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Abstract

We propose a Cascaded Buffered IoU (C-BIoU) tracker
to track multiple objects that have irregular motions and
indistinguishable appearances. When appearance features
are unreliable and geometric features are confused by irreg-
ular motions, applying conventional Multiple Object Track-
ing (MOT) methods may generate unsatisfactory results. To
address this issue, our C-BIoU tracker adds buffers to ex-
pand the matching space of detections and tracks, which
mitigates the effect of irregular motions in two aspects:
one is to directly match identical but non-overlapping de-
tections and tracks in adjacent frames, and the other is to
compensate for the motion estimation bias in the matching
space. In addition, to reduce the risk of overexpansion of
the matching space, cascaded matching is employed: first
matching alive tracks and detections with a small buffer,
and then matching unmatched tracks and detections with
a large buffer. Despite its simplicity, our C-BIoU tracker
works surprisingly well and achieves state-of-the-art results
on MOT datasets that focus on irregular motions and indis-
tinguishable appearances. Moreover, the C-BIoU tracker is
the dominant component for our 2nd place solution in the
CVPR’22 SoccerNet MOT and the ECCV’22 MOTComplex
DanceTrack challenges. Finally, we analyze the limitation
of our C-BIoU tracker in ablation studies and discuss its
application scope.

1. Introduction

Multiple Object Tracking (MOT) is widely applied to
identify the trajectory of each object in sequential data (e.g.,
videos). It offers important information for real-world ap-
plications which include but are not limited to autonomous
driving [14], sports and dance analysis [26, 9], and animal
surveys [1, 17].

Although MOT studies have been greatly developed [5,
31, 30, 35, 34, 18], a new challenge has recently attracted at-
tention: unlike conventional MOT tasks that contain objects
with distinct appearances and regular motions, MOT tasks

MOT17 Test Set:
• Different Box Scales
• Distinct Appearances
• Regular Motion After

Removing Camera Motion

DanceTrack Test Set:
• Similar Box Scales
• Similar Appearances
• Irregular Motion After

Removing Camera Motion
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Figure 1: Tracking performance on the test sets of MOT17 [21]
and DanceTrack [26]. For a fair comparison, all methods are
online approaches and use the same detections generated by
YOLOX [13]. On the MOT17, our method has a similar HOTA
score to other methods, whereas on the DanceTrack, our method
increases the HOTA score by a remarkable margin compared to
DeepSORT [31], SORT [5], ByteTrack [34], and OC-SORT [7].

that cover animals, group dancers, and sports players, may
have indistinguishable appearances and irregular motions,
which could cause existing MOT methods to fail. In partic-
ular, as shown in Fig. 1, several MOT methods [5, 31, 34, 7]
that perform well on MOT17 [21], may experience a signif-
icant performance drop on the DanceTrack [26].

Why does the HOTA score drop significantly on the
DanceTrack? We presume that tracking failures are
caused by two reasons: (i) The detections and tracks
of identical objects do not overlap between adjacent
frames (e.g., due to the fast movement) and thus the
tracking fails; (ii) After track initialization, unmatched
tracks (e.g., occluded objects) continue to update their
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Figure 2: Illustration of how Buffered IoU (BIoU) is calcu-
lated. Our BIoU adds a buffer that is proportional to the original
bounding box. It does not change the location center, scale ratio,
and shape of the original bounding boxes but expands the original
matching space.

geometric features for multiple frames, however, if their
motion estimations are inaccurate (e.g., due to a sudden
acceleration or turning), they miss the matching oppor-
tunity when corresponding detections are available in
subsequent frames. When the appearance of objects can
be distinguished, appearance features could be employed to
alleviate issues (i) and (ii), by matching cross-frame detec-
tions based on their appearance similarities. Nonetheless,
when irregular motions are accompanied by indistinguish-
able appearances, most existing MOT solutions may not be
able to perform a dependable tracking, so a new solution is
desirable.

