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Abstract

The ability of few-shot learning (FSL) is a basic require-
ment of intelligent agent learning in the open visual world.
However, existing deep learning systems rely too heavily
on large numbers of training samples, making it hard to
learn new categories efficiently from limited size of training
data. Two key challenges of FSL are insufficient compre-
hension and imperfect modeling of the few-shot novel class.
For insufficient visual comprehension, semantic knowledge
which is information from other modalities can help replen-
ish the understanding of novel classes. But even so, most
works still suffer from the second challenge because the sin-
gle global class prototype they adopted is extremely unsta-
ble and imperfect given the larger intra-class variation and
harder inter-class discrimination in FSL scenario. Thus,
we propose to represent each class by its several different
parts with the help of class semantic knowledge. Since we
can never pre-define parts for unknown novel classes, we
embed them in a latent manner. Concretely, we train a gen-
erator that takes the class semantic knowledge as input and
outputs several filters of class-specific semantic latent parts.
By applying each part filter, our model can pay attention to
corresponding local regions containing each part. At the in-
ference stage, the classification is conducted by comparing
the similarities between those parts. Experiments on sev-
eral FSL benchmarks demonstrate the effectiveness of our
proposed method and show its potential to go beyond class
recognition to class understanding. Furthermore, we also
find when semantic knowledge is more visualized and cus-
tomized, it will be more helpful in the FSL task.

1. Introduction

It is challenging to learn novel categories well from a
limited number of training samples because the success of
today’s deep learning systems significantly depends on the
size of the training set [30]. On the contrary, humans can
learn new categories rapidly even with very few training
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samples [5]. This inspires the possibility of few-shot learn-
ing (FSL). In addition, the ability of FSL is essential for in-
telligent agents to actively learn in the open visual world [2].

There are two key challenges of FSL which are insuffi-
cient comprehension and imperfect modeling of the novel
class. The first challenge is intuitive since the limited train-
ing samples lead to inadequate visual comprehension of the
novel class. In this case, semantic knowledge (which is
information from other modalities) can be rather helpful
in FSL [38, 50, 55]. Furthermore, we argue that semantic
knowledge is actually indispensable in FSL because of the
ambiguity when representing a class by very few samples.
For example, assuming that a novel class has only one sup-
port image as shown in the top-left picture of Fig.1(a), even
humans tend to be confused about whether this class is "hat’
or 'fennec fox’ or *fox’. Thus, it is necessary to use seman-
tic knowledge to replenish the definition of the novel class.

Besides, existing semantic-using FSL methods still face
the second challenge which is imperfect modeling of the
novel class. The reason is that most FSL methods repre-
sent each class by a single global prototype which is ex-
tremely unstable and imprecise caused of its large variance
of posture, environment, illumination, occlusion, and so on.
As shown in Fig.1(a), both intra-class variation and inter-
class confusion are exacerbated in the few-shot scenario.
Therefore, a single global representation is not enough for
FSL, and more precise local information contained in se-
mantic parts is necessary. As a result, we propose to repre-
sent each class by its several different parts with the help of
class semantic knowledge. Compared with the large intra-
class variations of a single global class representation, each
part has fewer dimensions of variation, so often fewer sup-
port images are enough to represent each part of the class.
Besides smaller intra-class variations, representing class by
its parts can also obtain better inter-class discrimination.
Fig.1(b) shows the example, by comparing the discrimi-
native semantic parts (such as ears, snout, leg, etc.), two
overall similar classes can be better told apart. In summary,
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(a) A single global class representation is unstable and easily confused in FSL.  (b) Representing a class by its different parts is more stable and precise.

Figure 1: The motivation of our latent parts embedding. (a) Previous works using a single global embedding to represent a
class will lead to large intra-class variations (unstable prototype caused by posture variance, occlusion, and scene changing
which are sensible in FSL) and poor inter-class discrimination (easily confused between overall-similar classes when using
imprecise global embedding as class representation). (b) Our method represents each class by its parts with the help of class
semantic knowledge. The variations of each part are much smaller, which means our representation is more stable in FSL
scenario. And our part-based classification is more precise, so overall-similar classes can be better told apart.

parts-based representation is more suitable for the FSL task. attributes), it can be concluded that more visualized and
In order to represent each class by its parts, the first step customized semantic knowledge is more useful in FSL.

