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Abstract

Unsupervised domain adaptation (UDA) aims to trans-
fer the knowledge learnt from a labeled source domain
to an unlabeled target domain. Previous work is mainly
built upon convolutional neural networks (CNNs) to learn
domain-invariant representations. With the recent exponen-
tial increase in applying Vision Transformer (ViT) to vi-
sion tasks, the capability of ViT in adapting cross-domain
knowledge, however, remains unexplored in the literature.
To fill this gap, this paper first comprehensively investigates
the performance of ViT on a variety of domain adaptation
tasks. Surprisingly, ViT demonstrates superior generaliza-
tion ability, while the performance can be further improved
by incorporating adversarial adaptation. Notwithstand-
ing, directly using CNNs-based adaptation strategies fails
to take the advantage of ViT’s intrinsic merits (e.g., atten-
tion mechanism and sequential image representation) which
play an important role in knowledge transfer. To remedy
this, we propose an unified framework, namely Transferable
Vision Transformer (TVT), to fully exploit the transferabil-
ity of ViT for domain adaptation. Specifically, we delicately
devise a novel and effective unit, which we term Transfer-
ability Adaption Module (TAM). By injecting learned trans-
ferabilities into attention blocks, TAM compels ViT focus
on both transferable and discriminative features. Besides,
we leverage discriminative clustering to enhance feature di-
versity and separation which are undermined during ad-
versarial domain alignment. To verify its versatility, we
perform extensive studies of TVT on four benchmarks and
the experimental results demonstrate that TVT attains sig-
nificant improvements compared to existing state-of-the-art
UDA methods.

1. Introduction
Deep neural networks (DNNs) demonstrate unprece-

dented achievements on various machine learning problems
and applications. However, such impressive performance

1This work was done while Jinyu Yang was interning at Kuaishou Tech-
nology; code: https://github.com/uta-smile/TVT

heavily relies on massive amounts of labeled data which re-
quires considerable time and labor efforts to collect. There-
fore, it is desirable to train models that can leverage rich
labeled data from a different but related domain and gen-
eralize well on target domains with no or limited labeled
examples. Unfortunately, the canonical supervised-learning
paradigm suffers from the domain shift issue that poses a
major challenge in adapting models across domains. This
motivates the research on unsupervised domain adaptation
(UDA) [52] which is a special scenario of transfer learn-
ing [36]. The key idea of UDA is to project data points
of the labeled source domain and the unlabeled target do-
main into a common feature space, such that the projected
features are both discriminative (semantic meaningful) and
domain-invariant, in turn, generalize well to bridge the do-
main gap. To achieve this goal, various methods have
been proposed in the past decades, among which adversar-
ial adaptation has become the dominant technique in this
field, which attempts to align cross-domain representations
by minimizing an adversarial loss through a domain dis-
criminator [13, 47, 30, 59].

Recently, Vision Transformer (ViT) [11] has received in-
creasing attention in the vision community. Different from
CNNs that act on local receptive fields of the given image,
ViT models long-range dependencies among visual features
across the entire image, through the global self-attention
mechanism. Specifically in ViT, each image is split into a
sequence of fixed-size non-overlapping patches, which are
then linearly embedded and concatenated with position em-
beddings. To be consistent with NLP paradigm, a class to-
ken is prepended to the patch tokens, serving as the rep-
resentation of the whole image. Then, those sequential em-
beddings are fed into a stack of transformers to learn desired
visual representations. Due to its advantages in global con-
text modeling, ViT has obtained excellent results on various
vision tasks, such as image classification [11], object detec-
tion [5, 53], segmentation [64, 28], and video understanding
[14, 34].

Despite that ViT is becoming increasingly popular, two
important questions related to domain adaption remain
unanswered. First, how does the generalization ability of
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ViT across different domains? There are several contempo-
rary work [58, 55, 32] that apply DeiT [46] and Swin [28]
to UDA, yet the ViT has not been investigated. The second
question is, how can we properly improve ViT in adapting
different domains? One intuitive approach is to directly ap-
ply adversarial discriminator onto the class tokens to per-
form adversarial alignment, where the state of a class token
represents the entire image. However, cross-domain align-
ment of such global features assumes all regions or aspects
of the image have the equal transferability and discrimina-
tive potential, which is not always tenable. For instance,
background regions can be easier aligned across domains,
while foreground regions are more discriminative. In other
words, some discriminative features may lack transferabil-
ity, and some transferable features may not contribute much
to the downstream task (e.g., classification). Therefore, in
order to properly enhance the transferability of ViT, it is es-
sential to identify fine-grained features that are both trans-
ferable and discriminative.

