Yuan Liu, Zehong Shen, Zhixuan Lin, Sida Peng, Hujun Bao,
and Xiaowei Zhou. Gift: Learning transformation-invariant
dense visual descriptors via group cnns. In Adv. Neural In-
form. Process. Syst., 2019.

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Int. Conf. Comput. Vis., pages 10012–10022, 2021.
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