is to know what parts this class contains and then obtain

parts embeddings. As shown in Fig.1(b), we first use se- 2. Related Work

mantic knowledge of each class to generate several class-

specific part filters. It is worth noting that we can never Few-shot learning. The introduction of FSL can be
pre-define parts for unknown novel classes, so here each fil- traced back to 2006 in [12]. This work proposed the basic
ter corresponds to a class-specific latent part (ideally, ‘large approach to deal with FSL which is to learn the hard way
and pointed ears’). By using those filters to perform con- of some base classes so as to facilitate the learning of few-
volutional operations, different latent parts based on local shot novel classes. Different from the above work based
regions (like the region of large ears) can be discovered. At on bag of visual words [39, 57], Matching Networks [44]
last, we conduct the spatial reweight pooling operation to is the first to adopt deep learning in FSL and has many
get the embedding of each part. Those latent parts embed- follow-up works. From the perspective of how to transfer
dings (LPE) together form the class representation. In ad- prior from base classes to novel classes, current methods
dition, we transfer part-level visual prior from base classes can be divided into three main streams [18, 47]. The first
to refine these LPEs. This makes sense because for each one is data-based method whose aim is to generate suffi-
novel class, different part tends to be similar to different cient training data for novel class [1,17,37]. The second one
base classes’ part (e.g., the merlion’s head resembles the is optimization-based method where generalized initializa-
lion’s head while its tail is similar to the fish’s). Therefore, tion and efficient optimization strategies are designed, like
a part-level prior transfer is more reasonable than the classic MAML [14] and LSTM-based method [32]. The last one
class-level transfer and we will verify its effectiveness later. is metric-based method in which classification is performed
Then in the testing stage, we will compare the query with according to the distance in feature space [16, 40, 41, 44].
all novel classes one by one under each LPE representation Recently, there emerges some rethinking works of FSL like
so as to calculate the part-level similarity between the query the task is unrealistic and too simple [6, 14], a good embed-
and each novel class. The final score will be the weighted ding is better than complicated meta-learning methods [42].
average of the part similarity scores. Experiments on sev- Similarly, in this paper we rethink that semantic knowledge
eral few-shot learning datasets not only demonstrate the ef- is indispensable for FSL otherwise class definition will be
fectiveness but also show its potential to go beyond class- ambiguous as mentioned above.
level recognition to part-level understanding. Furthermore, Semantic-using few-shot learning. In recent years,
by comparing the performance of different semantic sources there has been a trend of using semantic knowledge to as-
(e.g., Word2Vec [29], CLIP semantic embeddings [31], and sist FSL. The inspiration for using semantics comes from a
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closely related topic, i.e., zero-shot learning (ZSL) [10, 21,
22]. The semantic knowledge source can be attributes [22],
embeddings from pre-trained language models [27], knowl-
edge bases [7], etc. In this paper, we will explore different
semantic sources in our framework to find which semantic
is more suitable for FSL. Different previous methods use
semantic in different granularity, like task-level [9], class-
level [8,46,50,52], and part-level [55].

Part-based object understanding. Since objects are
made by parts, part-based disentanglement is of vital im-
portance for object understanding. In object detection, there
are some classic part-based models like DPM [13] and its
follow-up works [3,28]. In these methods, all parts are
well-defined. However, in FSL scenario, the large variety
of categories causes the diversity of parts and we can never
pre-define the parts for novel classes. So in our framework,
we perform latent parts discovery instead of using explicit
pre-defined parts. To that end, we use class semantic knowl-
edge as the guide. Actually, many recent works in FSL are
already focusing on the local representation [9, 25,48, 56].
However, these methods ignore the importance of semantic
knowledge that can be really helpful in parts discovery.

3. Approach

Fig.2 shows the framework of our proposed method
which will be described in detail in the following subsec-
tions. We introduce the class-specific latent parts filters gen-
eration module in §3.1 and latent parts discovery module
in §3.2. Then, §3.3 describes how to transfer latent parts
representation from similar base classes. After that, §3.4
demonstrates part-based classification pipeline of the query
image. At last, we describe the training strategy and loss
functions of our framework in §3.5.

Problem Formulation. The target of FSL is to learn
how to learn novel classes based on M base classes (de-
noted as V). A typical testing protocol is the N-Way, K-
Shot setting, which means there are N novel classes (de-
noted as )") in each few-shot learning task where the base
classes and novel classes are disjoint, i.e., YNy = (. We
use the index {1,..., M} to represent the base classes and
{M+1,..., M+ N} to represent the novel classes. The base
classes dataset (denoted as D?*¢) has plenty of samples per
class, while the novel class dataset named support set (de-
noted as D"°V*) has only K labeled samples per class. As
we can see, D" = {(a@;, ;) | @ € X,y; € YK
X C R¥WXHXW denotes the d, dimension visual space
which keeps the spatial information of visual feature map.
Apart from visual space, we leverage semantic knowledge
S = {s¢ € R%E}MHN of both base and novel classes like
other works, where the dg is the dimension of semantic
space. And in this paper, we try to adopt different semantic
knowledge as the source. At last, the goal of FSL is to learn
the classifiers for novel classes frg : X' — V.
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3.1. Class-specific Latent Parts Filters Generation

Here we introduce the convolutional filter generators,
each of which corresponds to a class-specific latent part of
this class. As shown in the yellow-background region in
Fig.2, this module generates P convolutional filters inde-
pendently based on class semantic knowledge. These filters
will be used for latent parts discovery in the next step.

Concretely, the input of this module is the class semantic
vector s° € S. And the module outputs are P convolutional
filters. As shown in Fig.2, there are P different MLPs: {qu :
R — Rév*1<13 P Every MLP independently maps
the class semantic vector from semantic space to a 1 x 1
convolutional filter in visual space. Take the p-th MLP ¢,
as the example:

e))

Thus filter; € R%>*!*1 js the 1 x 1 convolutional filter
corresponding to the p-th latent part of the class c. Simi-
larly, we can get P convolutional filters for each class. In
the following subsections, we will conduct the latent parts
discovery on the visual feature map based on these gener-
ated class-specific latent parts filters.

filter;, = ¢, (s°).

3.2. Latent Parts Discovery

After class-specific latent parts filters generation, each
class has P convolutional filters [filter], ..., filter]. Now
we use these filters to perform latent parts discovery on spa-
tial feature maps of the support set images.

As shown in the green-background region in Fig.2, every
filter will be used to perform a convolutional operation on
spatial feature map ¢ € R%*H*W generated by feature
extractor (without the last global pooling layer) and get the
spatial activation map:

aC

»(x°) = sigmoid(z© © filter),),

(@)
where (x¢,¢) € D! is one support sample of class c,
D C D"vel s the subset of the support set which con-
tains the samples belonging to class c, filter;, € Ré*1x1
is the p-th 1 x 1 filter of class ¢, and ® denotes the con-
volutional operation. Therefore, each value in the spatial
activation map a$ () € R *"W represents how likely this
local region contains the corresponding latent part of this
class. It is worth noting that the last operation is a sigmoid
function, thus the activation value is bounded between [0,1].