In this paper we aim to present our answers to the two
aforementioned questions. Firstly, to fill the blank of un-
derstanding ViT’s generalization ability, we first conduct a
comprehensive study of vanilla ViT [11] on public UDA
benchmarks. As expected, our experimental results demon-
strate that ViT even in the source-only setting outperforms
its strong CNNs-based counterparts. There could be mul-
tiple deep reasons behind the strong performance of ViT
[40, 66], which are not in the scope of this paper. Besides,
we observe further improvements by applying an adver-
sarial discriminator to the class tokens of ViT, which only
aligns global representations. However, such strategy suf-
fers from the oversimplified assumption and ignores the in-
herent properties of ViT that are beneficial for domain adap-
tation: i) sequential patch tokens actually give us the free
access to fine-grained features; ii) the self-attention mech-
anism in transformer naturally works as a discriminative
probe. In the light of this, we propose an unified UDA
framework that makes full use of ViT’s inherent merits. We
name it Transferable Vision Transformer (TVT).

The key idea of our method is to retain both transferable
and discriminative features which are essential in knowl-
edge adaptation. To achieve this goal, we first introduce the
novel Transferability Adaption Module (TAM) built upon
a conventional transformer. TAM uses a patch-level do-
main discriminator to measure the transferabilities of patch
tokens, and injects learned transferabilities into the multi-
head self-attention block of a transformer. On one hand, the
attention weights of patch tokens in the self-attention block
are used to determine their semantic importance, i.e., the
features with larger attention are more discriminative yet
without transferability guarantees. On the other hand, as
patch tokens can be regarded as fine-grained representations
of an image, the higher transferability of a token means the

local features are more transferable across domains though
not necessarily discriminative. By simply replacing the last
transformer of ViT with a plug-and-play TAM, we could
drive ViT to focus on both transferable and discriminative
features.

Since our method performs adversarial adaptation that
forces the learned features of two domains to be similar,
one underlying side-effect is that the discriminative infor-
mation of target domain might be destroyed during feature
alignment. To address this problem, we design a Discrimi-
native Clustering Module (DCM) inspired by the clustering
assumption. The motivation is to enforce the individual tar-
get prediction close to one-hot encoding (well separated)
and the global target prediction to be uniformly distributed
(global diverse), such that the learnt target-domain repre-
sentation could retain maximum discriminative information
about the input values.

Contributions of this paper are summarized as follows:

• As far as we know, this is the first comprehensive in-
vestigation of ViT’s capability in transferring knowl-
edge on the domain adaptation task. We believe this
work gives good insights to understand and explore
ViT’s generalization ability while applied to various
vision tasks.

• We propose TAM that delicately leverages the intrinsic
characteristics of ViT, such that our method can cap-
ture both transferable and discriminative features for
domain adaptation. Moreover, we adopt discrimina-
tive clustering assumption to alleviate the discrimina-
tion destruction during adversarial alignment.

• Without any bells and whistles, our method set up a
new competitive baseline cross several public UDA
benchmarks.

2. Related Work
Unsupervised Domain Adaptation Transfer learning
aims to learn transferable knowledge that are generaliz-
able across different domains with different distributions
[36, 62]. This is built upon the evidence that feature rep-
resentations in machine learning models, especially in deep
neural networks, are transferable [63]. The main chal-
lenge of transfer learning is to reduce the domain shift or
the discrepancy of the marginal probability distributions
across domains [52]. In the past decades, various meth-
ods have been proposed to address one canonical trans-
fer learning problem, i.e., unsupervised domain adaptation
(UDA), where no labels are available for the target do-
main. For instance, DDC [48] attempted to learn domain-
invariant features by minimizing Maximum Mean Discrep-
ancy (MMD) [3] between two domains. Long et al. further
improved DDC by embedding hidden representations of all
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task-specific layers in a reproducing Hilbert space and used
a multiple kernel variant of MMD to measure the domain
distance [29]. Long et al. proposed to align joint distri-
butions of multiple domain-specific layers across domains
through a joint maximum mean discrepancy metric [31].
Another line of effort was inspired by the success of ad-
versarial learning [16, 61]. By introducing a domain dis-
criminator and modeling the domain adaption as a minimax
problem [13, 47, 30, 60], an encoder is trained to generate
domain-invariant features, through deceiving a discrimina-
tor which tries to distinguish features of source domain from
that of target domain.

