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Abstract

To improve the generalization of 3D human pose estima-
tors, many existing deep learning based models focus on
adding different augmentations to training poses. However,
data augmentation techniques are limited to the “seen”
pose combinations and hard to infer poses with rare “un-
seen” joint positions. To address this problem, we present
CameraPose, a weakly-supervised framework for 3D hu-
man pose estimation from a single image, which can not
only be applied on 2D-3D pose pairs but also on 2D alone
annotations. By adding a camera parameter branch, any
in-the-wild 2D annotations can be fed into our pipeline
to boost the training diversity and the 3D poses can be
implicitly learned by reprojecting back to 2D. Moreover,
CameraPose introduces a refinement network module with
confidence-guided loss to further improve the quality of
noisy 2D keypoints extracted by 2D pose estimators. Ex-
perimental results demonstrate that the CameraPose brings
in clear improvements on cross-scenario datasets. Notably,
it outperforms the baseline method by 3mm on the most
challenging dataset 3DPW. In addition, by combining our
proposed refinement network module with existing 3D pose
estimators, their performance can be improved in cross-
scenario evaluation.

1. Introduction

Human pose estimation (HPE) is a task to predict the
configuration of a particular set of human body parts from
some visual input such as images or videos. Depending on
the output format, it can be further divided into 2D and 3D
HPE, respectively. Different from the 2D HPE that pre-
dicts the human keypoints with x,y coordinates, the 3D
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Figure 1. Training data expansion overview. Data augmentation
on existing 2D poses can improve the diversity of training to some
extend. By taking advantage of in-the-wild 2D annotations, more
rare but challenging poses can be utilized to further improve the
model generalization.
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HPE regresses z,y, z which can be more helpful to solve
difficult tasks, such as action and motion prediction[3, 7],
posture and gesture recognition [14, 22], augmented real-
ity and virtual reality [10, 12], healthcare [6, 19]. Although
deep learning based methods have boosted the performance
of 3D HPE [23, 24, 27, 28, 37], the error will typically in-
crease to around two times from Human3.6M [15] to 3DHP
[24] for cross-dataset scenario due to the poor model gener-
alization [11].
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Table 1. MPJPE on Human3.6M using different source of 2D key-
points source: HRNet and ground-truth.

3D Pose Estimator H?li/[n;?;gM
2D Keypoints Source  HRNet  Ground-truth
Zhao et al. [36] 57.5 44 .4
Martinez et al. [23] 53.0 433
Pavllo et al. [28] 52.2 41.8

Recent works argue that poor model generalization
can be mitigated by increasing the variance in training
data. Therefore, many augmentation-related algorithms
have been proposed to improve the 3D HPE accuracy. How-
ever, no matter it is image-based augmentation [31, 25],
synthetic-based augmentation [5, 34], predefined transfor-
mation [20] or GAN-based augmentation [11], the vari-
ances added to the training data is still limited to the orig-
inal 2D-3D pair. Figure 1 shows examples of augmented
2D-3D pairs with different algorithms. We can observe that
the generated new pair 2D-3D cannot provide pose changes
(lying to sitting etc.). Due to the limitation in the training
data, the scenes or scenario are still relatively simple to the
in-the-wild environment, which hinder the real-world appli-
cation of these algorithms.

Different from the existing methods that rely on data
augmentation for training data expansion, we proposed a
novel weakly-supervised framework, CameraPose, to im-
prove model generalization on 3D HPE by taking advantage
of plentiful 2D annotations. Compared to the expensive 3D
annotations, 2D annotations are less expensive, and many
challenging 2D datasets [21, 1, 17] containing rich actions,
poses, and scenes are available in the literature. The pro-
posed CameraPose network can combine any existing 2D
or 3D datasets in a single framework by adding a camera
parameter estimation branch. Our approach also integrated
the GAN-base pose augmentation framework to improve
the training data diversity and ensure the camera branch’s
generalization.

