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Figure 1: Illustration of traditional or our indirect adversarial loss. ‘D step’ and ‘G step’ refer to the discriminator and
the generator steps, respectively. In past work, the adversarial learning process was directly connected between the
discriminator outputs of real and fake samples, while we construct an indirect process among real, fake, and intermediate
distribution to avoid the attractive problem.

Abstract
In this study, we consider the weak convergence

characteristics of the Integral Probability Metrics
(IPM) methods in training Generative Adversarial
Networks (GANs). We first concentrate on a suc-
cessful IPM-based GAN method that employs a re-
pulsive version of the Maximum Mean Discrepancy
(MMD) as the discriminator loss (called repulsive
MMD-GAN). We reinterpret its repulsive metrics as
an indirect discriminator loss function toward an in-
termediate distribution. This allows us to propose a
novel generator loss via such an intermediate distri-
bution based on our reinterpretation. Our indirect
adversarial losses use a simple known distribution
(i.e., the Normal or Uniform distribution in our ex-
periments) to simulate indirect adversarial learning
between three parts – real, fake, and intermediate

distributions. Furthermore, we found the Kernelized
Stein Discrepancy (KSD) from the IPM family as
the adversarial loss function to avoid randomness
from intermediate distribution samples because the
target side (intermediate one) is sample-free in KSD.
Experiments on several real-world datasets show
that our methods can successfully train GANs with
the intermediate-distribution-based KSD and MMD
and can outperform previous loss metrics.

1. Introduction

Although the Generative Adversarial Networks
(GANs) [7] have been highly successful, training
GANs remains challenging. To tackle this prob-
lem, multiple strategies have been proposed such
as designing loss functions [1, 20], network archi-
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tectures [12, 14], and training regularization [26, 9].
Compared with f-divergence families [3, 21, 30],
Integral Probability Metrics (IPM) [29] GANs [1,
9, 20, 35] (IPM-GANs) imply weak convergence,
achieving higher generation quality [24]. Theoret-
ically, IPM methods can reach the numerical zero
between fake and real distributions if and only if
two distributions are equal [24] (Here, the real and
fake distributions refer to the posterior outputs of
the discriminator conditioned on the discriminator
inputs, later the same). For instance, the Maximum
Mean Discrepancy (MMD) shows excellent perfor-
mance in MMD-GAN [20]. Latter, the repulsive
MMD-GAN [35] changed the discriminator loss
from an attractive MMD to a repulsive MMD dis-
criminator loss and using the same generator loss as
MMD-GAN.

In this paper, we attempt to solve the attractive
problem as shown in in repulsive MMD-GAN [35]
without the mixed use of two different loss metrics
(attractive and repulsive losses), whose learning di-
rections are not unified (G steps as Fig. 1a while D
steps as Fig. 1b). Furthermore, we derive a new ideal
framework for solving such a mixing problem. We
reinterpret the repulsive MMD discriminator loss
in Eq. 3 without including the repulsiveness. Pre-
cisely, we rewrite the repulsive MMD equation via a
pseudo intermediate distribution as the learning tar-
get for the output distribution. The attractive MMD
generator loss in the original MMD-GAN [20] di-
rectly moves the fake distribution towards the real
distribution. In our explanation of the repulsive
MMD discriminator loss [35], the real distribution
is moved towards the pseudo intermediate distribu-
tion, which cannot unify the min-max game. Thus,
we propose a novel generator loss to pair with the
repulsive MMD discriminator loss that can avoid
the mixing problem via our indirect MMD losses.

We maintain a dynamic balance between fake
and real distributions near a known intermediate dis-
tribution. This learning process realizes indirect ad-
versarial learning among three distributions – fake,
real, and intermediate. Specifically, the real distri-
bution moves close to the intermediate distribution
while the fake one moves far from the intermediate
one in the discriminator steps. Then, the fake distri-

bution moves toward the intermediate distribution
in the generator steps. After training, the fake and
real distributions are close to the intermediate one,
thereby minimizing the real and fake distributions.

