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Abstract

Recent neural architecture search (NAS) works proposed
training-free metrics to rank networks which largely re-
duced the search cost in NAS. In this paper, we revisit
these training-free metrics and find that: (1) the num-
ber of parameters (#Param), which is the most straightfor-
ward training-free metric, is overlooked in previous works
but is surprisingly effective, (2) recent training-free met-
rics largely rely on the #Param information to rank net-
works. Our experiments show that the performance of
recent training-free metrics drops dramatically when the
#Param information is not available. Motivated by these
observations, we argue that metrics less correlated with
the #Param are desired to provide additional information
for NAS. We propose a light-weight training-based met-
ric which has a weak correlation with the #Param while
achieving better performance than training-free metrics at
a lower search cost. Specifically, on DARTS search space,
our method completes searching directly on ImageNet in
only 2.6 GPU hours and achieves a top-1/top-5 error rate
0of 24.1%/7.1%, which is competitive among state-of-the-art
NAS methods.

1. Introduction

Neural Architecture Search (NAS) [40, 28, 21, 27, 33,
23, 41] is becoming an important technique in designing ef-
ficient and effective deep neural networks. Its effectiveness
has been demonstrated in various computer vision tasks
such as classification [27, 33, 41], object detection [10, 30]
and semantic segmentation [6, 20]. Early NAS methods
[40, 28, 29] leverage reinforcement learning or evolution-
ary algorithm to search networks. But this process is ex-
tremely expensive because they need to train thousands of
candidate networks. Following works [23, 9, 36] allevi-
ate this problem using differentiable search with candidate
networks sampled from a supernet. During training, the
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network parameters and architecture parameters are opti-
mized alternatively. However, training supernet can still be
very slow and the accuracy of sub-networks in the super-
net has a poor correlation with their ground truth accuracy
[38]. To further reduce the search cost, training-free metrics
[24, 7, 2] are proposed to rank the candidate networks with-
out any training process. These metrics are largely inspired
by the pruning methods [18, 32, 31] and theoretical findings
in deep neural networks [17, 34, 35, 26]. They aim to rank
the networks from different aspects of the networks’ prop-
erties such as trainability and expressivity. These metrics
achieve competitive results with previous NAS methods at
a much smaller search cost.

However, these works overlooked a straightforward
training-free metric, the number of parameters (#Param)
in a network, which is even faster to compute than those
training-free metrics. Our experiments show that #Param
is surprisingly good on NAS-Bench-101 [37] and NAS-
Bench-201 [12]. We further discover that these training-
free metrics have a very high correlation with #Param (de-
tails in Sec. 3.1), which indicates that a large portion of
their ranking ability may come from the correlation with
#Param. To validate our conjecture, we design systematic
experiments to remove the impact of #Param. The results
show that without the #Param information, recent training-
free metrics [7, 24] do not achieve a good performance.

Motivated by the above discovery, our objective is to
develop a metric that has a weak correlation with #Param
while still being effective so that it can provide additional
information on estimating the performance of a network.
Intuitively, a network’s final performance is indicated by the
structure (e.g., #Param, #Layers), weight initialization, and
the dynamics during training (e.g., loss, gradients). We be-
lieve that metrics arise from the training dynamics should
be weakly correlated with #Param. Angle metric is a train-
ing dynamic which is first proposed in [5] to indicate the
network’s generalization ability. It is defined as the angle
between the vectorized network weights before and after
training. We find that the angle metric at the final fully-
connected (FC) layer has a high correlation with the ac-
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curacy but a low correlation with the number of parame-
ters. This indicates that it can provide additional informa-
tion other than #Param on estimating the network’s perfor-
mance. To reduce the computation for model training, we
propose an extremely light-weight training scheme with a
small proxy dataset which is thousands times faster than tra-
ditional training. Our experiments show that such a short-
training scheme already yields effective angle metrics. Be-
sides the angle metric, we also leverage the training loss as
a second metric, which achieves better performance with-
out additional computation. To summarize, we make the
following contributions.

1. We revisit recent training-free metrics and reveal how
they achieve good performance on the evaluated bench-
marks. Although training-free metrics claim to rank net-
works by estimating the model’s capacity and conver-
gence speed, our experiments show that they achieve
good performance mainly because they have high cor-
relation with #Param, and #Param happens to be a good
metric on the evaluated NAS benchmarks. Their func-

tionality is in fact similar to #Param while being unnec-

essarily complicated.