It is noteworthy that all of these methods completely or
partially used CNNs as the fundamental block [22, 21, 17].
By contrast, our method explores ViT [11] to tackle the
UDA problem, as we believe ViT has better potential and
capability in domain adaptation owning to some of its prop-
erties. Although previous UDA methods (e.g., adversarial
learning) are able to improve vanilla ViT to some extent,
they were not well designed for transformer-based models,
and thereby cannot leverage ViT’s inherent characteristic of
providing attention information and fine-grained represen-
tations. However, Our method is delicately designed with
the nature of ViT and could effectively leverages the trans-
ferability and discrimination of each feature for knowledge
transfer, thus having better chance in fully exploiting the
adaptation power of ViT.

Vision Transformer Transformers [49] was firstly pro-
posed in the NLP field and demonstrate record-breaking
performance on various language tasks, e.g., text classifi-
cation and machine translation [10, 2, 65]. Much of such
impressive achievement is attributed to the power of cap-
turing long-range dependencies through attention mecha-
nism. Spurred by this, some recent studies attempted to in-
tegrate attention into CNNs to augment feature maps, aim-
ing to provide the capability in modeling heterogeneous in-
teractions [54, 1, 19]. Another pioneering work of com-
pletely convolution-free architecture is Vision Transformer
(ViT), which applied transformers on a sequence of fixed-
size non-overlapping image patches. Different from CNNs
that rely on image-specific inductive biases (e.g., locality
and translation equivariance), ViT takes the benefits from
large-scale pre-training data and global context modeling.
One such method [11], known for its simplicity and accu-
racy/compute trade-off, competes favorably against CNNs
on the classification task and lays the foundation for apply-
ing transformer to different vision tasks. ViT and its vari-
ants have proved their wide applicability in object detection
[5, 67, 53], segmentation [64, 57], and video understanding
[14, 34], etc.

Despite the success of ViT on different vision tasks, to
the best of our knowledge, neither their transferability nor
the design of UDA methods with ViT have been previously

discussed in the literature. To this end, we focus in this pa-
per on the investigation of ViT’s capability in knowledge
transferring across different domains. Furthermore, we pro-
pose a novel UDA framework tailored for ViT by exploring
its intrinsic merits and prove its superiority over existing
methods. It is noteworthy that there are several contempo-
rary work [58, 55, 32] that apply DeiT [46] and Swin [28]
to UDA. Specifically, [58, 55] uses cross-attention to obtain
the mixup representations of source and target images, [32]
uses two class tokens to learn domain-specific information.
Different from these works, our paper focuses on the em-
pirical investigation of ViT’s generalization ability and pro-
poses a plug-and-play module to boost ViT’s performance
in knowledge transfer.
3. Preliminaries
3.1. Adversarial Learning UDA

We consider the image classification task in UDA, where
a labeled source domain Ds{(xs

i , y
s
i )}

ns
i=1 with ns examples

and an unlabeled target domain Dt{xt
j}

nt
j=1 with nt exam-

ples are given. The goal of UDA is to learn features that are
both discriminative and invariant to the domain discrepancy,
and in turn guarantee accurate prediction on the unlabeled
target data. Here, a common practice is to jointly performs
feature learning, domain adaptation, and classifier learning
by optimizing the following loss function:

Lclc(x
s, ys) + αLdis(x

s, xt) (1)

where Lclc is supervised classification loss, Ldis is a trans-
fer loss with various possible implementations, and α is
used to control the importance of Ldis. One of the most
commonly used Ldis is the adversarial loss which encour-
ages a domain-invariant feature space through a domain dis-
criminator [13].

3.2. Self-attention Mechanism

The main building block of ViT is Multi-head Self-
Attention (MSA), which is used in the transformer to cap-
ture long-range dependencies [49]. Specifically, MSA con-
catenates multiple scaled dot-product attention (short for
SA) modules, where each SA module takes a set of queries
(Q), keys (K), and values (V) as inputs. In order to learn
dependencies between distinct positions, SA computes the
dot products of the query with all keys, and applies a soft-
max function to obtain the weights on the values.