After the above convolutional operation, for each support
image we get P spatial activation maps corresponding to P
latent parts of this class. Then we use these spatial activa-
tion maps to perform region-based attention and weighted
average pooling on the original spatial feature map. We use
the activation values as the pooling weights. Therefore, we
can get P latent parts embeddings. Since the weighted aver-
age pooling is based on region attention, we call this process



Feature map x¢

Feature
Extractor

Visual Branch

! Semantic Branch

Convolutional kernel:

i
|
i
i
| filter§

E Class semantic vector s¢
! (e.g., CLIP(‘'Fennec Fox"))

Convolutional kernel:

Class-specific Latent Parts Filters Generation

-—»O—»

Ji—(O—
Convolutional kernel:
Filters 1

Latent Parts Discovery

\ Base Classes J
; LPE_t5(x%)
GAP, ’_’
\Latent Part Embedding:

I 1
ai(x) | '

LPE s{(x°)

|
|
]
®w,. J—>|
1 \Latent Part Embedding:
az(x) | { LPE_s§(x%)

Class Representation

) based on Latent Parts:
[LPES, LPES, ..., LPES]

JBJSURI| IOld [9A8|-14Bd

|
|
®GAP|
iLatent Part Embedding:
1 LPE_s§(x%)

L | ® Hadamard Product!
! I

| gap Global Average !
\ Pooling ;

Figure 2: The framework of our proposed latent parts embeddings method. It contains three steps to obtain the final class
representation. (1) Generate P convolutional filters from class semantic knowledge. Each filter corresponds to one latent part
of the class. (2) Utilize these filters to perform latent parts discovery by spatial reweight pooling operation and get P latent
parts embeddings. (3) Transfer part-level visual prior from base classes to the novel class so as to refine the final latent parts
embeddings. At last, these latent parts embeddings together form the class representation of the current novel class.

latent parts discovery. Take the p-th latent part embedding
derived from support image as an example:
LPE s, (z°) = GAP(z° ® ay(x")), 3)
where ®@ denotes Hadamard product (i.e., element-wise
product), and GAP is the global average pooling. In other

word, we perform a spatial reweight pooling operation on
x¢ to get the latent part embedding LPE_s; (z°) € R,

3.3. Part-level Prior Transfer from Base Classes

So far, we get P LPEs for each support image . How-
ever, the representation is still facing the unstable problem
caused by too few labeled samples. Therefore, in this sub-
section, we try to explicitly transfer visual prior from base
classes to novel classes, so the LPEs can be more stable and
precise. The most interesting thing here is that we perform
part-level transfer instead of the classic class-level proto-
type transfer. Actually, it makes more sense to transfer prior
knowledge at the part level since the similarity between two
categories is always at the part level (e.g., merlion and lion
are similar in the head part while merlion and fish are simi-
lar in the tail part).

Unlike previous works using one classification weight
for each base class, our framework has P classification
weights that correspond to P latent parts of each base class.
In other words, we also use latent parts embeddings to rep-
resent base classes. Thus, the classification weight for base
class jis W/ = [W{,...,W}] € R%*F where WJ € R%
is the weight corresponding to the p-th LPE. Now we can
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transfer visual prior from classification weights of base
classes Wigse = {W/ }Jle to class c:

> cos (¢p - LPE s (x°), k) ) - W7,

JEYP
“4)
where 1, € R%*dv jg a learnable matrix corresponding
to the p-th latent part, {kJ, € R} are M learnable
keys corresponding to the p-th latent part, and ), trans-
form the p-th latent part embedding LPE s, (x°) to a query
vector, which will be used to perform cosine similarity cal-

culation with k:; to determine how much of this base class’s

LPE t¢(z°)

LPE W;, should be transferred. By transferring visual prior
knowledge from base classes, we model the final LPE of x*¢
as the combination of LPE s, (z¢) and LPE t (x°):

LPE,(z°) = A\ x LPE_s%(2°)+ A x LPE_t(z°), (5)

where A1, Ao € R are learnable coefficients.
Note that in N-Way K-Shot setting, each novel class has
K support samples, here we average all K LPEs along the
shot dimension to obtain the final LPEs of the novel class c:
1

LPE’
"Dy

S LPE, ),
(@°.c)eDp
where |DY| = K. At last, we obtain the final LPE of novel
class c: LPE® = [LPES, ..., LPE}] € R%*F,

3.4. Part-based Query Classification

(6)

Based on these final latent parts embeddings of novel
classes, now we can perform the few-shot classification.
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Figure 3: The classification pipeline based on our latent parts embedding. To obtain classification scores, we assume the
query to be novel class 1 to N respectively (in this figure we only demonstrate one class ¢), and calculate the part-level
similarity under each novel class’s LPE representation. The final score is the weighted average of the part similarity scores.

As shown in Fig.3, for query sample ¢ € R%»*HxW oyr

framework will compare the query with N novel classes one
by one under each LPE representation so as to calculate
the similarity between query g and each novel class. Con-
cretely, to verify whether the query belongs to class ¢, we
first calculate the latent parts activation maps {ag(q)};_,
by performing P convolutional filters of class c to query q
just like the process mentioned in 3.2:

(7

Based on these spatial activation maps, P latent parts em-
beddings of query LPE q° = [LPE _qf, ..., LPE _q%] can
be calculated as:

a;(q) = sigmoid(q © filtery).