Moreover, computing the MMD distance re-
quires random samples from the intermediate dis-
tribution, resulting in sample-based bias during
the training process. Thus, we exploit a specific
sample-free IPM method, namely, Stein Discrep-
ancy (SD) [36], to avoid such randomness. SD
and its kernelized version (KSD) [22, 4, 5] have
been widely applied to many machine learning tasks,
such as variational auto-encoder [32], artificial sam-
pler [11], and energy-based models [8], but not yet
to training a data-driven GANs. We propose to
replace the loss functions used in previous work
with our novel KSD-based loss functions to solve
the randomness problem in our indirect version of
MMD-GAN.

Our simple yet effective method combines the
key idea of adversarial learning and KSD, namely
KSD-GAN, notably improving the training of GANs
in terms of generation quality. Our contributions are
as follow:

• We propose an indirect adversarial training pro-
cess to unify the generator and discriminator
losses in repulsive MMD-GAN (Fig. 1).

• We found KSD losses to overcome the random-
ness in the indirect version of repulsive MMD
losses to improve the learning process.

• Our real-world datasets experiments showed
superior performances to other loss metrics.

2. Background
2.1. IPM GANs

IPMs [29] were defined to maximize the differ-
ence between the expectations of the source distri-
bution p and the target distribution q via the witness
function f(·):

IPMF (p, q) = sup
f∈F

∣∣∣∣∫ f dp−
∫

f dq

∣∣∣∣ , (1)

where F in Eq. 1 is a class of real-valued bounded
measurable functions.
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Depending on the different conditions of the
witness function f(·), the IPM family involves
many types of measurements. For instance, the
Wasserstein-1 distance requires the Lipschitz con-
tinuity of function f(·). Another typical example
is MMD, which defines the witness function in the
RKHS. Besides Wasserstein and MMD, other def-
initions also matter, such as the Fisher IPM, and
SD, etc. As a result, significant successes have been
achieved with GANs based on the above mentioned
IPM definitions as the adversarial losses [1, 20, 27].

2.2. Maximum Mean Discrepancy and Re-
pulsive Loss

The squared MMD defines the difference be-
tween the source distribution p and the target dis-
tribution q based on the kernel function k(·). As
shown in [28], a mathematical approximation can
be used to compute the MMD distance numerically:

MMD(p, q) = Ey∼q[k(D(y), D(y′))]

− 2 ∗ Ex∼p,y∼q[k(D(x), D(y))]

+ Ex∼p[k(D(x), D(x′))],

(2)

where D(·) stands for the discriminator outputs, and
x and y are samples from source distribution p and
the target distribution q, respectively.

In MMD-GAN [20], Eq. 2 is used as the gener-
ator loss while the negative form of Eq. 2 is used
as the discriminator loss. Subsequently, the authors
who proposed repulsive MMD-GAN [35] showed
that negatively using Eq. 2 as the discriminator loss
leads to a smaller intra-distance among discrimi-
nator outputs in real samples, which is called the
attractive problem. Thus, they proposed the repul-
sive version of the MMD function as:

MMDrep(p, q) = Ex∼p[k(D(x), D(x′))]

− Ey∼q[k(D(y), D(y′))].
(3)

The repulsive MMD-GAN also uses Eq. 2 as the
generator loss to pair with Eq. 3. In [7], the con-
vergence of mini-max game was proved based on
JS-divergence. Replacing JS-divergence with the
MMD distance does not change the conclusion
in [7], while different loss metrics in the generator
and discriminator steps were used in [35]. Thus, the

conclusion of the convergence from vanilla-GAN
cannot be used directly in repulsive MMD-GAN.

