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Abstract

Due to its importance in facial behaviour analysis, fa-
cial action unit (AU) detection has attracted increasing at-
tention from the research community. Leveraging the online
knowledge distillation framework, we propose the “FAN-
Trans” method for AU detection. Our model consists of
a hybrid network of convolution and transformer blocks
to learn per-AU features and to model AU co-occurrences.
The model uses a pre-trained face alignment network as the
feature extractor. After further transformation by a small
learnable add-on convolutional subnet, the per-AU features
are fed into transformer blocks to enhance their represen-
tation. As multiple AUs often appear together, we propose
a learnable attention drop mechanism in the transformer
block to learn the correlation between the features for dif-
ferent AUs. We also design a classifier that predicts AU
presence by considering all AUs’ features, to explicitly cap-
ture label dependencies. Finally, we make the attempt of
adapting online knowledge distillation in the training stage
for this task, further improving the model’s performance.
Experiments on the BP4D and DISFA datasets demonstrat-
ing the effectiveness of proposed method.

1. Introduction

Facial behaviour is a natural and effective way to con-
vey emotions, sentiments, and mental states in face-to-face
communications. Due to its great potential in human-robot
interaction, digital marketing, and psychological and be-
havioural research, automatic facial behaviour analysis has
attracted increasing attention from both the academic com-
munity and the industry. Among different representations,
facial action units (AU) provide the most comprehensive,
expressive and objective descriptors for facial behaviours.
They are defined over muscle movements according to the
anatomy of human faces. As such, a robust AU detection
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Figure 1. Visualization of attention maps of FAN-Trans via Score-
CAM [26]. The result is achieved by placing the target layer on
resolution 4 × 4. From top to bottom, each row denotes an input
image, its spatial attention and activated action units, in respect.
FAN-Trans shows a potential high concentration at the facial com-
ponent that indicates its ability to learn where to focus without
using explicit attention modules [8] or manual region allocations
[22, 11]. For example, AU1 and AU2 emphasize the eyebrow,
AU7 is around the eye while AU24 highlight the mouth.

method is important in facial behaviour understanding.
In Facial Action Coding System (FACS) [6], AUs are de-

termined by appearance changes (i.e. geometry shape, tex-
tures) caused by facial muscle movements on a human face.
Those changes are subtle, local and connected. For exam-
ple, due to the underlying facial anatomy, AU1 and AU2
usually appear together because they are controlled by same
muscle. In order to align with this area, the network de-
sign is desired to capture local AU features and consider the
property of AU co-occurrences.

Facial landmarks, representing semantic key-points on a
human face, are recognized as AU active locations. They
are often used to crop the region of interest (ROI) for AUs
[35, 33, 3] to reduce distraction from unrelated facial areas.
Nevertheless, even after aligning faces to a common refer-
ence frame, precise AU localisation remains a challenge due
to head pose and view variations, which will adversely af-
fecting cropping ROI for AUs. Thus, we propose to extract
intermediate representations from a pre-trained facial land-
mark detector for AU features learning. Due to the nature
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of face alignment task, these features are face specific and
landmark-focused.

To consider the AU co-occurrences, previous works of-
ten used a standalone module to explicitly model the label
or feature correlation between different AUs [27, 25, 11].
Recently, motivated by transformer network’s effectiveness
in learning the correlations between distant patches in the
image classification task [5, 24], TransAU [8] and TAM [20]
pioneered in applying it to facial AU detection. Built upon
this idea, we further introduce a learnable binary attention
module to the transformer block to enhance its capability.
This leads to more discriminative AU features.

Seminal works [35, 3, 17, 18, 11, 22, 8] are dedicated
to architecture or loss designs to tackle the aforementioned
issues, but to the best of our knowledge, none has tried to
improve the learning procedure using online knowledge dis-
tillation (OKD). For AU detection, no high capacity model
is readily available because increasing the number of pa-
rameters does not necessarily lead to higher accuracy due
to the over-fitting problem caused by the limited amount of
training data [25]. To address this, we propose to use OKD
[30, 31, 10, 12] in our method. In contrast to two-stage
knowledge distillation [7], OKD can boost the model’s
accuracy without requiring a pre-trained teacher. It has
achieved impressive results in tasks like object classifica-
tion [10, 2], human pose estimation [12] but it has not been
explored in the context of facial AU detection.