LPE q, = GAP(q ® a,(q))- (8)

Then based on the query’s LPE LPE,q; and the LPE
of novel class ¢ LPE;, the cosine similarity for p-th latent
parts embedding can be calculated as

®

We model the final similarity score as the weighted sum
of P LPE similarities:

scores(q) = cos (LPE_q;, LPE;) .

P
1
score®(q) = —p——————; ) Weight;, - score;(q),
> p—1 Weighty ; P !
(10)
where the weight coefficients weight® =

[weight$, ..., weight},] € RY are generated by a learnable
MLP g : R% — RF which takes the semantic vector as
input and output the weight coefficients:

(In

It is worth noting that MLP g is designed to leverage the
class semantic knowledge to learn the importance of each
latent part with respect to each novel class.

weight® = g(s).
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3.5. Training Strategy and Loss Functions

Unlike most previous FSL works containing two training
stages, we conduct a one-stage end-to-end training by the
meta-learning strategy. There are three loss functions. The
first is the loss on base classes which contains 2 parts, one
is standard cross-entropy loss while the other is LPE-based
cross-entropy loss (the objective of the second term here is
to learn the part-level base prior W, . mentioned above):

exp (Wﬁq’ + Bi)
‘| (Wﬂq’ + Bj)

‘cbase =-1lo

g
ZL;);1 exp
exp (score’(q’)/7)
SV exp (scored (q')/7)’

where (q’,i) is one of the base query samples, W and b’
are standard base classification weight and bias for class j
respectively, 7 is the scalable coefficient for cosine similar-
ity making it more suitable for cross entropy calculation.
The second loss is few-shot classification loss corre-
sponding to the classification process mentioned above:

exp (score®(q)/T)
S exp (score’ (g)/7)”
where (g,c) is the query sample of the fake novel class sam-
pled from base classes to simulate the few-shot scenario (no
real novel samples are used since this is in meta-training).

The third loss is a divergent loss which is introduced for
learning different P latent parts:
P

L& < LPES, LPES >
L v — - 2 JC ,
' ;;a:;¢ ILPES||, [[LPES,

j
We model the final loss function as the combination of
these three losses by coefficient A and Az,

L = Loase + ALfgr + AdivLaiv-

(12)

—log

L = —log (13)

(14)

15)



4. Experiments

In this section, we first introduce the experiment setting,
then verify the effectiveness of our proposed method, and
then give some visualization results of our methods, fol-
lowed by benchmark comparisons.

4.1. Datasets and Settings

Datasets. We conduct our experiments on 4 widely used
FSL benchmarks, i.e., minilmageNet [44], tieredlmageNet
[34], CIFAR-FS [4], and CUB [45]. MinilmageNet and
tieredImageNet are derivatives of ImageNet dataset [36],
CIFAR-FS is derived from CIFAR-100 dataset [20,43]. The
summary can be found in the supplementary material.

Semantic knowledge source. As for benchmarks with-
out semantic knowledge annotations (e.g., class-aware at-
tributes annotations) such as minilmageNet, tieredlma-
geNet, and CIFAR-FS, previous works always leverage pre-
trained Word2Vec models such as GloVe [29] as the seman-
tic source. In this paper, we take a further step and try to
leverage more visualized and customized semantic knowl-
edge source like the semantic encoder of CLIP [31]. The
dimension of GloVe vectors is 300 and the dimension of
CLIP semantic embedding is 512. It is worth noting that,
to avoid unfair comparison, only the pre-trained semantic
encoder of CLIP will be used in this paper, and CLIP vi-
sual encoder will not be used. Given that CLIP is trained
to align visual and semantic space, the semantic encoder of
CLIP is accurately a more visualized semantic knowledge
source. As for benchmarks with semantic annotations such
as CUB, the customized attributes annotations which have
312 dimensions can be used as the semantic knowledge.

Implementation details. We implement our code us-
ing PyTorch framework!. Following most previous works
[8,16,24,26,35,48], we utilize a ResNet-12 as our backbone
for all datasets. We also change the number of filters from
[64,128,256,512] to [64,160,320,640] same as most of pre-
vious works [19,23,33,42]. The class-specific latent parts
filter generators are P MLPs, with 2 fully connected layers
and the LeakyReL.U nonlinearity layer between them. Net-
work ¢ designed for learning importance for each part is an
MLP too, with 2 fully connected layers and the LeakyReLLU
nonlinearity layer between them, followed by sigmoid non-
linearity. Inspired by [11], we use Z-Score as the normaliza-
tion of feature representation. Other parameters such as \q,
A2, and temperature ¢ are tuned during end-to-end training.
More details can be found in the supplementary material.

4.2. Effectiveness of the Proposed Method

To demonstrate the effectiveness of our proposed
method, we verify each part of our framework in the order

IThe codes are available at both http://viplict.ac.cn/zygx/dm/ and
https://github.com/MartaYang/LPE
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of the pipeline, including performance comparison when
using different semantic sources, the effectiveness of LPE
representation, the effectiveness of prior knowledge trans-
fer, and the influence of hyperparameters such as P and .
(1) The effectiveness of different semantic knowl-
edge sources. Since our method tries to leverage seman-
tic knowledge to guide the latent parts discovery which is
a more difficult task than other semantic using methods,
the robustness of semantic knowledge is rather important.
Therefore, apart from commonly-used Word2Vec, we ex-
plore more visualized and customized knowledge source
CLIP semantic which established the alignment between
visual space and semantic space. Tab.l shows the com-
parison results on minilmageNet when using different se-
mantic sources to guide the LPE representation. As we can
see, both the result of using CLIP semantic (the 1st row of
Tab.1) and using GloVe (the 2nd row of Tab.1) significantly
outperform the result of no semantic baseline (the 3rd row
of Tab.1), which shows the effectiveness of semantic using.
In addition, by comparing the result of CLIP and GloVe, us-
ing CLIP as the semantic source outperform GloVe which
means more visualized semantic is more powerful in FSL.