In this study, we propose a Cascaded-Buffered Intersec-
tion over Union (C-BIoU) tracker to track multiple objects
that have irregular motions and indistinguishable appear-
ances. Our BIoU (Fig. 2) is applied to alleviate issues (i)
and (ii). Unlike the IoU, which only forms spatiotemporal
similarities between overlapping detections and tracks, our
BIoU constructs spatiotemporal similarities for originally
non-overlapping detections and tracks if they are within the
range of the buffers (Fig. 3). Because the buffers are propor-
tional to the original detections and tracks, the BIoU does
not change their location centers, scale ratios, and shapes
but expands their matching space. With these properties,

previous 
frame

current
frame

IoU = 0
BIoU > 0

Figure 3: An illustration of BIoU forms better cross-frame ge-
ometric consistency than IoU. The bounding box of an identical
object shares the same color. The magenta object has no overlap-
ping detections between adjacent frames. Whether this is caused
by the fast movement or incorrect motion estimation, our BIoU
expands the matching space to reduce the miss matching.

our BIoU mitigates the effect of irregular motions in
two aspects: one is to directly match identical but non-
overlapping detections and tracks in adjacent frames,
and the other is to compensate for the motion estimation
bias in the matching space. Additionally, to reduce the
risk of matching space overexpansion, we incorporate the
BIoU into a cascaded matching scheme: first, alive tracks
and detections are matched using a small buffer, and then,
unmatched tracks and detections are matched again using a
large buffer. To this end, our C-BIoU tracker could relieve
mismatching caused by irregular motions and improve the
tracking performance.

We report promising results on a variety of MOT
datasets [9, 10, 1, 26] that focus on irregular motions and
indistinguishable appearances. Compared with other strong
MOT methods (e.g., OC-SORT [7]), our C-BIoU tracker
greatly improves the tracking performance, ranging from
2.6 to 7.2 in terms of the HOTA score [19]. Moreover,
the C-BIoU tracker is the dominant component for our 2nd

place solution in the CVPR’22 SoccerNet MOT and the
ECCV’22 MOTComplex DanceTrack challenges. Finally,
we analyze the limitation of our C-BIoU tracker in ablation
studies and discuss its application scopes.

2. Related Works
2.1. Appearance Consistency and Geometric Con-

sistency in MOT

In MOT studies, appearance consistency and geometric
consistency are two critical assumptions used for associat-
ing cross-frame detections. In general, the previous appear-
ance of an identical object should be similar to its current
appearance (i.e., appearance consistency), and its previous
location and shape added to its estimated motion should be
approximate to its current location and shape (i.e., geomet-
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ric consistency).
In recent works, leveraging the appearance feature for

MOT has achieved great success in conventional MOT
datasets (e.g., MOT17 [21]). In particular, after transform-
ers [28] have been introduced to MOT studies [27, 33, 20],
the appearance similarity between cross-frame detections
can be measured in a highly accurate manner, which leads
to a good tracking performance. Nevertheless, the Dance-
Track [26] study conducted experiments to demonstrate that
appearance is not always reliable when tracking targets
share a similar appearance. Other MOT datasets, such as
SoccerNet [9, 10] and GMOT-40 [1], also reveal the chal-
lenge of real-world MOT tasks: tracking targets may look
similar, which could fail MOT methods that achieved a
state-of-the-art performance on conventional MOT datasets
(e.g., MOT17 [21]).

Geometric matching can reduce the ambiguity caused by
indistinguishable appearances. In general, the IoU is com-
monly used to measure geometric consistency [6, 5, 31, 30,
35, 34, 7]. The IoU scores, between detections and track
predictions, are used to represent their cross-frame affinity.
To estimate motions, Neural Networks [22] and Bayesian
filters [2, 12] have been typically applied. While most MOT
methods [5, 31, 30, 35, 34] apply the Kalman filter [15] due
to its simplicity, OC-SORT [7] has enhanced the Kalman fil-
ter to handle crowded and occluded scenes. In real practice,
however, motion modeling may not always be accurate. In
some scenarios, for instance, soccer players and dancers
may make irregular motions, which cause the motion es-
timation model to fail. Additionally, for a non-stationary
camera, although image registration [8] can be used to cali-
brate camera movements, it is time-consuming, and the ac-
curacy cannot be guaranteed. To alleviate these problems,
we introduce a new geometric consistency measurement so-
lution.

2.2. Geometric Consistency Measurement

When irregular motions are given, it is difficult to ini-
tialize and estimate the motion correctly, which may result
in identical objects with no overlapping geometric features
in adjacent frames. Because the IoU produces the same
value of 0 for all non-overlapping geometric features (i.e.,
bounding boxes), using the IoU for geometric consistency
measurement may fail tracking initialization and ongoing
tracking. Thus, we propose a BIoU to expand the origi-
nal matching space to measure the geometric consistency,
which is robust to fast motions and motion estimation bias.
Unlike the searching window in MOT [32], which applies
the expanded bounding box as a spatial constraint, our BIoU
takes the expanded bounding box as a matching feature. To
some extent, using the GIoU [24] and DIoU [36] mitigates
the same issue as our BIoU does, but we verified that our
BIoU may generate better results under the same conditions

(Sec. 4.3).