To this end, we formulate the AU detection task as a
multi-label classification problem within the online knowl-
edge distillation framework. Using a pre-trained face align-
ment network as the feature extractor, we only add a small
subnet to learn per-AU features, as the intermediate fea-
ture maps produced by the face alignment network already
provide rich shape and contextual information. To model
AU co-occurrences, we propose a learnable attention drop
mechanism on the self-attention module in the transformer
block and significantly enhances the model’s performance
by decreasing homogeneity among AU features. Addition-
ally, we analyse two classifiers with one to predict per AU’s
activation on a single AU’s feature and the other predicts all
AUs’ existence based on it. We show that the latter achieves
superior performance as it also learns the co-occurrences of
AUs in the label space. Last but not least, we apply the OKD
framework with diverse classifiers in the training stage to
further improve the model’s accuracy, without incurring ad-
ditional cost at inference time.

Our method, coined FAN-Trans, has achieved a new
state-of-the-art performance on public benchmarks. The
visualization of attention maps learned by FAN-Trans is
shown in Figure 1. Without explicitly ROI assigned for dif-
ferent AUs [8, 22, 11], FAN-Trans can learn where to focus
based on only supervision from AU labels.

The main contributions of this paper are listed below.

1. To our best knowledge, we are the first to adopt OKD
with diverse peers designed for AU detection, improv-
ing its performance via ensemble learning.

2. Instead of manually assigning pre-defined regions to
different AUs, FAN-Trans builds upon a pretrained
multi-scale face alignment features to automatically
learn the spatial correspondence between AUs and the
underlying facial parts.

3. We propose to exploit both feature and label correla-
tions in solving the AU detection task. For features,
we design a transformer block with a learnable binary
mask to learn sub connections of AUs; For labels, we
devise a classifier to predict single AU’s activation on
features of all AUs.

4. Through extensive experiments, we demonstrate the
effectiveness of our proposed method on two widely
used benchmark datasets: BP4D [32] and DISFA [14].

2. Related works
Regional feature representation Since AUs are defined in
FACS [6] as muscular activation on the face, the AU detec-
tion task can be formulated as a classification task on local
features extracted around facial landmarks. The early works
utilised handcraft features. A typical pipeline in [33] was
to first align crop faces, then extract handcraft features in
a predefined patch around landmarks, and finally enhance
feature representation by fusing texture features with ge-
ometry features formed by landmark coordinates. Recently,
deep models have been widely used to capture local appear-
ance changes for AU detection. For example, Zhao et al.
[35] designed a region layer to induce specific facial regions
for identifying different AUs. Shao et al. [18] developed an
end-to-end multi-task framework to jointly do AU detection
and face alignment, and the heat-maps were used to pre-
define the ROI which was further refined in model optimiza-
tion. The aforementioned works linked AU detection with
the ROI features, which have proven to be notably effective
for AU detection. Building upon this insight, we propose to
extract informative face shape and contextual priors from a
pre-trained face alignment model and let the network auto-
matically assign AU features during optimization.
AU co-occurrences modeling Due to the underlying fa-
cial anatomy, activations of different AUs are often corre-
lated. Therefore, instead of detecting each AU indepen-
dently, learning the co-occurrences of AUs can be incorpo-
rated either into the the network design, or as a standalone
refinement step. Some works [27, 25] realize it by attaching
an explicit module on initial predictions with probabilistic
graphical models. For example, the early attempt [27] ex-
ploited the restricted Boltzmann machine to learn AU re-
lations. Similarly, [25] appended conditional random field
on the top of fully connected layer output to force AU de-
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Figure 2. Overview of FAN-Trans. In the training stage, firstly, a face image is fed into a pre-trained face alignment model to extract feature
maps Fa. Secondly, Fa is passed through a convolution module to learn compact feature representation Fc. Thirdly, Fc is reshaped and
transposed to a sequence of vectors, and is further projected into a set of AU features Fau by a linear transformation. Fau is fed into two
transformer branches with diverse classifiers Co2o and Co2m to get predictions Po and Pm. The ensemble target Pt is a weighted (W1,
W2) combination of Po and Pm. Finally, all learnable parameters are optimized by three classification losses Lcls and two knowledge
distillation losses Lkd. Note that only a single pathway remains at inference time. All auxiliaries modules enclosed in dashed lines are
discarded after training. By doing so, regional feature learning, AU-occurrences modeling, efficient training technique are integrated into
one end-to-end trainable pipeline.

pendencies. Others [11, 8] concentrate on learning seman-
tic correlation among AUs. For example, SRERL [11] fed
AU features to Gated Graph Neural Network built on de-
fined knowledge-graph in an offline manner. More recently,
TransAU [8] introduced transformer [5] into the facial AU
detection task due to its particular efficacy in capturing de-
pendencies among distant patches. Our method uses the
transformer but we go a step further by discriminating AU
features with a learnable drop attention in self-attention
module. Besides, our transformer network is trained with
the automatically learned AU features instead of cropped
features from pre-defined ROIs.