Table 1: Comparison result on minilmageNet when using
different semantic knowledge sources.

Semantic source || 5-Way 1-Shot | 10-Way 1-Shot
CLIP semantic 71.64+0.40 53.20+0.28
GloVe 68.28+0.43 50.06+0.28
no semantic 65.57+0.44 48.64+0.29

The experiments above demonstrate CLIP semantic em-
bedding is better than GloVe word embedding, now we
compare the results of CLIP semantic embedding and cus-
tomized annotations on CUB where every bird class in this
dataset has precise attribute annotations. As shown in Tab.2,
the performance when using attribute annotations is better
than CLIP. The reason is that coarse-grained CLIP semantic
embeddings will not work well in the fine-grained setting.
Attribute annotation is more customized semantic knowl-
edge of CUB classes so it outperform the CLIP semantic.

Table 2: Comparison result on CUB when using different
semantic knowledge sources.

Semantic source 5-Way 1-Shot | 10-Way 1-Shot
CUB attributes annotations 85.04+0.34 77.74+0.27
CLIP semantic 80.76+£0.40 67.704+0.33
no semantic 77.35+0.44 64.91+0.35

To sum up, from the results on minilmageNet and CUB
(i.e., annotations > CLIP > GloVe), we can draw the con-
clusion that when the semantic knowledge is more visual-
ized and customized it will help more in FSL.

(2) The effectiveness of LPE representation. As shown
in Tab.3, when we set number of latent parts P to 1, there
is a significant decline in FSL performance compared with
P = 5. Note that when P = 1, it degenerates to the global



class embedding. This ablation result shows that latent parts
embedding is better than global class embedding so as to
demonstrates the effectiveness of our key module.

Table 3: Ablation study of our proposed LPE representation
on minilmageNet and CUB.

minilmageNet CUB
Models 5-Way 1-Shot | 5-Way 1-Shot
5 LPEs (i.c., P=5) (ours) 71.64£040 | 85.0420.34
TLPE (ic., P=1) (ablation) | 64.0320.46 | 76.95+0.44

(3) The effectiveness of visual prior transfer from
base classes. As shown in Tab.4, there is a decline in FSL
performance if don’t perform the transfer, which shows the
importance of the visual prior knowledge transfer from base
classes. It is also worth noting that the effectiveness comes
from the more human-like transfer mechanism. As men-
tioned above, it makes more sense to transfer visual prior
based on part-level instead of class-level.

Table 4: Ablation study of our proposed part-level visual
prior transfer from base classes on minilmageNet and CUB.

minilmageNet CUB
Models 5-Way 1-Shot | 5-Way 1-Shot
w/ transfer (ours) 71.6440.40 85.04+0.34
w/o transfer (ablation) 64.33+0.46 77.394+0.45

(4) The influence of the latent parts number P. Fig.4
gives the 5-Way 1-Shot accuracy of different P on validation
set of minilmageNet and CIFAR-FS. The best performance
is achieved when P = 5, so we set P = 5 for testing. The
accuracy rises with the growth of P since more latent parts
can offer more precise modeling of novel classes. However,
after reaching the peak at P = 5, the accuracy presents a
declining trend when P further increases. The reason is that
parts of interest for a class are always limited. Too many
parts may cause redundancy and even bring in noise.

val ACC (%)

25

5.0 7.5 10.0 12.5

Figure 4: The effect of the number of latent parts P on the
validation set of minilmageNet and CIFAR-FS.

15.0 17.5 2.0

ber P

(5) The influence of the loss weight coefficient \. Fig.5
shows 5-Way 1-Shot results when setting different weight
coefficients A on the validation set of minilmageNet and
CIFAR-FS. From Eq.15, a larger A means more weight on
few-shot classification loss. As we can see, when A\ is too
small, the few-shot classification loss is suppressed by stan-
dard cross-entropy loss on base classes, making the perfor-
mance remains the same as baseline. And with the growth
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of A, the accuracy presents a rising trend, because the LPE
representation can be trained more sufficiently. In addition,
after reaching the peak at A = 2.0, the accuracy slightly
drops as A increases. This is because that cross entropy loss
on base classes is also essential for feature space training so
we set A = 2.0 for testing as the balance of these losses.

s dataset

—— nini ImageNet 7 ~~
=== CIFAR-FS

1.5 2.0
weighted coefficient A

Figure 5: The effect of few-shot loss weight coefficient A
on the validation set of minilmageNet and CIFAR-FS.