Existing 3D HPE networks usually directly use 2D key-
points from some pre-trained detectors as input to train 3D
joints. However, inferred 2D keypoints will lead to the sit-
uation illustrated in Fig.2. The errors from the 2D joints
estimation step will generate 3D prediction errors on some
keypoints. In addition, augmentation on inaccurate 2D key-
points will further enlarge the errors in 3D joints. As shown
in Table 1, the ground-truth inputs significantly boosted
the accuracy in all testing cases with different pose estima-
tors. Therefore, it is necessary to improve the 2D keypoints
before feeding them into our 3D estimator network. To mit-
igate the error in 2D input, we propose to incorporate a re-
finement network that aims to infer better 2D joints based
on the positions and confidence scores of detected 2D joints.

Our contributions are three-fold: 1) We propose a camera
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Figure 2. Example of feeding different source of 2D joints predic-
tion into the same 3D lifting network. Due to the inaccurate right

elbow prediction from the HRNet, the errors from the same key-
point will be enlarged in the 3D poses.

parameter branch that will generate per-instance camera pa-
rameter inference so that any existing 2D keypoints datasets
(without 3D labeling) can be utilized in model training. 2)
We propose a Refinement Network to improve the accuracy
of 2D joints, which can be helpful in the GAN-based aug-
mentation stage, as well as the final 3D joints predictions.
3) We introduce the reprojection loss, confidence-guided re-
finement loss, together with the camera loss in the loss de-
sign to make the network differentiable.

2. Related Works

Fully-Supervised 3D HPE. There are a lot of papers and
research that use the 2D-3D annotation pairs for fully-
supervised training manner. For example, Tekin et al. [32]
directly regress the 3D human pose from a spatio-temporal
volume of bounding boxes, and Martinez et al. [23] regress
the 3D human pose from a naive MLP using 2D keypoints
as input and 3D keypoints as output.

On similar datasets, these end-to-end methods often per-
form very well. Their capacity to generalize to different
settings, on the other hand, is restricted. Many studies
use cross dataset training or data augmentation to address
this issue [31, 25, 5, 34]. Most recently, Li et al. [20]
directly augment 2D-3D pose pairs by randomly apply-
ing partial skeleton recombination and joint angle pertur-
bation on source datasets. Then Gong et al. [11] used a
generative-based model to manipulate the transformation of
3D ground-truth and then do the reprojection back to image
space to get the corresponding 2D keypoints. This can be
trained along with the 3D lifting network and some discrim-
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Figure 3. Overall framework of our proposed CameraPose.

It consisted of three main parts:

2D Reprojection Loss

(1) RefineNet, (2) Pose Genera-

tor/Discriminator, and (3) Weakly-Supervised Reprojection Camera Branch. When trained with 2D-3D annotated datasets, all of the
loss will be used while with 2D only datasets, only the 2D projection loss will be considered to update the weights.

inators to ensure the augmented poses are realistic and in-
crease the diversity of the training dataset. While effective,
the major downside of all supervised approaches is that they
do not generalize well to unseen poses. Therefore, their ap-
plication to in-the-wild scenes is limited.

Some even use a portion amount of dataset to do the

training for human pose estimation through methods like
transfer learning [24, 8, 33]. As they all try to mixed 2D
pose from in the wild images and 3D poses from laboratory
settings to learn the deep features through shared represen-
tation. These methods generalize better to unseen poses be-
cause they learn distributions of realistic 3D postures and
their characteristics. They can recreate out-of-distribution
positions to a degree, but they have trouble with entirely
undetected poses.
Weakly-Supervised 3D HPE. Some approaches use un-
paired 2D-3D annotations to get some 3D priors or basis to
do the 3D human pose estimation from a monocular cam-
era. Drover et al. [9] proposed a random projection layer
that randomly projects the predicted 3D poses back into
2D poses, and then feeds into a discriminator. Chen et al.
[4] introduced cycle consistency loss into [9] extending the
training with a step of lifting the projected 2D pose once
again into 3D pose. Habibie et al. [13] designed an archi-
tecture that comprises an encoding of explicit 2D and 3D
features, and uses supervision by a separately learned pro-
jection model from the predicted 3D pose. H owever, the
gap between supervised algorithms and unsupervised algo-
rithms can be large on some challenging datasets.