2.3. Cascaded Matching

After obtaining the cross-frame consistency measure-
ments, matching (i.e., data association) is applied to cor-
respond cross-frame detections. In addition to the cross-
frame consistency, we can also employ other strategies to
optimize the matching process. Cascaded matching is a
commonly used approach in MOT studies: matching the
confident and easy samples first, followed by ambiguous
and difficult samples. For example, ByteTrack[34] matches
confident detections earlier than unconfident detections,
while DeepSORT [31] applies data association to recently
matched tracks before earlier matched tracks. Since our
BIoU changes the matching space, using a large buffer scale
takes a higher risk of overexpansion than using a small
buffer scale. We therefore integrate the BIoU and cascaded
matching in our tracker (Fig. 4). We first match alive tracks
and detections with a small buffer, and then match un-
matched tracks and retained detections with a large buffer.

3. C-BIoU Tracker
The architecture of our Cascaded-Buffered IoU (C-

BIoU) tracker is illustrated in Fig. 4. It is specifically de-
signed to track multiple objects that have indistinguishable
appearances and irregular motions. We inherit part of the
track management from SORT [5] and propose our C-BIoU
for geometric consistency measurement.

3.1. Tracking Pipeline

Our tracking pipeline follows the tracking-by-detection
paradigm—the object detector and MOT framework are
separately designed. Given a video, we apply the off-the-
shelf object detector (e.g., YOLOX [13]) to generate bound-
ing boxes at each frame. Our C-BIoU tracker then takes
those bounding boxes as inputs to produce tracking results.
Such a pipeline provides great flexibility to apply our C-
BIoU tracker on arbitrary detections. In our experiments
(Sec. 4.2), we also show that the similar pipeline [5, 31, 34,
7] yielded strong results on our target datasets.

3.2. Buffered IoU

The Buffered IoU (BIoU) is our main contribution in this
work. As shown in Fig. 2, the BIoU simply adds buffers
that are proportional to the original detections and tracks
for calculating the IoU. Our BIoU retains the same location
centers, scale ratios, and shapes of the original detections
and tracks, but it expands the matching space to measure
the geometric consistency. Let o = (x, y, w, h) denote an
original detection and (x, y, w, h) be the top-left coordinate,
width, and height of the detection, respectively. Suppose
that the buffer scale is b, we have the buffered detection
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Cascaded Matching
Figure 4: Framework of Our C-BIoU Tracker. Which initializes tracks from unmatched detections, applies the alive tracks to match
new detections, and terminates a track when it has not been matched for a given amount of frames (i.e., max age). Two BIoUs, which
respectively equip small and large buffers, are grouped into a cascaded matching. First, we match alive tracks and detections with the BIoU
that has a small buffer (i.e., b1). Then, we continue to match unmatched tracks and detections with the BIoU that has a large buffer (i.e.,
b2). For the motion estimation, we simply average the speeds of recent frames to quickly respond to unpredictable motion changes.

as ob = (x − bw, y − bh, w + bw, h + bh). To approach
our cascaded matching, we apply grid research [3] to find
the best combination of two buffer scales b1 and b2 on the
training set, and then apply them to the validation set and
test set. Since we have b1 < b2, when we search for the
combination of b1 and b2 within the range of 0.1 to 0.7,
the number of combinations is limited. Considering that the
speed of our C-BIoU is fast (Table 2), the grid search takes
an acceptable time.

3.3. Simple Motion Estimation

Unlike most MOT methods [5, 31, 30, 35, 34] that ap-
ply the Kalman filter [15] for state estimation, we sim-
ply average motions of recent frames to quickly respond to
unpredictable motion changes. At frame t, suppose that a
track has matched detections for more than n frames, after
∆ unmatched frames, its track state s can be represented
as st+∆ = ot + ∆

n−1

∑t
i=t−n+1(o

i − oi−1). The matched
detections between frame t−n to t are used to calculate mo-
tions and the average motion is applied to update the track
state. We set 2 ≤ n ≤ 5 by default in our experiments.
The IoU score of buffered st+∆

b and oi+∆
b is used for data

association at the frame t + ∆. Due to the simplicity of
our approach, the overall tracking speed is increased for our
C-BIoU tracker (Table 2).