4.3. Dive Deep into Latent Parts

25 3.0

In order to explore what exactly novel classes’ latent
parts are, we visualize the activation map a;, as shown in
Fig.6. Results in different columns correspond to different
latent parts of the corresponding novel class. Firstly, as we
can see P activation local regions are different for the same
support image, which demonstrates different latent parts in-
deed capture different aspects of the category. Secondly, the
visualization results show that similar parts are highlighted
in the same columns (e.g., the breast part of different birds
are activated in the Ist column of Fig.6, and the head and
tail parts are activated in the 3rd column of Fig.6). This
phenomenon demonstrates that the same latent parts filter
generator tends to discover similar parts or attributes. This
shows the potential of our model to align with real semantic

parts and the potential of part-based class understanding.
Latent PuLt_1 ; Late_v_ﬂ_: lzart_z

Latent Part_3 Latent Part_4 Latent Part_5

< ! AN :
Figure 6: Visualization results of the activation regions of P
(=5) latent parts on novel classes of CUB. The redder region
means higher activation value.
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4.4. Benchmark Comparisons and Evaluations

After verifying the effectiveness of the proposed meth-
ods, in this subsection we compare our method with other
SOTA FSL methods. Tab.5 shows the results on mini-
ImageNet and tieredImageNet dataset. Note that TriNet,



Table 5: Comparisons with popular FSL approaches in average classification accuracies (%) on minilmageNet and tieredIm-
ageNet. We report the average classification accuracies with 95% confidence intervals. “Sem.” denotes whether to leverage

semantic knowledge.

minilmageNet tieredImageNet

Models Backbone | Sem. || 5 v 1 Shot 5-Way 5-Shot | 5-Way 1-Shot 5-Way 5-Shot
Matching Networks (NIPS’16) [44] || 4Conv No 43561084  55.31+0.73 - -
MAML (ICML’17) [14] 4Conv No 4870+£1.84  63.1140.92 | 51.67+181  70.30+1.75
ProtoNet (NIPS’17) [40] 4Conv No 49424078 68.2040.66 | 53.31+0.89  72.69+0.74
Dynamic-FSL (CVPR’18) [15] 4Conv No 56.2040.86  72.81+0.62 - -
wDAE-GNN (CVPR’19) [16] WRN-28-10 | No 61.07+£0.15  76.75£0.11 | 68.18+0.16  83.09:£0.12
MetaOptNet (CVPR’19) [23] ResNet-12 | No 62.64£0.61  78.63£046 | 65994072  81.56:+0.53
DeepEMD (CVPR’20) [56] ResNet-12 | No 65914082 82414056 | 71.16:0.87  86.03£0.58
RFS (ECCV’20) [42] ResNet-12 | No 64.8240.60  82.14+043 | 71.5240.69  86.03-:0.49
Neg-Cosine (ECCV’20) [26] ResNet-12 | No 63.85£0.81  81.5740.56 - -
ODE (CVPR21) [51] ResNet-12 | No 67.76£046  82.7120.31 | 71.89+0.52  85.96+0.35
IEPT+ZN (ICCV’21) [11] ResNet-12 | No 67.35:043  83.04£0.29 | 72.28+051  87.20£0.34
TPMN (ICCV’21) [48] ResNet-12 | No 67.6440.63  83.44+043 | 72244070  86.55+0.63
DeepBDC (CVPR’22) [49] ResNet-12 | No 67.83+£043  85.45+£029 | 73.824047  89.00+£0.30
TriNet (TIP’19) [8] ResNet-18 | Yes | 58.1241.37  76.9240.69 - -
AM3 (NIPS’19) [50] ResNet-12 | Yes | 65304049  78.1040.36 | 69.08+£047  82.58-+0.31
LPE-GloVe (ours) ResNet-12 | Yes | 68.284043  78.88+0.33 | 72.03£049  83.76+0.37
LPE-CLIP semantic (ours) ResNet-12 | Yes | 71.64+040  79.67+0.32 | 73.88:£048  84.8840.36

Table 6: CIFAR-FS results.Test setting is the same as above.

Models CIFAR-FS
5-Way 1-Shot  5-Way 5-Shot

MAML (ICML’17) [14] 58.9+1.9 71.5+1.0
ProtoNet (NIPS’17) [40] 55.5+0.7 72.0+0.6
MetaOptNet (CVPR’19) [23] 72.0+0.7 84.2+0.5
RES (ECCV’20) [42] 73.9+0.8 86.91+0.5
TPMN (ICCV’21) [48] 75.54+0.9 87.240.6
LPE-GloVe (ours) 74.88+0.45 85.30+0.35
LPE-CLIP semantic (ours) 80.624+0.41 86.22+0.33

Table 7: Results on CUB. Test setting is the same as above.

CUB

Models 5-Way 1-Shot  5-Way 5-Shot
TriNet (TIP’19) [8] 69.61+0.46 84.10+0.35
MultiSem (CoRR’19) [38] 76.1 82.9
FEAT (CVPR’20) [54] 68.87+0.22 82.90+0.15
DeepEMD (CVPR’20) [56] | 75.65+0.83 88.69+0.50
VS-Align ICMR’21) [52] 77.03£0.85 87.20+0.70
IEPT+ZN (ICCV’21) [11] 73.54+0.48 87.82+0.30
LPE-CLIP semantic (ours) 80.76+0.40 88.98+0.26
LPE-attributes (ours) 85.04+0.34 89.24+0.26

AM3, and our method leverage semantic knowledge while
other methods do not leverage semantic knowledge. As
we can see, our method outperforms other semantic using
methods and achieves the highest performance especially
in the 5-Way 1-Shot setting. It is also worth noting that by
the help of semantic knowledge, our method outperforms
TPMN [48] which also adopts part-level representation but
in unimodal setting. In addition, as shown in Tab.6, our
method also gets competitive results on CIFAR-FS.