SA(Q,K,V) = softmax(
QKT

√
d

)V (2)

where d is the dimension of Q and K. With SA(Q,K,V),
MSA is defined as:

MSA(Q,K,V) = Concat(head1, ..., headk)WO

where headi = SA(QWQ
i ,KWK

i ,VWV
i )

(3)
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where WQ
i , WK

i , WV
i are projections of different heads,

WO is another mapping function. Intuitively, using multi-
ple heads allows MSA to jointly attend to information from
different representation subspaces at different positions.

4. Methodology

In this section, we first investigate ViT’s ability in knowl-
edge transfer on various adaptation tasks. After that, we
conduct the early attempts to improve ViT’s transferability
by incorporating adversarial learning. Finally, we introduce
our method named Transferable Vision Transformer (TVT),
which consists two new adaptation modules to further im-
prove ViT’s capability for cross-domain adaptation..

4.1. ViT’s Generalization Ability

To the best of our knowledge, the generalization ability
of ViT has not been studied in the literature before, although
ViT and its variants have shown great success in various vi-
sion task. To probe into ViT’s capability of domain adapta-
tion, we choose the vanilla ViT [11] as the backbone in all of
our studies, owing to its simplicity and popularity. We train
vanilla ViT by labeled source data only and assess its gen-
eralization ability by the classification accuracy on target
data. As mentioned above, CNNs-based approaches dom-
inate UDA research in the past decades and demonstrate
great successes. Therefore, we compare vanilla ViT with
CNNs-based architectures, including LeNet [22], AlexNet
[21], and ResNet [17]. All experiments are performed on
well-established benchmarks with standard evaluation pro-
tocols.

Take the results on Office-31 dataset for example. As
shown in Table 2, Source Only ViT obtains impressing
classification accuracy 89.5%, which is much better than
its strong CNN opponents AlexNet (70.1%) and ResNet
(76.1%). Similar phenomenon can be observed in other
benchmark results, where ViT competes favorably against,
if not better than, the other state-of-the-arts CNNs back-
bones, as shown in Table 1,3,4. Surprisingly, Source Only
ViT even outperforms strong CNNs-based UDA approaches
without any bells and whistles. For instance, it achieves
an average accuracy 78.7% on Office-Home dataset (Ta-
ble 3), beating all CNN-based UDA methods. Compared to
SHOT [26] recognized as the best UDA model nowadays,
Source Only ViT obtains 7% absolute accuracy boost, a big
step in pushing the frontier of UDA research. There could
be multiple reasons behind the strong performance of ViT
[40, 66], for example, the striking differences between the
features learned by ViTs and CNNs [40]. We leave this as
future work. Despite this, a large gap still exists between
the Source Only and Target Only models (88.3% vs 99.2%)
as shown in Table 1, which indicates potential improvement
space of ViT’s generalization ability.

4.2. ViT w/ Adversarial Adaptation: Baseline

We first investigate how ViT benefits from adversarial
adaptation [13], which is widely used in CNNs-based UDA
methods. We follow the typical adversarial adaptation fash-
ion that employs an encoder Gf for feature learning, a clas-
sifier Gc for classification, and a domain discriminator Dg

for global feature alignment. Here, Gf is implemented as
ViT and Dg is applied to output state of the class tokens of
the source and target images. To accomplish domain knowl-
edge adaptation, Gf and Dg play a minimax game: Gf

learns domain-invariant features to deceive Dg , while Dg

distinguishes source-domain features from that of target-
domain. The objective can be formulated as:

Lclc(x
s, ys) =

1

ns

∑
xi∈Ds

Lce(Gc(Gf (x
s
i )), y

s
i )

Ldis(x
s, xt) = − 1

n

∑
xi∈D

Lce(Dg(Gf (x
∗
i )), y

d
i ),

(4)

where n = ns + nt, D = Ds

⋃
Dt, Lce is cross-entropy

loss, the superscript ∗ can be either s or t to denote a source
or a target domain, and yd denotes the domain label (i.e.,
yd = 1 is source, yd = 0 is target).