Recently, there has been some works that used multi-
view constrain for the 3D joints prediction. Rochette et
al. [30] using mutli-view consistency by moving the stereo
reconstruction problem into the loss. Kocabas et al. [18]
proposed another multi-view approach by applying epipo-
lar geometry to predicted 2D pose under different views

to construct the pseudo-ground-truth for training. Igbal et
al. [16] proposed a end-to-end learning framework adopt-
ing a 2.5D pose representation without any 3D annotations.
Wandt et al. [35] then proposed a self-supervised method
that requires no prior knowledge about the scene, 3D skele-
ton, or camera calibration and also introduced the 2D joint
confidences into the 3D lifting pipeline. However, these al-
gorithms are hard to be applied on single-view or in-the-
wild predictions due to their multi-view pipeline design.
HPE with Data Augmentation. As we mentioned in the
introduction, data augmentation can help the model general-
ization ability by enlarging the training data [31, 25, 5, 34].
Most recently, Li et al. [20] directly augment 2D-3D pose
pairs by randomly applying partial skeleton recombination
and joint angle perturbation on source datasets. Then Gong
etal. [11] used a generative-based model to manipulate the
transformation of 3D ground-truth then do the reprojection
back to image space to get the corresponding 2D keypoints.
This can be trained along with the 3D lifting network and
some discriminators to ensure the augmented poses are re-
alistic and increase the diversity of the training dataset.

3. Proposed Method

The CameraPose network consisted of three main parts:
(1) Refinement Network, (2) Pose Generator/Discriminator,
and (3) Weakly-Supervised Camera Parameter Branch. Fig-
ure 3 summarizes our CameraPose architecture design.

Let # € R2*Nv denotes the 2D keypoints and X €
R3*N denotes the corresponding 3D joint position in the
camera coordinate system with [V represents the number
of joints in the framework. Our proposed network will train
on two different cases of datasets: (1) 2D-3D annotated
dataset ¢ = (z,X) ,and (2) 2D annotations only dataset
¢’ = (2', —) by optimizing the following equation:

2926



GSgier:Ef ‘C¢’ (PGBD (Reref (I))7 ¢> +£¢/ (PQBD (Reref (‘r/))7 ¢/>
ey

where 03p and 0, represent the weights of our 3D lift-
ing model and refinement network. Furthermore we extend
the design of pose augmentor.A to enlarge the 2D-3D anno-
tated dataset with the augmented dataset A(¢) = (z*, X*).
Therefore our end-to-end optimization procedure will be-
come:

min max Ly (¢ U A(@)) + Ly (¢'). 2)

03D ,0rcs 0a

Table 2. Mathematical notations used in the equations.

Notation Description
Ny number of joints used
Ng number of samples in the batch
o} datasets with 2D-3D annotations
¢’ datasets with 2D annotations only
oy datasets generated by the pose generator
(z,X) ground-truth 2D-3D annotations from ¢
(2, -) ground-truth 2D annotations from ¢’
(x*,X*) augmented 2D-3D annotations from ¢
X predicted 3D poses from 3D lifting network
3.1. Refinement Network

Instead of refining on the original noisy 2D keypoints,
we utilize the confidence score combined with the 2D (z, y)
coordinates as input to the refinement network. We first nor-
malize the coordinates of keypoints to (—1, 1) with respect
to the input image height and width. We also normalized
the confidence scores to a comparable scale by Eq. 3:

’ Cij
7 ICG L
where || - ||; denotes for L1 norm and C; stands for the all

the heatmaps in the i-th training sample while ¢;; stands for
the maximum value (confidence score) on the j-th heatmap.
The normalized confidence score will be used as the weight
to compute the joint-wise mean-square error in Eq. 4.