Like many other semantic-using FSL methods [38, 50,
53], the performance gain derived from semantic will de-
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cline when the number of shots gets larger because the vi-
sual embedding itself gets more stable and accurate when
there is more visual information. As the saying goes “a pic-
ture is worth a thousand words”, the assistance from seman-
tic knowledge will drop down in the larger shot scenario.
However, as shown in Tab.7 when using more customized
semantic knowledge (e.g., attributes annotation in CUB) our
methods can still have an advantage in larger shot scenarios.

5. Conclusion

In this work, we propose to represent a class as the com-
bination of several latent parts embeddings (LPE) with the
help of class semantic knowledge. Each part has fewer vari-
ations and can be more easily represented by fewer sam-
ples, and the classification based on parts is more accurate,
so LPE is more suitable for the FSL task. In addition, we
propose to transfer part-level visual prior from base classes
to novel classes which makes more sense since the similar-
ity between the two categories is actually at the part level.
From extensive experiences, we find out that (a) semantic
knowledge is indispensable for replenishing the definition
of the novel class otherwise FSL task will somewhat be am-
biguous because of limited training samples, (b) the more
visualized and customized semantic source is more useful
in FSL, and (c) our method has potential for real semantic
parts discovery in FSL which is a vital step from class-level
object recognition to part-level object understanding.
Acknowledgements. This work is partially supported by
National Key R&D Program of China No. 2021ZD0111901,
and Natural Science Foundation of China under contracts Nos.
U21B2025, U19B2036, 61922080.



References

(1]

[2

—

[3

—_—

[4

—

[5

—_

[6

—_

[7

—

[8

—_—

[9

—

[10]

(1]

[12]

[13]

[14]

Arman Afrasiyabi, Jean-Frangois Lalonde, and Christian
Gagné. Associative alignment for few-shot image classifica-
tion. In European Conference on Computer Vision (ECCV),
pages 18-35, 2020.

Ali Ayub and Alan R Wagner. Tell me what this is: few-
shot incremental object learning by a robot. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 8344-8350. IEEE, 2020.

Hossein Azizpour and Ivan Laptev. Object detection using
strongly-supervised deformable part models. In European
Conference on Computer Vision (ECCV), pages 836—849.
Springer, 2012.

Luca Bertinetto, Joao F Henriques, Philip HS Torr, and An-
drea Vedaldi. Meta-learning with differentiable closed-form
solvers. In International Conference on Learning Represen-
tations (ICLR), 2019.

Irving Biederman. Recognition-by-components: a the-
ory of human image understanding. Psychological review,
94(2):115, 1987.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot classi-
fication. In International Conference on Learning Represen-
tations (ICLR), 2019.

Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. Neil:
Extracting visual knowledge from web data. In /EEE In-
ternational Conference on Computer Vision (ICCV), pages
1409-1416, 2013.

Zitian Chen, Yanwei Fu, Yinda Zhang, Yu-Gang Jiang, Xi-
angyang Xue, and Leonid Sigal. Multi-level semantic fea-
ture augmentation for one-shot learning. /IEEE Transactions
on Image Processing (TIP), 28(9):4594-4605, 2019.
Chuanqi Dong, Wenbin Li, Jing Huo, Zheng Gu, and Yang
Gao. Learning task-aware local representations for few-shot
learning. In International Joint Conference on Artificial In-
telligence (IJCAI), pages 716-722, 2021.

Ali Farhadi, lan Endres, Derek Hoiem, and David Forsyth.
Describing objects by their attributes. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1778-1785, 2009.

Nanyi Fei, Yizhao Gao, Zhiwu Lu, and Tao Xiang. Z-score
normalization, hubness, and few-shot learning. In IEEE In-
ternational Conference on Computer Vision (ICCV), pages
142-151, 2021.

Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning
of object categories. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 28(4):594-611, 2006.
Pedro F Felzenszwalb, Ross B Girshick, David McAllester,
and Deva Ramanan. Object detection with discriminatively
trained part-based models. [EEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 32(9):1627—
1645, 2010.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning (ICML),
pages 1126-1135, 2017.

5455

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4367-4375, 2018.

Spyros Gidaris and Nikos Komodakis. Generating classifi-
cation weights with gnn denoising autoencoders for few-shot
learning. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 21-30, 2019.

Jiechao Guan, Zhiwu Lu, Tao Xiang, Aoxue Li, An Zhao,
and Ji-Rong Wen. Zero and few shot learning with semantic
feature synthesis and competitive learning. /EEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI),
43(7):2510-2523, 2020.

Fusheng Hao, Fengxiang He, Jun Cheng, Lei Wang,
Jianzhong Cao, and Dacheng Tao. Collect and select: Se-
mantic alignment metric learning for few-shot learning. In
IEEE International Conference on Computer Vision (ICCV),
pages 8460-8469, 2019.

Dahyun Kang, Heeseung Kwon, Juhong Min, and Minsu
Cho. Relational embedding for few-shot classification. In
IEEE International Conference on Computer Vision (ICCV),
pages 8822-8833, 2021.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. 2009.

Christoph H Lampert, Hannes Nickisch, and Stefan Harmel-
ing. Learning to detect unseen object classes by between-
class attribute transfer. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 951-958, 2009.

Christoph H Lampert, Hannes Nickisch, and Stefan Harmel-
ing. Attribute-based classification for zero-shot visual object
categorization. /EEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 36(3):453-465, 2013.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex op-
timization. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10657-10665, 2019.

Aoxue Li, Weiran Huang, Xu Lan, Jiashi Feng, Zhenguo Li,
and Liwei Wang. Boosting few-shot learning with adaptive
margin loss. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 12576-12584, 2020.
Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and
Jiebo Luo. Revisiting local descriptor based image-to-class
measure for few-shot learning. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 7260—
7268, 2019.