2.3. Stein Discrepancy

Stein Discrepancy is derived from the goodness-
of-fitting test [36], which is a special case in IPM
methods. The definition of the score function in SD
infers Stein’s Identity [22]:

Ep

[
Sq(x)f(x)

⊤ +▽xf(x)
]
= 0, (4)

where the score function is Sq(x) = ▽xlog(q(x))
and q(x) is the unnormalized p.d.f. of the target
distribution. The smoothness requirement of each f
in Eq. 4 is the same as that in Eq. 1 and all f ∈ F
are in the Stein class of the p distribution. Eq. 4 can
be satisfied if and only if p = q.

Thus, Stein’s method can indicate how well a
given set of samples matches a specific target dis-
tribution. The measure S(p, q) between samples
from the source distribution and p.d.f. in the score
function Sq is defined as:

sup
f∈F

{
Ex∼p[Sq(x)f(x)

⊤ +▽xf(x)]
}
, (5)

where p is the source distribution and q is the target
distribution. It is clear that S(p, q) only depends on
the samples in the source distribution.

By introducing SD into RKHS, the authors
in [22] solved the computational problem, mak-
ing it feasible for becoming a statistical loss func-
tion in many machine learning tasks. As shown
in [22], KSD can be written in a kernelized form,
Ex,x′∼p[uq(x, x

′)], where the uq kernel can be ex-
tended as:

uq(x, x
′) = Sq(x)

⊤k(x, x′)Sq(x
′)

+ Sq(x)
⊤ ▽x k(x, x′)

+▽xk(x, x
′)⊤Sq(x

′)

+ tr(▽x,x′k(x, x′)).

(6)

Here, the choice of the k(x, x′) kernel was the
RBF kernel in all kernel-related experiments owing
to its empirical performances in past works [22, 23].
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3. Indirect Adversarial Losses

3.1. Reinterpreting Repulsive MMD loss

In [35], the discriminator removed the intersec-
tion kernel matrix (the second term in Eq. 2) be-
tween the real and fake discriminator outputs distri-
butions. First, we define a pseudo target distribution
(denoted as O), that only contains samples equal to
zero, namely, the Dirac-δ distribution as in Fig. 1.
Then, we can replace the repulsive MMD discrimi-
nator loss function in terms of this intermediate dis-
tribution O: LD = MMD(p,O)−MMD(q,O),
which moves p close to the intermediate distribution
O and moves the target distribution q away from O
in accordance with MMD distance. Because O only
contains zero, both MMD(p,O) and MMD(q,O)
have constant matrixes in the third term in Eq. 2.
Constant terms only give zero gradients in back-
propagation, allowing us to omit them. The second
term in Eq. 2 is the kernel matrix between inputs
and zeros; thus, it can be treated as a part of the reg-
ularization in the loss function. In this case, because
the discriminator loss minimizes the MMD distance
between real sample outputs and the intermediate
distribution, so no need to negatively use Eq.2, thus
no attractive problem happens. Hence, we proposed
another repulsive version of the MMD discriminator
loss function as an indirect loss function among the
real, fake, and intermediate distributions.

LD = Er,r′∼real[k(D(r),D(r′))]

− Eg,g′∼fake[k(D(g),D(g′))]

− 2 ∗ Er∼real[k(D(r), 0)]

+ 2 ∗ Eg∼fake[k(0,D(g))].

(7)

Therefore, we can generalize such indirect loss
function to the generator loss based on the interme-
diate distribution:

LG = Eg∼fake[k(D(g),D(g′))]

− 2 ∗ Eg∼fake[k(0,D(g))].
(8)

Our novel generator loss in Eq. 8 has the same
learning target as the discriminator loss in repul-
sive MMD-GAN (as Fig. 1b). Moreover, compared
with chasing the discriminator output distribution

from real samples directly in the generator step, tar-
geting O distribution can suppress circling when
the generator falls into a local minima since the
optimizer cannot ensure a better network in every
step. More importantly, we can replace Dirac-δ dis-
tribution with another simple distribution, such as
standard Normal distribution (N ).