2. Motivated by our discovery, we propose a training-based
metric which provides orthogonal information to #Param
on ranking networks. Our method achieves competitive
performance with training-free methods on popular NAS
benchmarks, and the performance will be significantly
better when the #Param information is not helpful. Our
search cost is even smaller than training-free metrics.

3. Our findings raise the necessity to design new search
spaces where #Param does not dominate the model per-
formance to better evaluate the effectiveness of a NAS
metric and understand how it works. Our results also in-
spire future works to design metrics that provide orthog-
onal information to #Param because #Param may not be
a good metric in many cases (e.g., MLP vs. CNN).

2. Related work

Neural architecture search (NAS). NAS is proposed to
search network structures automatically for a given task
instead of time-consuming manual design. Early works
[40, 28, 29, 22] leverage reinforcement learning or evolu-
tionary algorithms to explore architectures. The controller
will generate some networks and the network performance
will be used as feedback information to update the con-
troller. However, training a large amount of networks is
very expensive, costing thousands of GPU days. Follow-
ing works accelerate NAS algorithms by weight-sharing in
a supernet. ENAS [27] proposes to share the weights among
candidate networks so that they can be trained simultane-
ously. DARTS [23] concatenates all candidate operations

into a supernet and each operation is assigned an archi-
tecture parameter denoting its importance. During train-
ing, the architecture parameters and weight parameters are
optimized alternatively. Another kind of weight-sharing
method is one-shot NAS [3, 4, 14], where a supernet is
trained with sub-networks stochastically sampled in each it-
eration. However, recent study [38] shows that the network
performance via weight-sharing has a poor correlation with
its actual performance.

Training-free NAS. To further speedup the search process,
recent works [24, 7, 2] propose to predict network perfor-
mance without training. [2] evaluates the effectivenss of dif-
ferent pruning-at-initialization criteria [32, 31, 18] for NAS.
NASWOT [24] leverages the number of linear regions [35]
to rank different networks. TE-NAS [7] further combines
linear regions with neural tangent kernel (NTK) [17] to rank
anetwork by its expressivity and trainability. However, [25]
shows that NTK-based metrics are unstable across different
search spaces and initializations. In this work, we further
reveal that the effectiveness of training-free metrics (Linear
Region and NTK) mainly come from the high correlation
with #Param, and #Param is a good metric on the evaluated
benchmarks.

3. Methodology

In Sec. 3.1, we first revisit several existing training-free
metrics and #Param. We demonstrate that #Param is an ef-
fective search metric on NAS-Bench-101 and NAS-Bench-
201, and that existing training-free metrics rely on #Param
to achieve high performance. Then we introduce our light-
weight training-based metric and short-training strategy in
Sec. 3.2 and Sec. 3.3, respectively.

3.1. Revisiting training-free metrics

The number of linear regions (LR) is used in [24, 7]
to rank networks at initialization. Linear region is a well-
studied theoretical criteria [35, 26] to indicate the learning
capacity of a network. It is defined as how many regions
a network could split the input space into. A larger num-
ber of linear regions indicates that the network has higher
performance. The number of LR is estimated differently
in TE-NAS [7] and NASWOT [24]. TE-NAS calculates
LR by forwarding a batch of samples to the network and
count how many samples have different activation patterns,
while NASWOT feeds a batch of samples to the network
and compute the Hamming distance between different acti-
vation patterns. The Hamming distance between these ac-
tivation patterns is used to define a kernel matrix K. The
ranking metric is defined as the determinant of K. To dis-
tinguish these two metrics, we denote the LR estimated by
TE-NAS and NASWOT as LR1 and LR2, respectively.

TE-NAS further leverages the neural tangent Kkernel
(NTK) to score networks. [17, 34] point out that the net-
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work’s convergence speed is determined by the condition
number of NTK. Intuitively, a faster convergence speed in-
dicates that the network has a higher performance. So the
condition number of NTK can be used to rank networks.
Note that in [7], NTK is negtively correlated with the ac-
curacy while in this paper we use negative NTK to make it
positive.