Bin Liu, Yue Cao, Yutong Lin, Qi Li, Zheng Zhang, Ming-
sheng Long, and Han Hu. Negative margin matters: Under-
standing margin in few-shot classification. In European Con-
Sference on Computer Vision (ECCV), pages 438-455, 2020.
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013.

Patrick Ott and Mark Everingham. Shared parts for de-
formable part-based models. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1513—
1520. IEEE, 2011.



[29]

[30]

(31]

[32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[401]

[41]

Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In Con-
ference on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532-1543, 2014.

Guo-Jun Qi and Jiebo Luo. Small data challenges in big data
era: A survey of recent progress on unsupervised and semi-
supervised methods. /EEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 44(4):2168-2187, 2020.
Alec Radford, Jong Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever. Learning transferable visual models from nat-
ural language supervision. In International Conference on
Machine Learning (ICML), pages 8748-8763, 2021.

Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. In International Conference on Learn-
ing Representations (ICLR), 2017.

Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto.
Few-shot learning with embedded class models and shot-free
meta training. In [EEE International Conference on Com-
puter Vision (ICCV), pages 331-339, 2019.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and
Richard S Zemel. Meta-learning for semi-supervised few-
shot classification. In International Conference on Learning
Representations (ICLR), 2018.

Mamshad Nayeem Rizve, Salman Khan, Fahad Shahbaz
Khan, and Mubarak Shah.  Exploring complementary
strengths of invariant and equivariant representations for
few-shot learning. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10836—10846, 2021.
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet large scale visual recognition chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211-252, 2015.

Edgar Schonfeld, Sayna Ebrahimi, Samarth Sinha, Trevor
Darrell, and Zeynep Akata. Generalized zero-and few-
shot learning via aligned variational autoencoders. In /EEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8247-8255, 2019.

Eli Schwartz, Leonid Karlinsky, Rogerio Feris, Raja Giryes,
and Alex M Bronstein. Baby steps towards few-shot learning
with multiple semantics. arXiv preprint arXiv:1906.01905,
2019.

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In Advances in Neural In-
formation Processing Systems (NeurIPS), pages 4077-4087,
2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS
Torr, and Timothy M Hospedales. Learning to compare: Re-
lation network for few-shot learning. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1199-1208, 2018.

5456

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenen-
baum, and Phillip Isola. Rethinking few-shot image classifi-
cation: a good embedding is all you need? In European Con-
ference on Computer Vision (ECCV), pages 266-282, 2020.
Antonio Torralba, Rob Fergus, and William T Freeman. 80
million tiny images: A large data set for nonparametric ob-
ject and scene recognition. [EEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 30(11):1958—
1970, 2008.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, and
Daan Wierstra. Matching networks for one shot learn-
ing. In Advances in Neural Information Processing Systems
(NeurlPS), pages 3630-3638, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-
ona, and Serge Belongie. The Caltech-UCSD Birds-200-
2011 dataset. 2011.

Xin Wang, Fisher Yu, Ruth Wang, Trevor Darrell, and
Joseph E Gonzalez. TAFE-Net: Task-aware feature embed-
dings for low shot learning. In /IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1831—
1840, 2019.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M
Ni. Generalizing from a few examples: A survey on few-
shot learning. ACM Computing Surveys (CSUR), 53(3):1-34,
2020.

Jiamin Wu, Tianzhu Zhang, Yongdong Zhang, and Feng Wu.
Task-aware part mining network for few-shot learning. In
IEEE International Conference on Computer Vision (ICCV),
pages 8433-8442, 2021.

Jiangtao Xie, Fei Long, Jiaming Lv, Qilong Wang, and Pei-
hua Li. Joint distribution matters: Deep brownian distance
covariance for few-shot classification. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
7972-7981, 2022.

Chen Xing, Negar Rostamzadeh, Boris Oreshkin, and Pe-
dro O O Pinheiro. Adaptive cross-modal few-shot learn-
ing. In Advances in Neural Information Processing Systems
(NeurlPS), pages 4847-4857, 2019.

Chengming Xu, Yanwei Fu, Chen Liu, Chengjie Wang, Jilin
Li, Feiyue Huang, Li Zhang, and Xiangyang Xue. Learning
dynamic alignment via meta-filter for few-shot learning. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 5182-5191, 2021.

Kun Yan, Zied Bouraoui, Ping Wang, Shoaib Jameel, and
Steven Schockaert. Aligning visual prototypes with bert em-
beddings for few-shot learning. In Proceedings of the 2021
International Conference on Multimedia Retrieval (ICMR),
pages 367-375, 2021.

Fengyuan Yang, Ruiping Wang, and Xilin Chen. SEGA:
Semantic guided attention on visual prototype for few-shot
learning. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision (WACV), pages
1056-1066, 2022.

Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-
shot learning via embedding adaptation with set-to-set func-
tions. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8808-8817, 2020.



[55]

[56]

[57]

Baoquan Zhang, Xutao Li, Yunming Ye, Zhichao Huang,
and Lisai Zhang. Prototype completion with primitive
knowledge for few-shot learning. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
3754-3762, 2021.

Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
DeepEMD: Few-shot image classification with differentiable
earth mover’s distance and structured classifiers. In /IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12203-12213, 2020.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding
bag-of-words model: a statistical framework. International
Journal of Machine Learning and Cybernetics, 1(1):43-52,
2010.

5457