The neural network architecture of our Refinement Net-
work is a standard residual block consisting of fully con-
nected layers with a hidden dimension of 512. The refine-
ment loss £, is formulated as:

Ns Ny

1 E:z : / ~.0\2
ref = A7 A~ ij\ig — Lig 4
[’ f NS‘NJ - - czg(xj x]) ( )

where we compute the mean-square-error over the number
of training samples Ng of the predicted poses  and nor-
malized ground-truth poses x with joint-wise normalized
confidence-weight ¢’.

Figure 4. An example of heatmap visualization. Image in the up-
per left corner is the original image overlaid with the keypoints
extracted by HRNet. All the rest images showed the overlaid
heatmaps from different keypoints. The maximum scores of each
keypoints are different and lower scores indicate lower confidence
level.

3.2. Camera Parameter Branch

In this paper, the 2D-3D pose pairs are calculated in the
camera coordinate system, so the camera parameters can be
simplified to be the intrinsic matrix M in Eq. 5 and a
3D offset t3p. For intrinsic matrix M;,,; we are essentially
predicting a 4-dimensional vector, namely fo, fy, ¢z, ¢y, the
focal lengths f,, f,, and principal center offsets c,, ¢, along
the = and y direction respectively.

) fm 0 ¢y
M™ =10 f, ¢ (3)
0 0 1

and for the 3D offset t3p we are predicting a 3-dimensional
vector:

12
tsp = ty . (6)
12

The camera parameter branch consists of 2 residual
blocks with a hidden dimension of 512, which can be
plugged in to any standard 3D pose estimators. There are
three losses that can be involved depending on the annota-
tions. The 2D reprojection loss Lop as shown in Eq. 7 cal-
culates the Euclidean distance between the reprojected 2D
poses and ground truth. The mean-square error (MSE) is
used in loss calculation for both the camera parameter loss
and 3D inference loss as shown in Egs. 8 and 9 respectively.

N N
1 A N N
N DD (Mt (X + tap,) — i), ()

J

Lop,y =

Leam = ||M™ — Mnt||2 + ||tsp — sp||2,  (8)
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where X stands for the predicted 3D pose from our 3D lift-
ing network.

Since CameraPose can work on 2D-3D pose pairs as well
as 2D alone pose estimations, the loss design can be differ-
ent according to the availability of labels. In the case of
all annotations are available during the training stage, the
camera loss can be calculated as:

£¢ = )\camﬁcam + A2D,r;b£2D,:;b + A3D£3D (10)

In the case of 2D annotation alone training step, the loss
calculation will be from 2D reprojection error:

Ly = Nap.g LoDy (11)

3.3. Pose Generator and Discriminator

Similar to the framework in [11], we utilized both gen-
erator and discriminator to further improve the diversity
in training poses. As shown in Figure 5, the generator is
plugged in to the 2D pose generation stage, and the dis-
criminator is applied on both the 2D and 3D pose inference.

The generator is actually formed by 3 simple multi-layer
perceptions that generated different parameters for 3 differ-
ent augmentation operations respectively: (1) changing the
bone angle X, (2) changing the bone length X; and (3)
changing the camera view and position of the input 3D pose
R Xy +t.

The discriminator part of the framework can be divided
into 2 portions, the Dyp and Dsp as we want to make
sure that both the augmented X* and x* formed plausible
human poses in both image coordinate and camera coor-
dinate. But in our work we not only want to ensure the
goodness of the augmented poses from the generator, we
also want to utilized the discriminator to regulated our re-
projected 2D poses for those 2D annotations only dataset
cases. The discriminators also adapt the part-aware Kine-
matic Chain Space (KCS) proposed in [11], they are fully
connected networks with a structure similar to the pose re-
gression network using the KCS representation of 2D or 3D
poses as input. Here we use the LS-GAN loss:

L3, = SE.((Dap(KCS(2)) ~ 1) (12
+SElDap(KCS({a" ahp})) = 1V?) (13
£, = SE((Dsn(KCS(X)) ~ 177 (14
+ S [(Dep (KOS(X) = 17 1s)

N os
Pose i} oo
Generator -

b= (z,X)
© ' I
. D
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Figure 5. Visualization of the pose generator and discriminator.
As we augmented from the original 2D-3D annotated dataset ¢p =
(z,X) using the 3D pose as the input to the generator which give
3 different sets of parameters vsq, Vo and (R, t) to sequentially
modified the 3D pose into our augmented dataset ¢* = (™, X™).

as the pose discrimination loss to train the generator and
discriminator.