These theoretical indicators describe a network’s prop-
erty from different perspectives. However, the most naive
indicator to describe a network would be the number of
parameters (#Param). Intuitively, a larger model tends to
have better performance. This makes us wonder whether
the number of parameters is a good training-free metric?
The answer is yes. In Tab. 1, we show the comparison of
#Param and training-free metrics on NAS-Bench-101 [37]
and NAS-Bench-201 [12]. We evaluate these metrics based
on random search. Specifically, we randomly sample 100
networks from the search space and use the metrics to se-
lect the best one. We run each experiment 5 times and report
mean accuracy and standard deviation. Surprisingly, the re-
sults show that #Param achieves comparable performance
with other training-free metrics on different datasets.

The good performance of #Param further motivates us
to investigate whether these training-free metrics are cor-
related with #Param. We compute the Kendall rank cor-
relation coefficient (Kendall’s Tau) [16] between differ-
ent training-free metrics and #Param on NAS-Bench-101
(10000 networks) and NAS-Bench-201 (15625 networks)
in Tab. 2. As a reference, the correlation between LR1
and LR2 is 0.56 on NAS-Bench-201. Note that they are
the same metric just estimated differently, thus a correlation
of 0.56 is high. The results show that all these training-
free metrics have high correlations with #Param, especially
the two linear region metrics. This is intuitively plausible
because the number of linear regions is upper bounded by
gactivations \while the number of activation units is highly
correlated with the number of parameters. These results
imply that the ranking ability of these training-free metrics
may mainly come from the high correlation with #Param. In
Sec. 4, we validate this conjecture by evaluating training-
free metrics on networks of the same number of parameters.
Their performance drops dramatically in this situation.

What are the drawbacks of metrics having high cor-
relation with #Param? Firstly, these training-free metrics
claim to rank networks by estimating the model’s capacity
and convergence, but their functionality is in fact similar to
#Param while being unnecessarily complicated. Secondly,
#Param is not always a good metric. In the scenarios where
the #Param is not helpful (e.g., MLP vs. CNN, Residual vs.
Plain structure, networks with similar #Param as in Sec. 4),
the performance of such metrics will drop dramatically.

Motivated by these observations, we explore a new type
of metric in this work, which is weakly correlated with the

Table 1: Comparison of #Param and training-free metrics on NAS-
Bench-101 and NAS-Bench-201. Each experiment is repeated 5
times and mean accuracy and standard deviation are reported.

Metrics NAS-Bench-101 NAS-Bench-201

CIFAR-10 CIFAR-10 CIFAR-100 ImageNetl16-120
#Param 92.6(1.3) 93.2(0.5) 70.1(0.8) 41.6(4.1)
LRI 91.6(0.9) 92.3(1.1) 66.2(5.0) 43.1(2.5)
NTK 91.2(0.9) 91.9(1.7) 66.6(4.3) 41.4(4.9)
LR2 92.8(1.2) 92.6(0.9) 69.3(1.4) 43.3(2.9)

Table 2: Correlation (Kendall’s Tau) of different training-free met-
rics with the number of parameters (#Param).

Correlation with #Param ‘ LR1 NTK LR2
NAS-Bench-101 046 036 0.62
NAS-Bench-201 039 030 0.56

number of parameters while providing additional informa-
tion on estimating the performance of the neural networks.
Our proposed metric is introduced in the following sections.

3.2. Angle metric

Since existing training-free metrics all have a high cor-
relation with the number of parameters based on the ob-
servations in Sec. 3.1, we shift our attention to the train-
ing dynamics. Angle metric is a training dynamic which
is first proposed in [5] to indicate the generalization ability
of a network and later used in [15, 39] as a metric to rank
candidate networks in NAS. Considering all the weights of
a network as a one-dimensional vector, angle metric is de-
fined as the angle between the weight vectors before and
after training. Specifically, let W denote the weights of
a network IN at initialization, and W, denote the weights
after training. Then the angle metric is defined as

ey

9(N):arccos( Wo - We ),

[Wolla[[Well2

where Wy - W7 is the inner product of W and W. [39]
shows that the angle metric is positively correlated with a
network’s final performance.

However, we find that the angle metric behaves differ-
ently at different network stages. Specifically, the angle
metric computed with the weights from the feature extrac-
tion layers is positively correlated with the network’s final
accuracy, while the angle metric computed with the weights
of the prediction layer (the final fully-connected layer) is
negatively correlated with the performance. In most NAS
search spaces [37, 12, 23], the feature extraction stage is
mainly constructed by a stack of network modules. We de-
note the angle metric of the feature extraction stage 6 cq+
and the angle metric of the prediction layer 0.4 for brevity.