In contrast, our generator loss may face a cold-
start problem due to the discriminator having to
sample sufficient random samples for the interme-
diate distribution. As a result, it is hard to acquire
meaningful information for the generator during the
initial steps. On the other hand, we found another
elegant way to solve this issue, called KSD. Owing
to its sample-free feature, we can treat the interme-
diate distribution as the target side q in Eq. 6. Con-
sequently, our proposed KSD-GAN can keep the
merits of indirect losses without facing randomness
in sampling.

3.2. KSD Loss Function

Firstly, we choose a simple distribution as the
intermediate distribution q, i.e., Normal or Uniform
distribution. Then, in the discriminator step, we
force the discriminator outputs from the real inputs
to move close to the intermediate distribution and
dissociate the fake ones via KSD to strengthen the
discriminating ability. Next, in the generator step,
we move the outputs of the discriminator from the
fake source close to the intermediate distribution.
Finally, the real and fake distributions achieve a
dynamic balance near the intermediate distribution.
The objective functions are as follows:

LD =Er,r′∼real[uq(D(r),D(r′))]

−Eg,g′∼fake[uq(D(g),D(g′))],

LG =Eg,g′∼fake[uq(D(g),D(g′))],

(9)

where uq kernel was defined in Eq. 6 and applied
to the outputs of the discriminator D(·). Here, our
discriminator loss function minimizes KSD distance
between the real outputs and the intermediate dis-
tribution while maximizing that between the fake
outputs and the intermediate distribution. The KSD
distance between the fake outputs and the inter-
mediate distribution is minimized in the generator
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loss function. Therefore, the ideal case for the per-
fectly trained generator will be KSD(D(r), q) =
KSD(D(g), q) = 0. In this case, the real distribu-
tion is equivalent to the generated fake distribution
under the measure of KSD. We summarize all re-
lated the loss metrics in Table 1.

3.3. Convergence

Our intermediate-distribution-based MMD and
KSD-based losses differ from past adversarial losses.
We prove their convergence property in two steps:
first, our methods belong to IPM-GANs; second,
they satisfy the conditions of IPM-GANs regarding
convergence, thus obtaining the proof.

Lemma 1. Define a real-valued bounded measur-
able function as the witness function f∗(·). Let the
q distribution be the intermediate distribution. Then
the object function of the intermediate-distribution-
based adversarial divergence in IPM-GANs is:

inf
g

sup
f∗∈F

∣∣Er∼real,g∼fake[f
∗
q (r) + f∗

q (g)]
∣∣. (10)

Proof. See Appendix A.

Corollary 2. Our intermediate-distribution-based
adversarial divergence satisfies the convergence
conditions [24] of IPM-GANs. Thus, our methods
can obtain convergence.

3.4. Choice of Intermediate Distribution

The choice of the intermediate distribution for
training GANs affects the model performance, with
a better balance achieved between quality and di-
versity by the selection of distributions for datasets
on different scales. Normal (N ) and Uniform (U)
distributions have concise equations and are suit-
able intermediate distributions. In contrast, some
complex distributions, such as mixed Gaussian and
Dirichlet distribution, are not suitable for intermedi-
ate distributions.

4. Experiments
4.1. Preliminaries

We first tested our intermediate-distribution-
based methods on MMD-based and KSD-based

losses. We trained CIFAR10 to compare uncondi-
tional generation performances, the results of which
are shown in Table 2. Our indirect MMD losses
improved the performance of repulsive MMD-GAN,
and our KSD methods achieved the top perfor-
mances. Thus, we chose MMD(δ) and KSD for
ablation experiments.