We denote ViT with adversarial adaptation as our Base-
line. As shown in Table 1,2,3,4, Baseline shows 7.8%,
0.8%, 1.6%, and 3.2% absolute accuracy improvements
over vanilla ViT, respectively on the four benchmarks.
Those results reveal that global feature alignment with a do-
main discriminator helps ViT’s generalization ability. How-
ever, compared with the digit recognition task, Baseline
achieves limited improvements on object detection which
is more complicated and challenging. We boils down such
observation to a conclusion that simply applying global ad-
versarial alignment cannot exploit ViT’s full transferable
power, since it fails to consider two key factors: (i) not all
regions/features are equally transferable or discriminative.
For effective knowledge transfer, it is essential to focus on
both transferable and discriminative features; (ii) ViT natu-
rally provides fine-grained features given its forward pass-
ing sequential tokens, and attention weights in transformer
actually convey discriminative potentials of patch tokens.
To address these challenges and fully leverage the merits
of ViT, a new UDA framework named Transferable Vision
Transformer (TVT) is further proposed.

4.3. Transferable Vision Transformer (TVT)

An overview of TVT is shown in Figure 1, which con-
tains two main modules: (i) a Transferability Adaptation
Module (TAM) and (ii) a Discriminative Clustering Mod-
ule (DCM). These two modules are highly interrelated and
play a complementary role in transferring knowledge for
ViT-based architectures. TAM encourages the output state
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Figure 1. An overview of the proposed TVT framework. As in
ViT, both source and target images are split into fixed-size patches
which are then linearly mapped and embedded with positional in-
formation. The generated patches are fed into a transformer en-
coder whose last layer is replaced by Transferability Adaptation
Module (TAM). Feature learning, adversarial domain adaptation
and classification are accomplished by ViT-akin backbone, two
domain discriminators (on patch-level and global-level), Discrim-
inative Clustering Module (DCM) and the MLP-based classifier

of class token to focus on both transferable and semantic
meaningful features, and DCM enforces the aligned fea-
tures of target-domain samples to be clustered with large
margins. As a consequence, the features learnt by TVT are
discriminative in classification and transferable across do-
mains as well. We detail each module in what follows.

4.3.1 Transferability Adaptation Module

As shown in Figure 1, we introduce the Transferability
Adaptation Module (TAM) that explicitly considers the in-
trinsic merits of ViT, i.e., attention mechanisms and sequen-
tial patch tokens.

As the patch tokens are regarded as local features of an
image, they are corresponded to different image regions or
captures different visual aspects as fine-grained represen-
tations of an image. Assuming patch tokens of different
semantic importance and transferabilities, TAM aims at as-
signing different weights to those tokens, to encourage the
learned image representations, i.e., the output state of class
token, to attend to patch tokens that are both transferable
and discriminative. While the self-attention weights in ViT

could be employed as discriminative weights, one major
hurdle here is, the transferability of each patch token is not
available. To bypass this difficulty, we adopt a patch-level
domain discriminator Dl that matches cross-domain local
features [37, 56] by optimizing:

Lpat(x
s, xt) = − 1

nR

∑
xi∈D

R∑
r=1

Lce(Dl(Gf (x
∗
ir)), y

d
ir),

(5)
where R is number of patches, and Dl(fir) is the proba-
bility of this region belonging to the source domain. Dur-
ing adversarial learning, Dl tries to assign 1 for a source-
domain patch and 0 for the target-domain ones, while Gf

combats such circumstances. Conceptually, a patch that can
easily deceive Dl (i.g., Dl is around 0.5) is more transfer-
able across domains and should be given a higher transfer-
ability. We therefore use tir = T (fir) = H(Dl(fir)) ∈
[0, 1] to measure the transferability of rth token of ith im-
age, where H(·) is the standard entropy function. An other
explanation of the transferability is: by assigning weights
to different patches, it disentangles an image into com-
mon space representations and domain-specific representa-
tions, while the passing paths of domain-specific features
are softly suppressed.