Online knowledge distillation Different from vanilla KD
[7], which uses a pre-trained high capacity teacher network
to guide the learning of a low-capacity student, there is no
explicit teacher network in OKD. One category of OKD
is to train with the ensemble output of the students shar-
ing similar network configurations. For example, ONE [10]
was the pioneer who constructed a single multi-branch net-
work to let each branch learn from the ensemble distribu-
tion in the classification task. This idea was extended in the
same or heterogeneous settings and applied in the human
pose estimation task [12]. Our model is thus an instantia-
tion of OKD in the specific context of AU recognition. We
further maximize the capacity of OKD by increasing the di-
vergence of peers.

3. FAN-Trans
The architecture of the proposed FAN-Trans is shown in

Figure 2. This section will describe each component and
the rational behind in detail.

3.1. Landmark Attention Feature Extraction

Facial landmarks represent the semantically salient re-
gions of a human face. Given that AUs are present in local
regions around facial landmarks, previous approaches [35,
11] used landmarks to predefine ROI for AUs. Three draw-
backs could be observed in such assignment: extra time
cost, sensitivity to precision of landmarks, and difficulty to
embrace unregistered AUs. To avoid these, we take inter-
mediate features from a pre-trained facial landmark model
and learn AU embeddings on them.

Concretely, we leverage the stacked-hourglass-based
FAN [15, 1] model for this purpose, which has been ex-
plored as the feature extractor for face recognition [28] and
face emotion recognition [23]. FAN was trained for land-
marks localization with heat-maps (Gaussian circle peaking
at keypoints) as supervision on a large corpus of facial data,
covering the full range of poses. Unlike models trained on
ImageNet with a classification task which are generic (i.e.
not specific to faces) and coarse, FAN features (1) capture
the finer grained aspects of the face — a direct consequence
of the face alignment task; (2) are robust to appearance vari-
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ations from pose, illumination, color as the model was pre-
trained on a large variety of facial poses; (3) closely align
with AU detection — having a good localization of the AU
region correlates with higher AU accuracy.

As illustrated in Figure 2, we obtain source of AU fea-
tures by combining intermediate features (LF, H1, H2) and
heat-maps (HM) from the pre-trained FAN. Specially, we
first aggregate heat-maps to a single plane, then multiply it
with penultimate layer’s outputs (H1,H2), and finally con-
catenate these high level features with the low-level features
(LF) to obtain Fa ∈ RDa×Ha×Wa . We use “a” as a sub-
script to represent the features from FAN. F, D,H,W de-
scribe the feature tensor, and its channel, height, width re-
spectively. We drop the symbol of batch size for brevity.

3.2. A Hybrid Network of Convolution and Trans-
former modules

Based on the AU definition, a successful AU detector is
supposed to learn features around AU active regions and
consider the property of AU co-occurrences. we use a hy-
brid convolution + transformer structure for learning the AU
features, in which convolution is to obtain abstract face rep-
resentations from Fa and transformer [29, 13] is to learn
AU co-occurrences in feature space.

As illustrated in Figure 2, the convolution module is
composed of several convolution layers: one 1x1 convo-
lution layer to decrease the channel dimension from Da to
0.25Da; four convolution layers followed by a max-pooling
to reduce spatial size by 4 times. The advantages of this
module are from two aspects: First, it makes the feature rep-
resentations more abstract by enlarging the receptive field
(the resolution decreases from 64 × 64 to 4 × 4); Sec-
ond, it reduces the computational complexity by decreasing
feature dimension as self-attention in transformer operates
across sequential tokens by drawing pairwise interactions.
Given a input tensor Fa, the output of convolution module
is Fc ∈ RDc×Hc×Wc .

Furthermore, we implicitly allocate per AU embedding
with a linear transformation. We first flatten 3D Fc across
spatial dimension to 2D tensor Fc ∈ RDc×HcWc , then apply
a linear layer on the 2rd dimension to transform HcWc to
number of AUs Nau. This is formulated by:

Fau = Fc ×Wau, (1)

where Wau ∈ RHcWc×Nau , and Fau ∈ RDc×Nau . By do-
ing so, per AU feature is associated with Fc with learnable
parameters optimized by the task loss. Every vector Dc × 1
is considered as one AU’s representation.