4.2. Experimental Setup

Dataset. We compared the generative qualities of
different losses based on CIFAR10 (50k training
samples, 10 classes, 322 pixels) [17], CIFAR100
(50k training samples, 100 classes, 322 pixels) [17],
and Tiny-ImageNet datasets (100k training samples,
200 classes, 642 pixels) [18]. Moreover, we trained
DCGAN on the MNIST dataset (60k gray level sam-
ples, 10 classes, 282 pixels) [19] to demonstrate the
distribution of discriminator outputs via tSNE [34]
in Appendix and validate Section 3.4. We also
trained the CelebA dataset (203k training samples,
adjusted to 642 pixels) [25] and FFHQ dataset (7k
images, 10242 pixels) [14] in Section 4.4.
Compared methods. We set three past methods
as the baselines to compare with our approaches
in Table 3. Firstly, the non-saturating loss function
(Vanilla GAN) solved the saturation problem and
showed its advantages compared with the original
loss function [7, 6]. Next, we chose the well-known
Wasserstein distance [1] with the hinge loss func-
tion [37] (Wasserstein-GAN) as another baseline
method. The hinge loss has been validated in many
past works and also achieved considerable success
in BigGAN [2]. The third baseline method was the
repulsive MMD loss [35] (Repulsive MMD-GAN).
The repulsive MMD loss improved the performance
of the original MMD-GAN [20]. We compared
the generation qualities of four different settings of
KSD-GAN, which were combinations of using Uni-
form or Normal distribution and using the hinged
kernel for either the initial or all training steps.
Hyper-parameters. We used official PyTorch[31]
implementation codes for training and evaluation.
We only edited the last layer of the discriminator
to multiple dimensions and used default settings
as in BigGAN and StyleGAN2 (e.g. the learning
rate, discriminator steps per generator step, and
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Metrics Generator loss Discriminator loss

MMD E[k(X,X ′)] + E[k(Y, Y ′)] −E[k(X,X ′)]− E[k(Y, Y ′)]
−2 ∗ E[k(X,Y )] (Eq. 2) +2 ∗ E[k(X,Y )] (negative Eq. 2)

MMD(Rep.) As above E[k(X,X ′)]− E[k(Y, Y ′)] (Eq. 3)

MMD(δ)†
E[k(Y, Y ′)] E[k(X,X ′)]− E[k(Y, Y ′)]
−2 ∗ E[k(0, Y )] (Eq. 8) −2 ∗ E[k(X, 0)] + 2 ∗ E[k(0, Y )] (Eq. 7)

MMD(N )†
E[k(Y, Y ′)] E[k(X,X ′)]− E[k(Y, Y ′)]
−2 ∗ E[k(N,Y )] −2 ∗ E[k(X,N)] + 2 ∗ E[k(N,Y )]

KSD(U)† E[uU (Y, Y
′)] (Eq. 9,q = U) E[uU (X,X ′)]− E[uU (Y, Y

′)]
KSD(N )† E[uN (Y, Y ′)] (Eq. 9,q = N ) E[uN (X,X ′)]− E[uN (Y, Y ′)]

Table 1: Equations in related works and our proposed loss metrics. ‘†’: our proposals. ‘Rep.’: ‘repulsive’ in [35]. Here, we
use ‘X’ and ‘Y ’ to abbreviate ‘D(r), r ∼ real’ and ‘D(g), g ∼ fake’, respectively. ‘N ’: samples from the intermediate
distributions N . For KSD-based losses, we list cases of Uniform or Normal distribution as the intermediate distribution
by substituting the q distribution in Eq. 9.

Metrics Vanilla(JS) Wasserstein MMD(Rep.) MMD(δ) MMD(N ) KSD(U) KSD(N )
FID↓ 12.0797 15.2348 19.5360 12.6531 16.6766 8.5005 8.5883

Table 2: Results of preliminary StyleGAN2-based [15] unconditional generation experiments among different loss
metrics. ‘Rep.’: ‘Repulsive’ and ‘δ’: the indirect MMD loss with Dirac-δ distribution. ‘N ’ and ‘U’: intermediate
distribution for the indirect adversarial losses.

betas in the Adam optimizer [16], etc.). There-
fore our implementations were different from those
original reports. For repulsive MMD-GAN exper-
iments, we used the multi-scale RBF kernel with
σ ∈ {1,

√
2, 2, 2

√
2, 4}, and our KSD used σ = 1.