3.4. Track Management

In an MOT framework, the function of track manage-
ment is to decide how and when to initialize, update and
terminate a track. We design our track management based
on the mainstream solution introduced by SORT [5], which
is also widely applied in other well-known MOT meth-

ods [31, 35, 30, 34, 7].
For the first frame, we initialize all detections as new

tracks. In each track, the corresponding detection is
recorded in memory. Without using the appearance infor-
mation, a track may need at least two tracked frames to ini-
tialize its motion estimation. For a new track, therefore,
we do not predict its motion; instead, we directly assign its
recorded bounding box as its current track state. As new
tracks have an age of 0, they are all alive tracks and can be
used to match detections. For the next frame, we apply the
BIoU with a small buffer scale b1 to calculate the geometric
affinity between detections and alive tracks. Based on the
geometric affinity, linear assignment (e.g., Hungarian algo-
rithm [16]) is applied to associate tracks and detections.

After the first matching, some tracks and detections
could be unmatched. Besides the newly appeared and dis-
appeared objects, we assume that some objects may have
an inconsistency between their detections and states of the
track. This inconsistency could be caused by large irreg-
ular motions. To alleviate this issue, we apply BIoU with
a large buffer scale b2 for the second matching. The first
and second BIoU matching form a cascaded matching. Af-
ter the second matching, we create new tracks from the un-
matched detections and terminate a track when it has not
been matched for a given amount of frames (i.e., max age).
We update the state of a track by adding estimated motions
to its current state. Meanwhile, we also update the age of
tracks. We increase the age for the unmatched tracks and
reset the age to 0 for matched tracks. This age will be com-
pared with the threshold max age to determine whether a
track should be terminated. We repeat this progress until all
frames are processed.
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Note that, we only propose a simple prototype to show
how to use our C-BIoU in MOT. Depending on the needs,
other MOT modules can be integrated with our C-BIoU to
build a more powerful MOT framework.

4. Experiments

Our experiments consist of three parts. In Sec. 4.1, we
present the details of our experimental dataset and evalu-
ation metrics. Then, in Sec. 4.2, we demonstrate the ef-
fectiveness of our C-BIoU tracker by comparing its perfor-
mance to state-of-the-art methods on four MOT datasets.
Next, in Sec. 4.3, we perform ablation studies to inves-
tigate (1) how our BIoU, cascaded matching, and motion
modeling contribute to our final results; (2) how our dom-
inant parameters, as the buffer scales, affect the tracking
performance; and (3) how detection noise influences our
C-BIoU tracker and the corresponding limitation of our C-
BIoU tracker.

4.1. Dataset and Evaluation Metrics

Datasets. Four public MOT datasets are used in our experi-
ments. MOT17 [21] covers conventional tracking scenes:
most tracking targets may have distinguishable appear-
ances, and their motions could be regular after removing
camera motions. DanceTrack [26], SoccerNet [9, 10], and
GMOT-40 [1] introduce another kind of realistic tracking
scenario, where tacking targets share a similar texture and
have irregular motions (even after removing the camera mo-
tion). Besides, compared to MOT17, more frames are in-
cluded in DanceTrack, SoccerNet, and GMOT-40, which
helps us make a comprehensive analysis.

Evaluation Metrics. Although MOTA [4] used to be a
dominant metric for the MOT evaluation, it may favor de-
tection over association performance. To alleviate the lim-
itation of MOTA, the HOTA metric [19] was proposed to
provide a better trade-off between detection and association
performance, and thus, it is the dominant metric for recent
MOT evaluations. In our experiments, we select HOTA
metrics (i.e., HOTA, DetA and AssA) [19], CLEAR met-
rics (i.e., MOTA) [4] and Identity metrics (i.e., IDF1) [25]
to evaluate the tracking results from various perspectives.
Among them, the HOTA score is our dominant metric.

Evaluation Approaches. To evaluate the test sets of
MOT17 and DanceTrack, we submit the result to their of-
ficial evaluation servers to obtain the evaluation feedback.
Meanwhile, we utilize the ground truth of the DanceTrack
validation set, SoccerNet test set, and GMOT-40 test set
to perform evaluations with the TrackEval [19] evaluation
script. In our experiments, we apply the default data split-
ting for MOT17, DanceTrack, SoccerNet, and GMOT-40.

4.2. Main Results

4.2.1 Comparisons Using Estimated Detections

Table 1 compares our C-BIoU tracker to mainstream MOT
methods on the test sets of MOT17 [21] (private detections)
and DanceTrack [26]. Each score is either from previous
studies (e.g., DanceTrack [26]) or obtained by submitting
the corresponding results to official evaluation servers. Note
that, since the detection quality can significantly affect the
overall tracking performance, for a fair comparison, meth-
ods in the bottom block use the same detections generated
by YOLOX [13]. The YOLOX weights for the MOT17 and
DanceTrack datasets are offered by ByteTrack [26] and OC-
SORT [7], respectively. As methods in the top block may
utilize better or worse detections than ours, we list them
here for reference only.