The transformer module is exploited here to model the
AU co-occurrences. A learnable position embedding is
applied on Fc. The main component of the transformer
[5] module is the stacked encode blocks (transblock) com-
posed of multi-head self-attention (MHSA) and multi-layer

Figure 3. Encode block (transblock) in transformer module. We
assume Nau = 4. For a 4x4 attention map A, we explore different
attention drop mechanisms on A to find the best choice A for
facial AU detection task.

projection (MLP) (see Figure 3). To utilize it, we apply
transpose operation on Fau ∈ RDc×Nau to obtain Fau ∈
R∈Nau×Dc as transformer here is to modeling connections
among AU features. For MHSA module, linear layers are
applied on Fau to obtain queries Q ∈ RNau×Dq , keys
K ∈ RNau×Dk and values V ∈ RNau×Dv (Dq == Dk),
then the attention map A is calculated through:

A = softmax(
QK⊤√

Dq

), (2)

where A ∈ RNau×Nau with A[i, :] representing Q[i, :]’s
correlation with K, and A[:, i] representation Q’s corre-
lation with K[i, :]. We further propose a learnable atten-
tion drop mechanism by multiplying A with learned binary
mask M ∈ RNau×1 to drop some AUs connections with
others.

A = M ∗A. (3)

where Ai,j = MjAi,j . This is supposed to increase the
difference among AU features:

3.3. Online Knowledge Distillation with Diverse
Classifiers

The main structure is a two-branch architecture, which
is illustrated in Figure 2. We feed Fau into two diverse
peers (T1 and T2). We denote the outputs of T1 and T2
as F1 ∈ RNau×Dt and F2 ∈ RNau×Dt , respectively. We
design the diverse classifiers as follows:
One-to-One classifier (Co2o): We pass F1 through a fully
connected layer Wo ∈ RDt×1, and the prediction is com-
puted as

Po = F1 ×Wo, (4)

where Po ∈ RNau×1 with i-th element F1[i] predicting i-th
AU’s activation.
One-to-Many classifier (Co2m): We multiply F2 with a
transformation matrix Wm ∈ RDt×Nau , and the prediction
is calculated as

Pm = TopK(F2 ×Wm), (5)
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where Pm ∈ R1×Nau . The output of F2 × Wm is Pm̂ ∈
RNau×Nau and TopK is a selection function. The i-th slice
of F2[i, :] predicts the existence of all AUs. Pm̂[:, i] denotes
the i-th AU’s evidence from all AU features. TopK opera-
tion summarizes the highest k confidence in Pm̂[:, i] to get
the final prediction for i-th AU:

Pm[i] =

Ki∑
j=0

Pm̂[:, j], (6)

where Ki denotes the top-k index per i-th column. The
illustration of Pm’s calculation is in Figure 4.

Figure 4. Steps for calculating Pm. We assume Nau = 4 for
illustration purposes. F2[i, :] and Wm[:, i] denote i-th AU’s fea-
ture and i-th AU’s prototype, respectively. Hence, i-th AU’s fea-
ture (F2[i, :]) contributes to the logits of all AUs (Pm̂[i, :]) and
all AUs’ features contribute to the logits of j-th AU (Pm̂[:, j]). To
avoid noise accumulation, Pm[i] is aggregated (summed) from the
highest k (k=2) values in Pm̂[:, i].

Online knowledge distillation Based on the two-branch
formulation, we have two transformer modules with the
same number of transblocks but different AU classifiers.
Both branches share the convolution module for compact
feature extraction and per AU feature assignment. Inspired
by previous works [10, 12], the ensemble weight generator
is placed on Fc. Its structure is depicted in Figure 2 (Ensem-
ble weights generator). Specifically, it contains two splits to
capture features across different receptive fields, concatena-
tion operation to enrich representation, and fully connected
layer to produce weights We ∈ R2×Nau . Afterwards,
the Softmax is used to normalize the weights. Finally, the
ensemble weights We are split into W1 ∈ R1×Nau and
W2 ∈ R1×Nau and the ensemble target is computed by
element-wise summation:

Pt = W1 ∗Po +W2 ∗P⊤
m. (7)

The OKD is formulated as the Kullback-Leibler (KL) diver-
gence loss between Pt and the student’s prediction (P∗ ⊆
{Po,Pm}):

LKD = KL(P∗,Pt). (8)

The multi-label classification loss is formulated as weighted
binary cross entropy loss with ground-truth label:

Lcls = −
Nau∑
i

wi[yi log pi + (1− yi) log(1− pi))], (9)

where pi denotes i-th AU’s prediction, which has three
sources Po, Pm, and Pt. yi is the ground-truth label for

i-th AU (1 denotes AU appears and 0 denotes AU does not
present). wi is the class weight for each AU based on AU’s
occurrence to balance training [17].