3.4. Overall Loss

The overall framework is made differentiable and can be
trained in the end-to-end fashion. We update different mod-
ules alternatively by minimizing loss in Eq. 4, Eq. 10, Eq.
11 as well as generators and discriminators with some pre-
assigned hyper-parameters A.

Then we interactively train the entire model and update
the weights of 3D lifting network using the losses:

£¢ = )\Tef,¢£ref + )\camLcam + /\2D,¢£2D,¢ + )\SD['?)D
(16)
and

Lo = Nef ¢ Lrey + oD, L2D,g - 17)

depending on the different datasets ¢ or ¢’ we are using
for the batch. We will introduce more training details and
hyper-parameter settings in the Sec. 4.3.

4. Experiments

4.1. Datasets

For the 2D-3D paired annotations, we utilize the most
popular datasets 3D HPE dataset Human3.6M [15], 3DHP
[24] and 3DPW [33]. Both Human3.6M and 3DHP were
collected indoor in some laboratory environment through
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Table 3. Different human pose estimation datasets used in our work. The datasets in bold font are used for the training while other dataset
in italic are used for cross-dataset evaluation. The rest of the datasets will be used to visualize and serve as qualitative analysis targets.

Dataset #of Sample 2D Annotations 3D Annotations Camera Parameters
Human3.6M [15] 3.6M \% v v
MPI-INF-3DHP [24] 1.3M v v v
3DPW [33] 51k % v
Ski-Pose PTZ [29] 20k v v \'

MPII [1] 25k v
MS-COCO [21] 250k v
GT Baseline CameraPose GT Baseline CameraPose

i
7
7
1
<4
7

A

Figure 6. Qualitative comparison for the Human3.6M [15] (left), 3DHP [24] (right) and 3DPW [33] (bottom) generalization ability analysis
using the pretrained baseline [11] and our purposed method. Both the baseline and our model were trained only with Human3.6M so 3DHP
and 3DPW are considered as cross-dataset in this case. The green arrows highlight locations where the models predict differently.

the MoCap (motion capture) system [26] with multiple cal-
ibrated cameras. The 3DPW is a more challenging dataset
collected in outdoor environment using IMU (inertial mea-
surement unit) sensors with mobile phone lens.

For 2D annotations only datasets, we used MPII [1]
which contains a variety of in-the-wild everyday human ac-
tivities. Another popular 2D dataset MS-COCO [21] is
also used for qualitative analysis purposes. Although the
2D annotation dataset such as MPII is much less than Hu-
man3.6M or 3DHP in terms of sample size, these 2D anno-
tation datasets contain more challenging human poses with
different activities. Note that both Human3.6M and 3DHP
are video based datasets, so that the total number of images
is much larger than MPII and MSCOCO. We summarized
the datasets utilized in our experiments in Table 3.

4.2. Preprocessing

Different datasets have distinctive annotations on joints,
which make the model training difficult. In this paper, we
used the Human3.6M format as standard one, and inter-
preted missing joints by labeling nearby joints for other
datasets. All the joints that are not included in Human3.6M
format will be discarded.

Many existing 3D HPE algorithms use the groundtruth
as model input for evaluation. However, groundtruth is not
available in real use cases. To evaluate the model perfor-
mance on the real-world applications, we also used existing
2D detector HRNet to extract the 2D keypoints as model
input and rerun results on different datasets.