In Tab .3, we demonstrate the impact of model param-
eters on above two variants of angle metrics through two
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Table 3: Comparison of Kendall’s Tau of Ofcq¢ and 0prcq on 50
random networks with different sizes (different #Param) or the
same size (same #Param), respectively.

Sampled Networks ‘ Ofcat  Opred
diff. #Param 0.37 -0.50
same #Param -0.09  -0.25

kinds of network settings. We randomly sample 50 net-
works with different sizes (setting 1) and the same size
(setting 2) from NAS-Bench-201, and fully train them on
CIFAR-10. Then we compute the Kendall’s Tau of 0.
and 6.4 for these two scenarios. In setting 1, it shows
that 0.4 is positively correlated with the accuracy, which
is consistent with [15, 39], but 6,4 is negatively corre-
lated and has a higher correlation than 6¢.,,. However, in
setting 2, the Kendall’s Tau of 0., degrades dramatically
to around 0, which means 6., fails to rank the networks
without the #Param information. But the Kendall’s Tau of
Oprea degenerates less and is still able to rank the networks
of the same number of parameters. Therefore, 0y, cq is a
metric with weak dependency on the number of parameters.

3.3. Short-training scheme

In Sec. 3.2, we show @p,¢q is a good metric at rank-
ing networks even without the #Param information. How-
ever, fully training all candidate networks is too expensive
in NAS. To alleviate this problem, we propose an extremely
light-weight short-training scheme by using a small proxy
dataset from the original target dataset. Specifically, we
first randomly sample a sub-set of classes from the target
dataset. Then for each sampled class, we randomly sample
a small amount of images, generating a highly condensed
proxy dataset. We train networks on the proxy dataset for
a limited number of iterations. This training procedure is
thousands times faster than fully training a network. We
find our 6,4 metric is effective under such a compact set-
ting in different search spaces and datasets.

Besides 0,4, we also use another training dynamic, the
training loss, as an additional metric to evaluate networks.
Note that training loss comes for free in our method. In
Sec. 4, we show that training loss also has weak correlation
with the number of parameters. Combining training loss
with 0),cq gives richer information on model performance
without increasing the computational cost.

Since the scales of 0,,..q and training loss are different,
directly adding their values will cause one dominating the
other. To avoid this problem, we first use these two metrics
to rank networks respectively. Then we add their ranking
index as the final ranking index of each network. Note that
both 6,,..q and training loss are negatively correlated with
the model accuracy. For clarity, we take the negative value
of the two metrics to make them positive in the following

Algorithm 1 ST-NAS

Input: Number of candidate networks N. Search space S. Tar-
get dataset D. Training iterations m.
Output: Model with the highest rank.
> Initialization
Opred = zeros(IN), loss = zeros(IN)
sampler = RandomSampler()
Sample proxy dataset D from D
> Evaluate candidate networks
foriin0,1,...., N —1do
network = sampler(S)
Wo = network.fc.weights
Train the network for m iterations with D.
loss[i] = - compute_loss(network, D)
W = network.fc.weights
Oprealil = - compute_angle_metric(Wo, W)
end for
> Combine two metrics
Ry, , = getrankings(Oprea)
Rioss = get_rankings(loss)
R= RBPTCd + Rioss
max-idx = model index with the highest rank in R
return: S[max_idx]

experiments. Since the proposed metric employs a short pe-
riod of training, we name our NAS method combined with
this metric as Short-Training NAS (ST-NAS). A pipeline of
ST-NAS based on random search is shown in Algorithm 1.

4. Empirical study

As discussed in Sec. 3, recent training-free metrics are
highly correlated with the number of parameters, which im-
plies their effectiveness comes from the high correlation
with number of parameters. To further validate our claim,
we thoroughly evaluate different training-free metrics and
our metric on curated search spaces with the same number
of parameters. This prevents metrics from leveraging the
parameter information to evaluate networks. In the follow-
ing sections, Angle denotes searching with 0,,..q, Loss de-
notes searching with training loss and AngleLoss denotes
searching with the combination of the two metrics.