The final network is trained in an end-to-end manner by
minimizing the following cost function:

Ltotal = Lcls + λLkd, (10)

in which λ is hyper-parameter to balance Lcls and Lkd. It
should be noted that only the Co2m branch is deployed at
inference time.

4. Experiments
To validate the effectiveness of FAN-Trans, we conduct

experiments on two widely used AU detection datasets:
BP4D [32] and DISFA [14].

4.1. Implementation Details

Datasets BP4D [32] contains 41 participants with 23 fe-
males and 18 males who were involved in 8 spontaneous
expressions sessions. In total, 328 videos with 140,000
frames are recorded and then annotated with 12 AUs (AU1,
AU2, AU4, AU6, AU7, AU10, AU12, AU14, AU15, AU17,
AU23, and AU24). We evaluate the models with subject ex-
clusive 3-fold cross-validation protocol following existing
works [17, 18, 11, 8], where two folds are for training while
the remaining one is for testing.

DISFA [14] involves 27 participants with 12 females and
15 males. Each person is documented in a video. The entire
dataset consists of over 100,000 frames with intensity an-
notation ranging from 0 to 5 on 12 AUs. Following the pro-
tocol in [17, 18, 11, 8], we select 8 AUs (AU1, AU2, AU4,
AU6, AU9, AU12, AU25, and AU26) for subject exclusive
3-fold cross-validation, and use intensity 2 as a threshold to
distinguish between positive and negative samples.
Evaluation criteria We evaluate the models with F1-score
[9] that considers per AU’s precision and recall and is
widely used in the multi-label classification task, especially
when samples are imbalanced across categories. Here, we
calculate the F1-score on 12 AUs for BP4D and 8 AUs for
DISFA. Per-AU’s score indicates the performance of dif-
ferent models on individual AU while the average F1-score
across all AUs exhibits one model’s overall performance.
Training details All images are cropped based on the detec-
tion box provided by RetinaFace [4]. We do not use facial
landmarks to pre-process faces thus our input to the network
is unaligned face images. Since we use FAN [1] to extract
features, our network input is a 256x256 RGB face image.
Similar to JÂANet [18], we use random rotation (+/- 15
degrees), horizon flipping, scaling (0.75 - 1.25) and centre
shifting (-10 - 10) for data augmentation. FAN [1] is pre-
trained and fixed while other learnable parameters are opti-
mized using AdamW with hyper-parameters β1 = 0.9 and
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Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 AVG
Baseline 51.6 39.0 60.0 72.8 79.0 79.1 87.2 62.0 49.3 58.1 48.9 51.1 61.5
C T Co2o 55.8 44.9 56.9 77.8 75.6 82.8 87.5 61.3 48.7 61.9 48.2 52.5 62.8
C T Co2m 52.7 47.0 56.8 75.0 75.3 82.2 88.0 63.1 51.9 64.3 49.5 53.7 63.3
C T1 Co2o T1 Co2m 55.7 42.5 60.9 76.4 76.7 83.6 86.6 62.4 47.4 65.8 49.5 57.9 63.8
C T1 Co2o T2 Co2o 55.1 46.8 58.8 77.5 74.7 83.4 87.2 63.4 48.9 65.9 50.2 56.9 64.1
C T1 Co2m T2 Co2m 58.0 46.8 59.9 76.5 76.0 83.6 87.3 60.3 49.9 66.1 49.9 56.6 64.2
C T1 Co2o T2 Co2m 55.4 46.0 59.8 78.7 77.7 82.7 88.6 64.7 51.4 65.7 50.9 56.0 64.8
C T1 Co2o T2 Co2m F 49.4 46.0 61.2 77.4 77.6 83.0 88.4 65.9 50.3 63.6 50.3 52.2 63.8
C T1 Co2o T2 Co2m R 51.8 44.8 58.7 77.6 77.4 82.5 87.6 64.7 51.7 66.0 49.7 56.2 64.1
C T1 Co2o T2 Co2m C 54.0 43.1 60.3 77.2 78.1 84.3 86.7 63.2 51.6 65.0 48.5 56.9 64.1

Table 1. Ablation studies on BP4D. We compare variants with various key components: with or without the transformer module, different
classifiers, online knowledge distillation, and different attention drop mechanisms.