Due to the various labeling schemes or joint formats dif-
ference, we preprocess other schemes into the Human3.6M
format by simple interpolation of some related joints and re-
moval of the unused joints. For example, there is no pelvis;
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Table 4. Result on Human3.6M, 3DHP and 3DPW using the 2D ground-truth keypoints as the input in terms of MPJPE, note that we use
the same model for evaluation on all datasets to mimic cross-dataset evaluation. Best results are shown in bold font.

Method Human3.6M (MPJPE) 3DHP (MPJPE) 3DPW (PA-MPJPE)
Whadt et al. [35] 74.3 104.0 -
Rhodin et al. [29] 80.1 121.8 -
Zhao et al. [36] 44 4 97.4 -
Martinez et al. [23] 433 85.3 -
Cai et al. [2] 41.7 87.8 -
Pavllo et al. [28] 41.80 92.64 76.38
Gong et al. [11] 39.02 76.13 66.27
Ours (CameraPose) 38.87 78.85 63.26

we simply create such joint by computing the mid-point of
the left and right hip of any given label. Even though such
interpolations are not always perfect due to the nature of
each dataset, this preprocessing procedure allows us to have
a better idea and comparison on cross-dataset scenarios.

4.3. Training

CameraPose network is trained on 2 datasets: Hu-
man3.6M (2D + 3D) and MPII (2D). For the former, we
followed most 3D human pose estimation training protocols
using the subjects S1, S5, S6, S7, S8 from Human3.6M as
our 2D-3D training data, and subjects S9, S11 for evalua-
tion purposes. For the latter, we filtered and selected around
10k training samples by checking the joints annotations.
For evaluation, MPI-INF-3DHP and 3DPW were used to
get quantitative results in terms of MPJPE (mean-per-joint-
position-error) and PA-MPJPE (aligned with ground-truths
by rigid transformation).

The model training can be divided into 3 steps. The
refinement network was trained as the first step for 100
epochs with learning rate being 0.0001 and weight decay
at epochs 30, 60 and 90, respectively. Next step, the 3D
lifting network along with the pose generator and discrimi-
nator was trained using Human3.6M dataset for 10 epochs
with a learning rate of 0.0001. This step is for warm-up and
GAN tuning which can make the following model training
more stable. Finally, the model was trained in an end-to-
end fashion using both 2D-3D pairs annotations as well as
2D alone annotations. In each iteration, we first updated the
weights of generator and discriminator to make the genera-
tors more stable. Then the 3D lifting network was updated
based on the augmented poses plus the 2D-3D annotated
dataset. After that, 2D only annotations were utilized to
tune the camera parameter branch. The model was trained
for 75 epochs with a learning rate of 0.0005 and weight de-
cay at 30, 60, respectively. And the weighting for loss we
choose Acam = 0.01, A2p.g = 0.5, Aap ¢ = 0.2, and
Asp = 1.0.

e [ 2 e

Figure 7. Visualization for qualitative analysis of 3D human pose
estimation on MPII [1] (Testing), MS-COCO [21], and SKiPose-
PTZ [29]. Our model can still generate reliable 3D poses even
when the target poses are in general rare or never seen from the
training.

4.4. Quantitative Results

CameraPose Network Accuracy. We compared Camera-
Pose with other state-of-the-art methods [28, 2, 36, 11, 23]
trained on Human3.6M. For the temporal-based methods
[28, 2], we implemented the single frame version for a
fair comparison. Table 4 summarized the experimental re-
sults of different methods. For each column, the MPJPE
or PA-MPJPE are calculated for evaluation, obtained from
the same model trained and selected based on the evaluation
dataset of Human3.6M. Some existing algorithms selected
distinctive best models on different testing datasets, which
may not reflect the generalization of models well. Instead,
we selected a single model based on the accuracy of the
validation of Human3.6M to make it more realistic for real-
world application.

As shown in Table 4, our method outperforms the SOTA
on the most challenging dataset 3DPW by a noticeable mar-
gin (3mm and 13mm). It also has significantly higher accu-
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Table 5. Experimental results of the effect of refinement network as we examine the effectiveness of our refinement module using the

HRNet detections on training and evaluation purposes.

model for the 3DHP dataset.