We craft several search spaces based on NAS-Bench-201
[12]. NAS-Bench-201 defines a cell-based search space.
Each cell is represented as a densely-connected directed
acyclic graph (DAG). Each cell has 4 nodes and 6 edges,
where each edge represents an operation. There are 5 can-
didate operations, including zeroize, skip-connect, 1 x 1
conv, 3 x 3 conv, and 3 X 3 avg pooling. Different mod-
els may have the same number of parameters but with dif-
ferent structures and performances. We choose 8 groups of
models, and models in the same group has the same num-
ber of parameters, i.e. {0.37, 0.40, 0.59, 0.62, 0.64, 0.83,
0.86, 1.05} M, respectively. The number of networks in
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Figure 1: Test accuracy (%) of different metrics when evaluated on networks of the same number of parameters. X-axis is the number of
parameters (M) in each network group. Each experiment is repeated 5 times and the mean accuracy and standard deviation are reported.

Table 4: Kendall’s Tau between our metrics and #Param.

Metrics | Angle Loss  AngleLoss
Correlation | 020 -0.11 0.07

each group is {1602, 540, 1602, 810, 180, 540, 180, 135},
respectively. We evaluate the effectiveness of different met-
rics on each of these network groups. We compute the
training-free metrics using the settings in the original pa-
pers [7, 24]. Our training scheme is detailed in Sec. 3.3.
We randomly sample 10 classes and 10 images from each
class. The network is trained for 50 iterations with a fixed
learning rate of 0.2. Other settings follow those in NAS-
Bench-201 [12]. Note this is the default setting throughout
our experiments if not specified.

We compare the performance of previous training-free
metrics and our metrics using random search. We randomly
sample 100 networks from each network group and select
the best-performing network per the metric. We also add
a baseline which randomly selects a network from candi-
date networks. Each experiment is repeated 5 times and
the mean accuracy and standard deviation are reported. As
shown in Fig. 1, LR2, which has the highest correlation
with #Param in Tab. 2 and the best performance in Tab.
1, performs the worst in this scenario. It is even worse
than the random baseline. Our AngleLoss metric consis-

tently outperforms training-free metrics on all the network
groups on three datasets. In most cases, AngleLoss is
higher than training-free metrics by more than 1%. We also
show our metrics’ Kendall’s Tau with #Param in Tab. 4.
As can be seen, the correlations are much lower than that
of the training-free metrics in Tab. 2. Above experiment
evidences that training-free metrics largely rely on the pa-
rameter information to rank networks, and that our metric
is advantageous by having weak correlation with the num-
ber of parameters, providing additional useful information
to estimate a network’s performance.

5. Experiments

In Sec. 5.1, we first show the comparisons of training-
free metrics and our metric on NAS-Bench-101 and NAS-
Bench-201. We apply metrics to both random search
method and pruning-based search method. Then we com-
pare our metric with other methods on DARTS search space
in Sec. 5.2. Finally, we conduct ablation studies to show the
impact of short-training hyperparameters.

5.1. Results on NAS-Bench-101/201

Random search. We first evaluate different metrics
based on random search. We randomly sample 100 net-
works from the search space and use different metrics to
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Table 5: Comparison of the test accuracy of different metrics on NAS-Bench-101 and NAS-Bench-201 based on random search (N = 100).
Each experiment is repeated 5 times to compute its mean and standard deviation.

Metrics Search Cost (s) NAS-Bench-101 NAS-Bench-201
CIFAR-10 CIFAR-10  CIFAR-100 ImageNetl16-120

#Param 3 92.58(1.26) 93.21(0.49)  70.15(0.83) 41.58(4.07)
LR1 60 91.98(1.31) 92.30(1.07) 66.23(4.96) 43.12(2.52)
LR1+#Param 60 92.52(1.37) 92.96(0.55) 69.83(0.43) 43.71(2.20)
NTK 181 91.23(1.11) 91.94(1.70) 66.63(4.29) 41.38(4.88)
NTK-+#Param 181 91.48(1.52) 93.12(0.48) 69.82(0.73) 42.39(1.61)
LR2 48 91.95(1.16) 92.65(0.93) 69.28(1.40) 43.33(2.91)
LR2+#Param 48 92.58(1.39) 93.33(0.13)  70.10(1.22) 42.83(1.49)
AngleLoss 437 92.86(0.77) 84.65(5.88)  58.06(0.40) 28.08(0.31)
AngleLoss+#Param 437 93.60(0.46) 93.46(0.59) 70.58(0.82) 43.74(1.48)
AngleLoss+LR2 462 93.47(0.47) 93.08(0.66)  69.62(0.59) 43.43(1.62)