β2 = 0.999 without weight decay. The network is trained
for 12 epochs per fold with starting learning rate at 0.0001
and decaying 30% every 4 epochs. We use the timm library
1 to implement our transformer with its parameter settings
like MLP ratio 4 and head number = dim//64 (dim denotes
feature dimension). . For DISFA, following [18, 11], we use
weights trained on BP4D as initialization and then fine-tune
on DISFA. To calculate F1-score, we binarize the Sigmoid
predictions with the threshold 0.5. The weight balance pa-
rameter λ is set to 0.2 after grid search. All the implemen-
tations are based on PyTorch [16].

4.2. Ablation Studies

We carry out ablation studies on BP4D to reckon the ele-
ments contributing to the efficacy of the proposed frame-
work. In particular, the contributions of the transformer
module, the One-to-Many classifier, the OKD instances, at-
tention drop mechanism in the transformer are analysed.
For fair comparison, all variants are trained with the same
setting including data augmentation and training schedule.
Effectiveness of Transformer To verify the effectiveness
of the transformer module, we remove the transformer mod-
ule of the proposed framework by directly performing a
multi-label classification on the feature maps produced by
the convolution module (see Fc in Figure 2). The AU de-
tection is done by first average pooling the 4-D dimensional
tensor, then feeding the generated 1-D vector to a fully con-
nected classifier. We call this variant Baseline. We imple-
ment another two variants by feeding the convolution mod-
ule’s output to the identical transformer module with sepa-
rate classifiers Co2o, Co2m for comparison. We call them
C T Co2o and C T Co2m respectively. At this point, no
knowledge distillation part is included.

The results are in Table 1. Compared with Baseline, both
C T Co2o and C T Co2m get higher F1-score in the major-
ity of AUs with obvious improvement on AU2, AU6, AU17,
AU23. Overall, in terms of the average F1-score, C T Co2o

and C T Co2m exceeds Baseline by 1.3% and 1.8% sepa-
rately. We believe the advancement comes from the more

1https://github.com/rwightman/pytorch-image-models

representative features learned by the transformer mod-
ule. Besides, simple Baseline alone surpasses JAANet[17],
DSIN [3] with more complex feature extractors, which re-
veals the strong representation ability of FAN features.

Effectiveness of classifiers C T Co2m outperforms
C T Co2o by 0.5% in average F1-score. We argue
C T Co2m is superior to Co2o because the former one
considers the AU co-occurrences in both feature learning
and classification stages while the latter only captures this
characteristic in feature learning within the transformer
module. This argument is evidenced by Figure 5 which
presents the correlation coefficients between pairwise AUs
from annotations, predictions of Co2o and predictions of
Co2m separately. For example, AU14 is associated with
AU6, AU7, AU10, AU12 in Figure 5(a). This pattern
is captured by C T Co2m but ignored in C T Co2o. We
assume that the Co2m is sufficient in detecting the lower
part of AUs because AU14 fosters inter connections. In
addition, we compute the element-wise Euclidean distance
between correlation matrices for more direct comparison.
The distance between labels and predictions from Co2o is
0.012 while it decreases to 0.008 for Co2m, which further
confirms the ability of Co2m in learning AU associations
from label statistics.

Improvement from OKD training We first test a variant
C T1 Co2o T1 Co2m which shares the feature extraction
(C T1) but is fed into two classifiers Co2o and Co2m. From
the table, this variant gains performance over student alone
(i.e. C T Co2o and C T Co2m).

Such improvement motivates us to explore key fac-
tors concerning the OKD: where to put split point and
how to increase peers’ diversity. We set up three vari-
ants: (I) C T1 Co2o T2 Co2o, (II) C T1 Co2m T2 Co2m,
(III) C T1 Co2o T2 Co2m. The architecture for (III) is in
Figure 2, in which the breakpoint for two branches is af-
ter the convolution module. (I) replaces Co2m in T2 branch
of (III) with Co2o while (II) replaces Co2o in T1 branch of
(III) with Co2m. From the Table 1, all the variants obtain
the average F1-score gains with (III) ranking 1st. (I) and
(II) outperform C T1 Co2o T1 Co2m by 0.3% and 0.4% re-
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(a) ground-truth labels (b) predictions of C T Co2o (c) predictions of C T Co2m

Figure 5. Correlation maps of (a) ground-truth labels, (b) predictions of C T Co2o and (c)predictions of C T Co2m, where each entry (i,j)
is computed as the coefficient correlation between the i-th AU and the j-th AU.

spectively because the same feature descriptor hurts the di-
versity. This finding is supported by the analysis of branch
diversity proposed in [12, 2].