Evaluation metrics. We used Inception score (IS,
higher is better) [33], Fréchet Inception distance
(FID, lower is better) [10], and Learned Perceptual
Image Patch Similarity (LPIPS, higher is more di-
verse) [38] to validate the quantitative evaluations.

For each model, we sampled 50k samples ran-
domly to calculate IS and FID. For LPIPS, we com-
puted the score for every class in Table 4 to demon-
strate the generation diversity.

4.3. Quantitative Analysis

Numerical Analysis As shown in Table 3, we com-
pared the IS and FID for three real-world datasets.
In all experiments, the training was performed with
exactly the same settings except for the loss func-
tion. The results in Table 3 indicated the following:

1) First of all, our KSD-GAN has superior perfor-
mance to the other loss functions. To be specific,
KSD-GAN with a warm start and Uniform interme-
diate distribution shows its advantages in terms of
FID; 2) Secondly, IS of KSD-GAN varies with the
settings. CIFAR10 and CIFAR100 datasets contain
images with relatively lower resolution, and Normal
distribution performs higher than Uniform distribu-
tion in these cases; 3) Furthermore, the choice of
the intermediate distribution affects the generation
quality. Generally, Uniform distribution cases per-
form higher in terms of FID. We conjecture that
Normal distribution cases tend to maintain a more
concentrated feature space than the Uniform distri-
bution, making it easier for the generator to cheat the
discriminator while losing some details in the mar-
gin. On the other hand, Uniform distribution keeps
the average prior information to acquire more de-
tails. Thus, in low-resolution learning cases, details
have lower priority, and Normal distribution case is
higher in terms of IS, while Uniform distribution is
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Metrics CIFAR10 CIFAR100 Tiny ImageNet
IS↑ FID↓ IS↑ FID↓ IS↑ FID↓

Vanilla (JS) 8.126±0.09 10.46 9.080±0.13 15.65 10.481±0.12 37.57
Wasserstein 7.554±0.09 10.99 9.272±0.15 12.07 12.666±0.16 23.83
MMD(Rep.) 7.396±0.06 10.17 6.513±0.11 30.43 6.080±0.07 74.13
MMD(δ) 9.279±0.08 7.70 9.577±0.16 8.83 10.943±0.12 28.76
KSD(N )-hinged 9.169±0.10 10.60 10.312±0.17 10.50 10.227±0.12 33.90
KSD(U)-hinged 9.166±0.08 7.15 9.831±0.18 7.63 12.706±0.18 21.48
KSD(N )-w.s. 9.327±0.10 12.52 9.736±0.13 11.87 10.715±0.16 28.43
KSD(U)-w.s. 9.128±0.09 6.05 9.781±0.06 7.35 12.205±0.22 21.47

Table 3: Results of BigGAN [2] conditional generation experiments. We compared four settings of our KSD-GAN with
three past loss metrics. MMD(Rep.) stands for the repulsive MMD loss. In our methods, ‘-hinged’ stands for using
a hinged kernel as introduced in Appendix B. ‘-w.s.’ refers to a warm start that applies a hinged kernel for first 10k
iterations.

advantageous in higher resolution learning cases; 4)
Besides, using a hinged kernel for the first 10k itera-
tions yields FID results that are greater than IS. The
IS results changed slightly, whereas the FID results
improved slightly except for the Normal distribution
case in the Tiny-ImageNet experiments. We specu-
late that removing the hinged kernel increases the
volume of information for training, enabling the bet-
ter discriminator, while also losing the protection of
convergence, which leads to different performances;
5) In some cases, KSD-GAN with Normal distri-
bution exhibited diverse performance, improving in
one evaluation metric while becoming weaker in
another. We show the generation diversity based on
LPIPS to further analyze this phenomenon.