select the best one. We follow the default settings in [24, 7]
to compute training-free metrics LR1, LR2, and NTK. Our
training settings are the same as in Sec. 4. We run each
experiment 5 times and report the mean accuracy and stan-
dard deviation. The search cost is measured on a single
GTX-1080Ti GPU.

The results are shown in Tab. 5. We add #Param as a
baseline metric in Tab. 5. It is shown that #Param performs
well on both NAS-Bench-101 and NAS-Bench-201. It is
even slightly better than training-free metrics on CIFAR-10
and CIFAR-100. Note that #Param is very easy to compute,
with a search cost of only 3 seconds on 100 networks. The
linear region based metrics (LR1 and LR2) are better and
more stable than NTK. The performance of NTK is low and
has a very large variance. Although both LR1 and LR2 are
based on linear regions, LR2 is slightly better and more sta-
ble. Note the effectiveness of training-free metrics could be
attributed to their high correlation with #Param.

Surprisingly, our metric AngleLoss does not perform
well on the overall search space of NAS-Bench-201, al-
though we have demonstrated in Sec. 4 that it is signif-
icantly better than other training-free metrics in different
network groups. By visualizing the searched network struc-
tures, we find that our Angle metric could collapse to some
trivial structures, where most of the connections are zeroize,
skip-connect or avg_pooling. Our conjecture is that in these
trivial structures, the feature extraction layers are not learn-
ing anything meaningful, and the prediction layer is opti-
mized towards random directions in each training iteration.
So the weight vector of the prediction layer almost does not
change after training, which means Angle metric will give a
high score to these structures. However, this problem could
be easily resolved if we combine our metric with #Param
to avoid the structures with a small number of parameters.
It can also be avoided when we use a pruning-based search
method. In Tab. 5, we see that our metric is significantly
boosted by around 10% when combined with #Param, and

it achieves higher performance than other training-free met-
rics. On NAS-Bench-101, we don’t have the collapse prob-
lem because there are fewer trivial structures. We achieve
significantly better performance than training-free metrics.

We also combine training-free metrics with #Param.
It shows that these training-free metrics can also slightly
benefit from #Param, but the improvement is marginal.
Taking #Param as the baseline, combined with training-

free metrics will even degrade its performance on NAS-

Bench-201 CIFAR-10 and CIFAR-100. However, our met-

ric achieves consistent improvements upon #Param on three

datasets. We also show that when combined with LR2, An-

gleLoss+LR2 improves upon LR2 on all datasets. These

experiments demonstrate that our metric provides orthogo-
nal information to #Param and training-free metrics. They
can be combined together to achieve better performance.

Pruning-based search. We also apply our metric to
pruning-based search used in TE-NAS [7]. All the settings
are the same as in Sec. 4, except that we train the supernet
for 100 iterations because it takes longer for the supernet
to converge. Each experiment is repeated 5 times and the
mean and standard deviation are reported.

We compare our method with TE-NAS in Tab. 6. The
performances of some other NAS methods are cited from
[12] for reference. We report two results for TE-NAS, one is
reported in the original paper [7] and the other is reproduced
by us using the official codes [1] since we cannot reproduce
the results in the original paper using the default setting.
The reproduced performance is lower while the search cost
is also cheaper (we evaluate it on a 1080Ti GPU, which is
the same as in TE-NAS). In Tab. 6, we can see that our
short-training method is even faster than TE-NAS. This is
because TE-NAS needs to compute two metrics (LR1 and
NTK), and for each metric it repeats 3 times and takes the
average value to have a better and stable performance. How-
ever, we only compute our metric once with an extremely
short training scheme.
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Table 6: Comparison of the test accuracy on NAS-Bench-201 based on pruning-based search in [7]. T indicates the results are reproduced
by us using the official released codes [1]. The search cost of our method and TE-NAS is measured on 1080Ti GPU while LGA is measured

on Tesla A40 GPU. The best and second best results are bold and underlined, respectively.