From the results, we observe that (I) improves
C T1 Co2o from 62.8% to 64.1% while (II) improves
C T1 Co2m from 63.3% to 64.2%. Both of them are com-
parable to the SOTA performance (see Table 5). It is worth
mentioning here that this is the first time that OKD is de-
ployed on facial AU detection task, and it obtains significant
performance gains.

(III) achieves the best performance. More concretely, the
output of Co2o in (III) gets 64.7% in average F1-score, the
output of Co2m in (III) achieves 64.8% as well as Pt. The
superior performance shows that designing two branches
with different classifiers boosts the peer diversity, which is
effective in OKD [2]. We set default branch as 2 because we
leveraged two different classifiers. We have tried increasing
the branch to three which obtains another 0.1% gain.
Effectiveness of attention drop in Transformer In the
following experiment, we dig into how the attention map
influences the AU features. We consider four variants:
(a) C T1 Co2o T2 Co2m F, (b) C T1 Co2o T2 Co2m R, (c)
C T1 Co2o T2 Co2m C and (d) C T1 Co2o T2 Co2m. The
description is in Figure 3. In (a), a full attention map is used,
which means all elements in A will be multiplied with V to
produce new AU features. (b) deactivates the lower similar-
ity in each row of A. (c) deactivates the lower similarity in
each column of A. (d) learns a binary mask. As is shown
in Table 1, (a), (b) and (c) improve the average F1-score of
C T Co2m from 63.3% to 63.8%, 61.4% and 64.1% respec-
tively. It demonstrates that all attention mechanisms benefit
the OKD framework. (b) and (c) outperforming (a) may be
caused by the alleviation of over-fitting in the full attention
map. The learnable attention drop stands out by increasing
the F1-score in C T Co2m from 63.3% to 64.8%.

Figure 6 illustrates the distribution of the pairwise cosine
distance among Fau. By comparison, the average similarity
is decreased from 0.738 (a) to 0.566 (d). It shows attention
drop will increase diversity among different AU representa-
tions.

Figure 6. The pairwise cosine similarity distribution among AU
features Fau before Co2m for variant (a) and (d).

Ms BL BL-FAN+R18 BL-LF BL-HM
F1-score 61.5 59.5 59.2 60.8
Table 2. Impact of FAN feature on BP4D (F1-score in %).

Encode No. 1 3 5 7 9
F1-score 63.8 64.4 64.8 64.9 64.1

Table 3. Impact of No. of TransBlock on BP4D (F1-score in %).
λ 0.05 0.1 0.2 0.5 1

F1-score 64.1 64.3 64.8 63.9 63.8
Table 4. Sensitivity to λ for FAN-Trans on BP4D (F1-score in %).

Impact of FAN feature We compare four variants in Table
2: BL is the baseline method; BL-FAN+R18 replaces FAN
in BL with feature map of same resolution (64x64) from
ResNet18 (after 2rd layer) pretrained on ImageNet; BL-LF
is BL without LF; BL-HW is BL without the product of
heatmap. Based on results, we conclude features pretrained
on the alignment task are superior to generic features from a
classification model. Additionally, although HM is inferior
to LF for overall contribution, it complements LF by giving
more attention around landmarks which are recognized as
AU active areas.
Encode numbers in transformer module We set encode
number in the transformer module as 5 in the main exper-
iment to keep balance with convolution operations. Table
3 presents the performance influenced by the transBlock
number in the transformer module on the BP4D. We test 5
cases with encode numbers as 1,3,5,7,9 respectively. From
this table, we can see that if very few encodes are utilized,
the performance will drop quickly. This is caused by the
limited learning capacity in the transformer module. Be-
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Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 AVG
JPML [34] 32.6 25.6 37.4 42.3 50.5 72.2 74.1 65.7 38.1 40.0 30.4 42.3 45.9
DRML [35] 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3
JAANet [17] 47.2 44.0 54.9 77.5 74.6 [84.0] 86.9 61.9 43.6 60.3 42.7 41.9 60.0
JÂANet [18] 53.8 47.8 58.2 [78.5] 75.8 82.7 88.2 63.7 43.3 61.8 45.6 49.9 62.4
DSIN [3] 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9
SRERL [11] 46.9 45.3 55.6 77.1 [78.4] 83.5 [87.6] 63.9 [52.2] [63.9] 47.1 53.3 62.1
UGN-B [19] [54.2] [46.4] 56.8 76.2 76.7 82.4 86.1 64.7 51.2 63.1 48.6 53.6 63.3
TransAU [8] 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2
MONET [21] 54.5 45.0 61.5 75.9 78.0 84.5 87.6 [65.1] 54.8 60.5 53.0 53.2 64.5
FAN-Trans 55.4 46.0 [59.8] 78.7 77.7 82.7 88.6 64.7 51.4 65.7 [50.9] [56.0] 64.8