Diversity Analysis As shown in Table. 4, KSD-
GAN experiments with Normal distribution gener-
ally showed a higher diversity than Uniform ones.
We conjecture that Normal distribution cases tend to
prioritize on generating high-quality images in sev-
eral classes while neglecting details in other classes.
Our MMD(δ) method shows a higher diversity than
MMD(Rep.) in larger categories. We speculate that
MMD(Rep.) may be trapped in trivial local min-
ima and may sacrifice more details to minimize the
losses before exploring a larger diversity, while ours
can maintain more details in the optimization. Other
statistics are available in Appendix.

Metrics CIFAR- CIFAR- Tiny-
(LPIPS↑) 10 100 ImageNet
Vanilla(JS) 0.1923 0.1544 0.4872
Wasserstein 0.1815 0.2025 0.5092
MMD(Rep.) 0.1905 0.2061 0.4428
MMD(δ) 0.1781 0.2273 0.6546
KSD(U) 0.1723 0.1655 0.4841
KSD(N ) 0.1934 0.1731 0.5519

Table 4: LPIPS mean values (higher is better) among
different classes in three datasets.

Metrics(FID↓) CelebA FFHQ
Vanilla(JS) 8.53 -
Wasserstein 7.13 7.41
MMD(Rep.) 12.78 -
MMD(δ) 3.94 5.33
KSD(U) 3.63 4.82

Table 5: FID results (lower is better) of unimodal dataset
experiments among different loss metrics.

4.4. Qualitative Results on Human Face
Generation

In our BigGAN experiments, the unimodal gener-
ation tasks were also trained on human face datasets
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(a) KSD-GAN (CelebA) (b) KSD-GAN (FFHQ)

(c) Wasserstein (CelebA) (d) Wasserstein (FFHQ)

Figure 2: Human face image generation samples of our KSD-GAN with the Uniform intermediate distribution and the
warm start settings compared with the Wasserstein baseline.

as shown in Fig. 2, and achieved FID of 3.63 for
CelebA in Table 5. We also used different losses to
continue training the pre-trained StyleGAN2 [13]
and recorded their minimum FID score after they
obtained a stable result. Our KSD losses achieved
FID of 4.82 after continuedly learning on FFHQ.
More samples are available in Appendix.

5. Limitations and Conclusion

We encountered several demerits, which were not
perfectly solved in this work. Firstly, our methods
follow other kernel-based methods, such as MMD-
GAN, which have a comparatively more hyper-
parameters to adjust. Our work mainly used simi-
lar hyper-parameters based on past literature while
maintaining an additional tuning space. Secondly,
our methods have higher computational complex-
ity in the last layer of the discriminator than some
other metrics. However, this would not be a prob-
lem at inferring stage. Finally, our methods may
make it difficult to use existing pre-trained models.
Traditional loss metrics have posteriorly defined out-
puts from the discriminator, while our proposals are
towards one explicit intermediate distribution (as

shown in Fig. 1).
In this work, our novel KSD loss function outper-

formed past loss functions in terms of IS and FID,
and had comparable LPIPS scores for several real-
world datasets. We may attempt to use an artificial
intermediate distribution in the future for specific
purposes. Owing to the simple prior hypothesis in
Uniform and Normal distributions, moving the real
or fake source close to the intermediate distribution
is relatively straightforward. However, such exist-
ing distributions are unlikely to be the barycenter
between real and fake distributions. Therefore, find-
ing an analytical way to create the distribution as
an intermediate distribution may improve the con-
vergence speed or maintain more details during the
training process. Moreover, using some pre-trained
models as the intermediate distribution may achieve
a particular domain transfer. Future works could
explore the feasibility of these ideas.
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stitute of AI and Beyond of the University of Tokyo,
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