On the MOT17 test set, our method has a similar HOTA
score as other methods. As analyzed in previous work [26],
the main bottleneck in MOT17 is detection other than track-
ing. On the DanceTrack test set, our method increases the
HOTA score by a remarkable margin as compared to other
methods. Although DeepSORT [31], SORT [5], and Byte-
Track [34] can generate comparable results on the MOT17
test set, their tracking performance largely drops on the
DanceTrack test set, where more complicated object move-
ments and similar bounding box scales are included. Com-
pared to the second-best method (i.e., OC-SORT [7]), which
applies the IoU, GIoU, or DIoU for its matching, our C-
BIoU tracker has increased the HOTA score by 4.9 to make
the new state of the art. Through the above comparisons,
we prove the effectiveness of our C-BIoU tracker on con-
ventional MOT data (i.e., MOT17) and our target MOT data
(i.e., DanceTrack) that covers complicated motions and in-
distinguishable appearance.

In addition to the HOTA gain, our C-BIoU tracker can
increase the inference speed of tracking (w/o the detec-
tion part). Table 2 reports the inference speed on the test
sets of MOT17 [21] and DanceTrack [26]. Our C-BIoU
tracker leverages the average speed of recent frames other
than Kalman filters for its motion estimation. Therefore,
we reduce the computation cost for data format transforma-
tion and other calculations used in Kalman filters. On the
MOT17 and DanceTrack datasets, our C-BIoU tracker al-
most doubles the speed of OC-SORT [7] and is much faster
than other trackers. These results reveal that our C-BIoU
tracker is a practical solution for real-world applications.

4.2.2 Comparisons Using Oracle Detections
To focus only on the tracking, we perform experiments
using oracle detections from the DanceTrack validation
set [26], SoccerNet test set [9, 10], and GMOT-40 test
set [1]. The results in Table 3 indicate that our C-BIoU
tracker can significantly surpass the other methods [5, 31,
34, 26, 7], improving the tracking performance ranging
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Table 1: Results on the test sets of MOT17 [21] and DanceTrack [26]. For a fair com-
parison, methods in the bottom block use the same detections generated by YOLOX [13].
On MOT17, our method has a similar HOTA score to other methods, whereas, on the
DanceTrack, our method increases the HOTA score with a remarkable margin.

Tracker MOT17 Test Set DanceTrack Test Set

HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑ HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑
Using Other Detections
FairMOT [35] 59.3 60.9 58.0 73.7 72.3 39.7 66.7 23.8 82.2 40.8
QDTrack [23] 53.9 55.6 52.7 68.7 66.3 45.7 72.1 29.2 83.0 44.8
TransTrack [27] 54.1 61.6 47.9 75.2 63.5 45.5 75.9 27.5 88.4 45.2
MOTR [33] 57.2 58.9 55.8 71.9 68.4 54.2 73.5 40.2 79.7 51.5
GTR [37] 59.1 61.6 57.0 75.3 71.5 48.0 72.5 31.9 84.7 50.3
Using Detections Generated by YOLOX-x [13] with Input Size of [800, 1440]
DeepSORT [31] 61.2 63.1 59.7 78.0 74.5 45.6 71.0 29.7 87.8 47.9
SORT [5] 63.0 64.2 62.2 80.1 78.2 50.0 75.5 33.2 90.4 52.0
ByteTrack [34] 63.1 64.5 62.0 80.3 77.3 51.9 80.1 33.8 90.9 52.0
OC-SORT [7] 63.2 63.2 63.2 78.0 77.5 55.7 81.7 38.3 92.0 54.6
C-BIoU Tracker 64.1 64.8 63.7 81.1 79.7 60.6 81.3 45.4 91.6 61.6

Table 2: Comparison of the tracking infer-
ence speed (w/o the detection part) using
an Intel Xeon Silver 4216 CPU. The unit
is FPS (Frames Per Second). Because our
C-BIoU utilizes the average speed of recent
frames other than the Kalman filter for its mo-
tion estimation, it is faster than other trackers.
Note that, the speed of tracker is proportional
to the number of tracking objects, and when
the number of objects increases, the speed of
the tracker drops.