Table 5. Comparison of the classification results (F1-score in %) with other methods on BP4D. Bold numbers indicate the best performance;
Bracketed numbers indicate the second best.

Methods AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 AVG
DRML [35] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
JAANet [17] 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0
JÂANet [18] 62.4 60.7 67.1 41.1 45.1 73.5 90.9 67.4 63.5
DSIN [3] 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6
SRERL [11] 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9
UGN-B [19] 43.3 48.1 63.4 49.5 48.2 71.9 90.8 59.0 60.0
TransAU [8] 46.1 48.6 72.8 56.7 [50.0] 72.1 90.8 55.4 61.5
MONET [21] 55.8 [60.4] 68.1 [49.8] 48.0 [73.7] [92.3] [63.1] 63.9
FAN-Trans [56.4] 50.2 [68.6] 49.2 57.6 75.6 93.6 58.8 [63.8]

Table 6. Comparison of the classification results (F1-score in %) with other methods on DISFA. Bold numbers indicate the best perfor-
mance; Bracketed numbers indicate the second best.

sides, when the number of encoding increases to 9, the
performance will also drop because of too much flexibility
within the two branches. Although encode number 7 gets a
slightly better F1-score than encode number 5, considering
the increased model complexity, we still use encode number
5 in our final model.
Sensitivity to hyper-parameter λ Basically, we test 5
weights for λ: 0.05, 0.1, 0.2, 0.5 and 1. Table 4 illustrates
the impact of hyper-parameter λ in the proposed frame-
work. From these results, we can see that our method is
affected by the weights to balance the distillation loss and
the classification loss. The too small or too large value will
deteriorate the performance gains. Thus, a grid search tech-
nique contributes to the best model.

Finally, the best configuration C T1 Co2o T2 Co2m by
setting λ as 0.2 is FAN-Trans.

4.3. Comparison with State-of-the-Art methods

We compare FAN-Trans with published AU detection
techniques including the methods focusing on attention or
regional feature i.e. JPML [34], DRML [35], JAANet [17],
JÂANet [18], methods taking the relationship of AUs into
account i.e. DSIN [3], SRERL [11], UGN-B [19] and very
lately proposed works TransAU [8] and MONET [21].
The results for other methods are taken from the papers
[8, 22]. Table 5 shows the performance comparison on the
BP4D [32]. The proposed method performs better than the

SOTA methods with an average F1-score 64.8%.
Table 6 compares the performance of our proposed FAN-

Trans with SOTA methods on the DISFA [14]. It can be
seen that our method obtains a 63.8% average F1-score. It is
2% better than TransAU [8] which also deploys transformer
in model design.

5. Conclusion and Discussion
Conclusion In this work, we propose FAN-Trans for fa-
cial AU detection which can learn representative AU fea-
tures and correlations among both AU features and AU la-
bels in an OKD framework. FAN-Trans takes advantage
of the multi-scale face alignment feature maps to learn AU
features from AU active regions with heatmap attention. It
uses transformer to model AU co-occurrences with a learn-
able binary mask to drop self attention in order to discrimi-
nate different AU features. It customizes OKD with diverse
classifiers designed for AU detection. Experiments show its
advantages over SOTA methods.
Discussion FAN-Trans is built on a pre-trained face align-
ment model for extraction of AU features. Thus the perfor-
mance of face alignment will influence the model perfor-
mance. Besides, as is show in Figure 1, although the face
alignment features provide a strong representation and the
attention area is roughly around key points, it is still hard to
to assign them very precisely without manual supervision.
Exploring how to learn individual AU attentions associated
with landmarks is a promising direction.
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