Method Search Cost (s) | CIFAR-10  CIFAR-100 ImageNet16-120
RSPS [19] 8007 87.66(1.69) 58.33(4.34) 31.14(3.88)
DARTS (1st) [23] 10889 54.30(0.00)  15.61(0.00) 16.32(0.00)
GDAS [13] 28925 93.61(0.09)  70.70(0.30) 41.84(0.90)
LGA [25] 5400 93.94(N/A) 72.42(N/A) 45.17(N/A)
TE-NAS [7] 1558 93.90(0.47)  71.24(0.56) 42.38(0.46)
TE-NAST [7] 682 93.20(0.29)  70.44(1.34) 42.34(0.63)
AngleLoss 508 93.16(0.37)  70.48(1.04) 43.04(1.82)
AngleLoss+#Param 508 93.36(0.26)  70.87(0.41) 43.77(1.33)

Table 7: Comparison with state-of-the-art on DARTS CIFAR-10. The best and second best results are bold and underlined, respectively.

Method ?é;rfjh dg;’:)t Params (M) Top-1 Acc (%) Search Method
NASNet-A [41] 2000 33 97.35 RL
ENAS [27] 0.5 4.6 97.11 RL
AmoebaNet-A [28] 3150 3.2 96.66 evolution
Random baseline [23] 4 32 96.71 random
DARTS (1st) [23] 0.4 33 97.00 gradient
DARTS (2nd) [23] 1.0 33 97.24 gradient
GDAS [13] 0.17 2.5 97.18 gradient
P-DARTS [9] 0.3 34 97.50 gradient
PC-DARTS [36] 0.1 3.6 97.43 gradient
SDARTS-ADV [8] 1.3 3.3 97.39 gradient
TE-NAS [7] 0.05 3.8 97.37 training-free
AngleLoss 0.09 32 97.37 short-training
AngleLoss+#Param 0.09 32 97.44 short-training

Under the pruning-based search, our metric does not
show the collapse problem as in random search. This is be-
cause pruning-based method starts from a supernet, which
is definitely non-trivial. With a limited number of prun-
ing steps, the network almost never reach a trivial struc-
ture with large numbers of empty operations. As shown in
Tab. 6, the original results of TE-NAS are better than ours
on CIFAR-10 and CIFAR-100, but the search cost is 3x of
ours. Our performance is comparable with the reproduced
results of TE-NAS at a lower search cost. On ImageNet16-
120, our metric is better than TE-NAS in both cases. We
also combine our metric with #Param with negligible addi-
tional search cost. It further improves our performance on
all three datasets by 0.2% — 0.7%.

5.2. Results on DARTS search space

We apply our metric to the pruning-based search method
used in TE-NAS [7] for the following experiments.

Results on CIFAR-10. We first compare our metric with
other methods on CIFAR-10 dataset. As shown in Tab. 7,
our metric completes the search process in 0.09 days (i.e.,
2.16 hours) on a single 1080Ti GPU. Different from the re-

sults on NAS-Bench-201, our search cost is higher than TE-
NAS in this case. This is because TE-NAS uses a smaller
batch-size to compute NTK on DARTS CIFAR-10, result-
ing in less computation. Nevertheless, our search cost is
still much lower than other NAS methods. Our metric also
achieves comparable performance with TE-NAS, but the
searched network size is much smaller. When combined
with #Param, our metric again achieves a lower test error of
2.56%, which is competitive with state-of-the-art methods.

Results on ImageNet-1K. We compare our metric with
state-of-the-art NAS methods on ImageNet-1K [11] in Tab.
8. Our short-training setting is the same as in CIFAR-10.
For evaluation, we follow [7] to stack the network with 14
cells and the initial number of channel is 48. In the top half
of Tab. 8, the networks are searched on CIFAR-10 and then
evaluated on ImageNet-1K. We can see that our metric is
competitive with state-of-the-art NAS methods with a much
lower search cost. Compared to TE-NAS, our performance
is significantly better and the network size is much smaller.
The bottom half of Tab. 8 shows the results with different
methods searched directly on ImageNet-1K. Pruning-based
search with our metric completes in only 0.11 GPU days
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Table 8: Comparison with state-of-the-art NAS methods on DARTS search space ImageNet-1K dataset.