Tracker MOT17 DanceTrack

SORT [5] 144 271
ByteTrack [34] 118 207
OC-SORT [7] 185 341
C-BIoU Tracker 361 680

SORT

OC-
SORT

C-BIoU
Tracker

ID Switch

ID SwitchID Switch

DanceTrack Data

SoccerNet Data

OC-
SORT

C-BIoU
Tracker

SORT

ID Switch

ID Switch Assign the same ID to different persons

Figure 5: Example results on the DanceTrack validation set [26] and SoccerNet test set [9, 10]. Our C-BIoU tracker generates fewer
tracking errors than SORT [5] and OC-SORT [7].

from 2.6 to 7.2 in terms of the HOTA score. To obtain a
more comprehensive look at the tracking performance, we
plot the tracking results on multiple datasets for SORT [5],

OC-SORT [7], and our C-BIoU tracker in Fig. 5.

Although we achieve the best performance on the three
datasets, our tracking results are still imperfect even using
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Table 3: Comparisons on the DanceTrack validation set [26],
SoccerNet test set [9, 10], and GMOT-40 test set [1]. Where
“App.” and “Mo.” represent the appearance feature and motion
estimation, respectively.

Tracker HOTA↑DetA↑AssA↑MOTA↑ IDF1↑

DanceTrack Validation Set [26]. Using Oracle Detections.
DanceTrack (IoU) [26] 72.8 98.9 53.6 98.7 63.5
DanceTrack (IoU+Mo.) [26] 69.4 87.9 54.8 99.4 71.3
DanceTrack (App.) [26] 59.7 82.5 43.2 97.2 60.5
DanceTrack (IoU+Mo.+App.) [26] 68.0 97.7 47.4 97.9 58.7
DeepSORT [31] 66.8 86.1 51.8 97.4 68.3
SORT [5] 67.6 86.6 52.8 98.1 69.6
OC-SORT [7] 79.1 97.7 64.0 99.6 76.1
C-BIoU Tracker 81.7 97.6 68.4 99.3 80.5
SoccerNet Test Set [9, 10]. Using Oracle Detections.
ByteTrack [34] (reported by [9]) 71.5 84.3 60.7 94.6 -
DeepSORT [31] (reported by [9]) 69.6 82.6 58.7 94.8 -
SORT [5] 74.7 87.2 64.0 96.1 75.6
OC-SORT [7] 82.0 98.6 67.9 98.3 76.3
C-BIoU Tracker 89.2 99.4 80.0 99.4 86.1
GMOT-40 Test Set [1]. Using Oracle Detections.
DeepSORT [31] 86.4 87.9 84.9 94.2 88.6
SORT [5] 87.8 90.9 84.8 97.6 89.6
OC-SORT [7] 92.4 99.3 86.0 98.5 90.0
C-BIoU Tracker 96.4 99.7 93.2 99.6 95.6

oracle detections. Therefore, in the current research, it is
useful to construct baselines using oracle detections and fo-
cus on improving the data association performance. We
hope our baselines can motivate related research.

4.3. Ablation Experiments

We perform ablation studies to investigate the effect of
individual modules and buffer scales in our C-BIoU tracker,
as well as the effect of noisy detections.

4.3.1 Effect of Each Module in the C-BIoU Tracker
Table 4 shows the influence of each module in our C-BIoU
tracker. In detail, we present the following analysis.
Effect of the BIoU. As a comparison, we apply the BIoU
matching only once and remove the motion estimation in
Fig. 4 to construct the BIoU tracker. Using the same
framework, the tracker equipped with BIoU achieves a
higher HOTA score than other trackers equipped with IoU,
GIoU [24], or DIoU [36]. Although the GIoU and DIoU
can incorporate non-overlapping boxes for geometric con-
sistency measurement, they may not generate comparable
results as our BIoU does.
Effect of Integrating Cascaded Matching and the BIoU.
On the DanceTrack and GMOT-40, integrating cascaded
matching and BIoU can slightly improve the performance
as compared to using BIoU alone, with a HOTA gain of 0.2
and 0.1, respectively. While on SoccerNet, the improve-
ment from integrating cascaded matching and the BIoU is
more significant, with a HOTA gain of 1.2. In the SoccerNet
dataset, since the non-stationary camera can add extremely

Table 4: Ablation experiments on the DanceTrack valida-
tion set [26], SoccerNet test set [9, 10], and GMOT-40 test
set [1]. Where “C.M.” and “Mo.” represent the cascaded match-
ing and motion estimation, respectively. We remove the cas-
caded matching and motion estimation in Fig. 4 to construct
a unified framework for the IoU, GIoU [24], DIoU [36], and

BIoU. The best results obtained by tuning the parameters are re-
ported. Our BIoU performs better than the GIoU and DIoU. Using
the C-BIoU setting is better than that using the BIoU alone. The
motion estimation contributes to better HOTA scores.