Method Training Source Human3.6M 3DHP
(2D Estimator) (MPJPE) (MPJPE)
Pavllo et al. [28] Human3.6M (HRNet) 57.90 103.86
Gong et al. [11] Human3.6M (HRNet) 55.18 99.50
Gong et al. [11] w/ Refinement Network Human3.6M (HRNet) 54.32 97.45
CameraPose w/ Refinement Network Human3.6M (HRNet) 54.20 97.35
CameraPose w/o Refinement Network Human3.6M (HRNet) 54.38 98.12
racy than other Weakly-SI.lpervised methods like [29] and O?EI%EITI::)ge Input (ZII{JRI;?:)poims (3(:1: :::er:ilc)g:; l(léz:_li:t;i SZel))
[35]. Our model also achieves the highest accuracy on the -
Human3.6M dataset. Experimental results clearly show the _
strong generalization capability of our proposed method. = 125X /N
Adding the camera parameter branch can help the model to - ,/’
learn from in-the-wild datasets with 2D annotations, which |
is very effective for hard examples. & ] l' &
The results on the 3DHP are slightly lower than SOTA ) i S
methods, and we claim it is due to the fact that the 2D an- T
notations we added from MPII are more helpful for chal- |
lenging cases such as the 3DPW dataset. The best accuracy B/ s | |‘ r;
on the 3DHP dataset can be 75.54 MPJPE using our model, i &z “
which outperforms the current SOTA if we select a specific -
|
Refinement Network Accuracy. To show the effectiveness z ke I‘ %
of the refinement network, we trained different models with e

different settings as shown in the Table 5.

We used HRNet as 2D detectors to extract the 2D key-
points on all the training and evaluation datasets. We added
the refinement network to both the SOTA method [11] and
our proposed model. By adding the refinement network,
both PoseAug and our model have improved accuracy on
both Human3.6M and 3DHP. In addition, our model outper-
forms the SOTA on both testing datasets. Therefore, both
our proposed camera parameter network and the refinement
network are useful for 3D HPE.

4.5. Qualitative Visualization

3D Pose Estimation. We choose 3 datasets (Human3.6M,
3DHP and 3DPW) to qualitative compare our proposed
method and baseline [11]. As shown in Figure 6, our model
has more accurate predictions on challenging datasets such
as 3DPW. Note that we utilize cross-scenario training to
make sure there is no overlap between training and test-
ing datasets. We also visualize our results on datasets with-
out 3D annotations such as MPII, MSCOCO, and SkiPose-
PTZ [29] in Figure 7. The visualization results are very
plausible, which indicates the capability of our model for
in-the-wild prediction.

2D Reprojection. To validate the camera parameter branch,
we visualize the results of our model at a different stage.
Figure 8 shows the original image, input 2D keypoints from
HRNet, inferred 3D poses, and reprojected 2D poses from

Figure 8. 3D-2D reprojection visualization on MPII [1]. Column
from the left: original images, 2D keypoints from HRNet, inferred
3D keypoints, reprojected 2D keypoints. The camera parameters
predicted by CameraPose can successfully reprojected the 3D pose
back into the image coordinate.

left to right columns. It clearly shows that our CameraPose
can predict well on unseen poses and the reprojected 2D
poses are meaningful too.

5. Conclusions

We propose CameraPose, a weakly-supervised frame-
work for 3D human pose estimation from a single image
that can aggregate 2D annotations by designing a camera
parameter branch. Given any noisy 2D keypoints from pre-
trained 2D pose estimator, CameraPose is able to refine the
keypoints with a confidence-guided loss and feed them into
the 3D lifting network. Since our approach uses the camera
parameters learned from the camera branch to do the repro-
jection back to 2D, it can solve the problem of the lacking of
the 2D-3D datasets with rare poses or outdoor scenes. We
evaluate our proposed method on some benchmark datasets;
the results show that our model can achieve higher accuracy
on challenging datasets and be able to predict meaningful
3D poses given in-the-wild images or 2D keypoints.
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