Method ?(E;Z]i;‘l(}h dg;::)t Params (M) Top-1 (%) Top-5 (%) | Search Method Search Dataset
NASNet-A [41] 2000 53 74.0 91.6 RL

AmoebaNet-C [28] 3150 6.4 75.7 92.4 evolution

DARTS (2nd) [23] 4.0 4.7 73.3 91.3 gradient

GDAS [13] 0.21 53 74.0 91.5 gradient

P-DARTS [9] 0.3 4.9 75.6 92.6 gradient CIFAR-10
PC-DARTS [36] 0.1 53 74.9 92.2 gradient

TE-NAS [7] 0.05 6.3 73.8 91.7 training-free

AngleLoss 0.09 4.7 75.3 92.5 short-training
AngleLoss+#Param 0.09 4.7 74.8 923 short-training

ProxylessNAS [21] 8.3 7.1 75.1 92.5 gradient

PC-DARTS [36] 3.8 53 74.8 92.7 gradient

TE-NAS [7] 0.17 54 75.5 92.5 training-free ImageNet-1K
AngleLoss 0.11 4.8 74.5 91.9 short-training
AngleLoss+#Param 0.11 59 75.9 92.9 short-training

Table 9: Ablation study of different training hyper-parameters on NAS-Bench-201 CIFAR-100.

(a) Number of training iterations.

(b) Number of sampled classes.

#lters | 10 25 50 75 #Classes | 5 10 20

Cost (s) 99 230 437 673 Cost (s) 332 437 641

Acc (%) ‘ 70.22(1.08) 70.33(0.91) 70.58(0.82) 70.37(0.57) Acc (%) ‘ 70.02(0.74) 70.58(0.82) 70.30(0.74)
(c) Network initialization. (d) Number of sampled images.

Init. | Kaiming_uniform Kaiming-normal Xavier_uniform #Images | 5 10 20

Cost (s) 437 437 437 Cost (s) 347 437 627

Acc (%) ‘ 70.58(0.82) 70.40(0.70) 70.25(1.00) Acc (%) ‘ 70.26(1.08) 70.58(0.82) 70.28(0.97)

(i.e., 2.64 GPU hours), which is even faster than TE-NAS.
Our metric is more than 30X faster than the other NAS
methods. The performance of our metric alone is slightly
lower than other methods but with a smaller model size.
When combined with #Param, the performance of our met-
ric is largely improved and reaches a competitive top-1/top-
5 error rate of 24.1%/7.1%, outperforming listed differen-
tiable and training-free methods. Note that our search cost
is also significantly lower than other methods.

5.3. Ablation Study

Here we study the impact of different hyper-parameters
in our short-training scheme, including number of training
iterations, sampled classes, images per class and weight ini-
tialization methods. We conduct experiments on CIFAR-
100. The results of different settings are shown in Tab.
9. We use the random search method in Tab. 5.1 as the
baseline. We can see that longer training iterations tend to
achieve better performance. This is because longer train-
ing iterations allow the network to converge better, which
yields more informative angle metric and training loss. But
even only 10 training iterations can achieve a decent per-
formance. Increasing the number of classes does not al-
ways improve the performance. We speculate that although
more classes could provide more information about the tar-
get dataset, it also makes the proxy dataset harder, which

makes the network harder to converge in the limited itera-
tions and yields less informative angle metric and training
loss. Similarly, increasing the number of images does not
guarantee better performance either. To achieve the opti-
mal accuracy-efficiency trade-off, one may need to tune the
training hyper-parameters. But the performance is not very
sensitive to the hyper-parameters and it is feasible to tune
hyper-parameters because our method is highly efficient.

6. Conclusion

We conduct a systematic study to explore the rela-
tionship between recent training-free metrics and #Param.
Our empirical study shows that recent training-free met-
rics works similarly to #Param while being unnecessarily
complicated. Motivated by this discovery, we propose a
light-weight training-based metric which provides orthog-
onal information than #Param on estimating model per-
formance. Our method achieves competitive performance
with state-of-the-art NAS methods, while being even faster
than training-free metrics. On the search spaces where
the #Param information is not useful, the performance of
training-free metrics drops dramatically while our method
significantly outperforms them on different datasets. We
hope our work could inspire future works to design new
metrics which provide more parameter-independent infor-
mation on estimating the network’s performance.
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