Tracker C.M. Mo. HOTA↑DetA↑AssA↑MOTA↑ IDF1↑

DanceTrack Validation Set [26]. Using Oracle Detections.
IoU Tracker ✗ ✗ 76.6 97.5 60.2 99.2 73.6
GIoU Tracker ✗ ✗ 77.1 97.6 60.9 99.2 74.0
DIoU Tracker ✗ ✗ 75.1 97.0 58.2 99.2 72.9
BIoU Tracker ✗ ✗ 80.0 97.5 65.7 99.3 78.2
C-BIoU Tracker ✓ ✗ 80.2 97.5 65.9 99.3 79.3
C-BIoU Tracker ✓ ✓ 81.7 97.6 68.4 99.3 80.5
SoccerNet Test Set [9, 10]. Using Oracle Detections.
IoU Tracker ✗ ✗ 81.9 99.4 67.5 99.8 75.7
GIoU Tracker ✗ ✗ 79.8 99.7 63.8 97.8 73.4
DIoU Tracker ✗ ✗ 84.3 99.7 71.2 99.2 79.9
BIoU Tracker ✗ ✗ 87.7 97.7 77.1 99.4 83.0
C-BIoU Tracker ✓ ✗ 88.9 99.5 79.4 99.5 85.2
C-BIoU Tracker ✓ ✓ 89.2 99.4 80.0 99.4 86.1
GMOT-40 Test Set [1]. Using Oracle Detections.
IoU Tracker ✗ ✗ 93.0 99.6 86.8 98.1 90.1
GIoU Tracker ✗ ✗ 93.4 99.8 87.4 98.5 90.2
DIoU Tracker ✗ ✗ 93.6 99.7 87.8 99.2 91.7
BIoU Tracker ✗ ✗ 96.2 99.5 93.0 99.6 95.4
C-BIoU Tracker ✓ ✗ 96.3 99.7 93.1 99.6 95.5
C-BIoU Tracker ✓ ✓ 96.4 99.7 93.2 99.6 95.6

fast motion to objects, the use of cascade matching is more
robust in this case.
Effect of the Motion Estimation. According to the re-
sults, motion estimation plays an important role in our C-
BIoU tracker. Since our BIoU can compensate the match-
ing space for incorrect motion estimation, using a simple
motion estimation (i.e., averaging previous motions) yields
better HOTA scores than that without using motion estima-
tion.

4.3.2 Effect of Buffer Scales in the C-BIoU Tracker
In our C-BIoU tracker, the buffer scales b1 and b2 are crit-
ical hyperparameters. Here, we perform ablation studies
to investigate how buffer scales affect the tracking perfor-
mance. On the DanceTrack validation set [26], we form the
combination of b1 and b2 ranging from 0.1 to 0.7 and eval-
uate their tracking performance. Since we have b1 < b2, we
only need to check 21 combinations. As shown in Fig. 6, the
combination of [0.3, 0.4] gives the maximum HOTA score.
In real practice, we perform a similar approach to select the
best combination on the training dataset and apply them to
the test dataset. Note that, although the variation of buffer
scales affects the tracking performance remarkably, using
the IoU tracker can only achieve a HOTA score of 76.6,
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Figure 6: Results of applying various buffer-scale combina-
tions on the DanceTrack validation set [26]. For buffer scales
b1 and b2, since we have b1 < b2, we only check the lower trian-
gle of the combination matrix.

which is lower than using any of the above buffer combina-
tions.

4.3.3 Effect of the Detection Noise

We have shown the superiority of our C-BIoU tracker in the
previous experiments, however, we need to discuss about its
limitations. Accordingly, we conduct the following analy-
sis.

In the previous experiments, our C-BIoU tracker signif-
icantly outperforms other MOT methods when using either
high-quality detections generated by YOLOX [13] or oracle
detections. Nonetheless, assuming that we only have low-
quality detections, the robustness of our C-BIoU tracker
needs to be studied. We inject noise (i.e., False Negatives
and False Positives) to the oracle detections of the Dance-
Track validation set [26] and form noisy detections that
have quantitatively defined noise ratios. To inject detection
noise, we first remove detections to generate False Nega-
tives, and then add detections to non-target locations to form
False Positives. Both of them have the same ratios.

The results in Table 5 reveal the influence of noisy de-
tections on the tracking performance by considering noise
ratios together. To date, such an ablation study had not been
taken into account in existing studies. When the noise ratio
is not higher than 20%, our C-BIoU tracker can maintain
the best performance. However, a higher noise ratio, such
as 40%, could lead to a worse performance of our C-BIoU
tracker than the normal IoU tracker. The result is attributed
to low-ratio noisy detections, which avoids the overlapping
of the track and detection of an object in a short interval
of frames. Therefore, using BIoU matching to expand the
matching space can result in more samples being correctly
matched than IoU matching. However, for high-ratio noisy
detections, the track and detection of an object do not over-
lap in a large interval of frames. Consequently, both IoU

Table 5: The influence of the detection quality. We inject dif-
ferent levels of noises to the oracle detections of the DanceTrack
validation set [26] to quantitatively investigate the influence of de-
tection quality. IoU tracker and OC-SORT [7] are used as base-
lines. We apply IoU matching only once in Fig. 4 to construct the
IoU tracker.

Noise Ratio Tracker HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑

0%
OC-SORT [7] 79.1 97.7 64.0 99.6 76.1
IoU Tracker 76.6 97.5 60.2 99.2 73.6
C-BIoU Tracker 81.7 97.6 68.4 99.3 80.5

20%
OC-SORT [7] 61.4 78.3 48.1 79.3 65.3
IoU Tracker 57.6 79.5 41.7 81.7 59.6
C-BIoU Tracker 62.3 78.3 49.5 79.2 66.0

40%
OC-SORT [7] 28.0 40.4 19.4 41.4 34.3
IoU Tracker 38.3 58.6 25.0 60.4 40.8
C-BIoU Tracker 29.2 58.0 14.7 57.7 29.1

matching and BIoU matching may generate tracking errors.
In addition, the expansion of the matching space by BIoU
leads to more aggressive matching, which increases the risk
of missed matches with False Positives. For these reasons,
the robustness of our C-BIoU tracker decreases when ex-
tremely noisy detections are given. Fortunately, as reported
in previous works [26, 9, 1], high-quality detections can be
obtained in our target MOT datasets, since the similar ap-
pearance may ease the object detection. Thus, our C-BIoU
tracker is applicable to real-world applications despite its
limitations.

5. Conclusion and Limitation Discussion
We present a novel Cascaded-Buffered IoU (C-BIoU)

tracker to track multiple objects that have indistinguishable
appearances and irregular motions. Experiments are con-
ducted on related MOT datasets, and our C-BIoU tracker
outperforms most existing methods by a notable margin.
These results suggest that our C-BIoU tracker is generaliz-
able and promising for tracking multiple objects with indis-
tinguishable appearances and irregular motions. The good
performance of our C-BIoU tracker can be attributed to its
buffered matching space, which mitigates the effect of ir-
regular motions in two aspects: one is to directly match
identical but non-overlapping detections and tracks in ad-
jacent frames, and the other is to compensate for the motion
estimation bias in the matching space.

As a limitation, our C-BIoU tracker may not be robust
to extremely noisy detections (Sec. 4.3.3). However, with
advancements in object detection, existing studies hint that
good detections can be obtained in most MOT tasks. In ad-
dition, for other applications such as semi-automatic MOT
annotations (e.g., [11, 29]), human factors are introduced
to correct detections before tracking. Hence, our C-BIoU
tracker remains a capable solution for real-world applica-
tions due to its simplicity, fast speed, and good tracking
performance.
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Genon. The state of the art in multiple object tracking under
occlusion in video sequences. In Advanced Concepts for In-
telligent Vision Systems, pages 166–173. Citeseer, 2003.

[13] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021. arXiv preprint
arXiv:2107.08430, 2021.

[14] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for autonomous driving? the kitti vision bench-
mark suite. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3354–
3361, 2012.

[15] Rudolph Emil Kalman. A new approach to linear filtering
and prediction problems. 1960.

[16] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955.

[17] Jessy Lauer, Mu Zhou, Shaokai Ye, William Menegas, Stef-
fen Schneider, Tanmay Nath, Mohammed Mostafizur Rah-
man, Valentina Di Santo, Daniel Soberanes, Guoping Feng,
et al. Multi-animal pose estimation, identification and track-
ing with deeplabcut. Nature Methods, 19(4):496–504, 2022.

[18] Shuai Li, Yu Kong, and Hamid Rezatofighi. Learning of
global objective for network flow in multi-object tracking.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8855–8865,
June 2022.

[19] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip
Torr, Andreas Geiger, Laura Leal-Taixé, and Bastian Leibe.
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