We then convert the conventional MSA into the transfer-
able MSA (T-MSA) by transferability adaptation, i.e., in-
jecting the learned transferabilities into attention weights of
the class token. Our T-MSA is built upon the transferable
self-attention (TSA) block that is formally defined as:

TSA(q,K,V) = softmax(
qKT

√
d

)⊙ [1;T (Kpatch)]V (6)

where q is the query of the class token, Kpatch is the
key of the patch tokens, ⊙ is Hadamard product, and [; ]

is concatenation operation. Obviously, softmax(qK
T

√
d
) and

[1;T (Kpatch)] indicate the discrimination (semantic impor-
tance) and the transferability of each patch token, respec-
tively. To jointly attend to the transferabilities of different
representation subspaces and of different locations, we thus
define T-MSA as:

T-MSA(q,K,V) = Concat(head1, ..., headk)WO

where headi = TSA(qWq
i ,KWK

i ,VWV
i )

(7)

Taken them together, we get the TAM as follows:

ẑl = T-MSA(LN(zl−1)) + zl−1

zl = MLP(LN(ẑl)) + ẑl,
(8)

where LN is LayerNorm layer, MLP denotes Multi-Layer
Perception, zl is hidden representation at layer l. We only
apply TAM to the last transformer layer where patch fea-
tures are spatially non-local and of higher semantic mean-
ings. By this means, TAM focuses on fine-grained features
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that are transferable across domains and are discriminative
for classification. So we have l = L, where L is the total
number of transformer layers in ViT.

4.3.2 Discriminative Clustering Module

Towards the challenging problem of learning a probabilistic
discriminative classifier with unlabeled target data, it is de-
sirable to minimize the expected classification error on the
target domain. However, cross-domain feature alignment
through TAM by forcing the two domains to be similar may
destroy the discriminative information of the learned repre-
sentation, if no semantic constrains of the target domain is
introduced. As shown in Figure 2, although the target fea-
ture is indistinguishable from the source feature, it is dis-
tributed in a mess which limits its discriminative power. To
address this limitation, we are inspired by the assumptions
that: (i) pt = softmax(Gc(Gf (x

t))) are expected to retain
as much information about xt as possible [4, 33, 45, 42, 51];
and (ii) decision boundary should not cross high density re-
gions, but instead lie in low density regions, which is also
known as cluster assumption [6]. Fortunately, these two as-
sumptions can be met by maximizing mutual information
between the empirical distribution on the target inputs and
the induced target label distribution [15, 44, 20, 25, 39],
which can be formally defined as:

I(pt;xt) = H(p̄t)− 1

nt

nt∑
j=1

H(ptj)

= −
K∑

k=1

p̄tklog(p̄
t
k) +

1

nt

nt∑
j=1

K∑
k=1

ptjklog(p
t
jk)

(9)

where ptj = softmax(Gc(Gf (x
t
j))), p̄t = Ext

[pt], and
K is the number of classes. Note that maximizing
− 1

nt

∑nt

j=1 H(ptj) enforces the target predictions close to
one-hot encoding, therefore the cluster assumption is guar-
anteed. To ensure the global diversity, we also maximize
H(p̄t) to avoid that every target data is assigned to the same
class. With I(pt;xt), our model is encouraged to learn
tightly clustered target features with uniform distribution,
such that the discriminative information in the target do-
main are retained.

To summarize, the objective function of TVT is:

Lclc(x
s, ys) + αLdis(x

s, xt) + βLpat(x
s, xt)− γI(pt;xt)

(10)
where α, β, and γ are hyper-parameters.

5. Experiments
To verify the effectiveness of our model, we conduct

comprehensive studies on commonly used benchmarks and
present experimental comparisons against state-of-the-art
UDA methods as shown below.

Algorithm S→M U→M M→U Avg

Source Only

L
eN

et

67.1 69.6 82.2 73.0
RevGrad [12] 73.9 73.0 77.1 74.7
ADDA [47] 76.0 90.1 89.4 85.2
SHOT-IM [26] 89.6 96.8 91.9 92.8
CyCADA [18] 90.4 96.5 95.6 94.2
MCD [43] 96.2 94.1 94.2 94.8

Target Only 99.4 99.4 98.0 98.9

Source Only

V
iT

88.6 88.2 73.1 88.3
Baseline 92.7 98.6 97.0 96.1
TVT* 98.0 98.9 97.7 98.2
TVT 99.0 99.4 98.2 98.9

Target Only 99.7 99.7 98.3 99.2

Table 1. Performance comparison on the Digits dataset. TVT*
indicates that the backbone is pre-trained on ImageNet

Digits is an UDA benchmark on digit classification. We
follow the same setting in previous work to perform adapta-
tions on MNIST [22], USPS, and Street View House Num-
bers (SVHN) [35]. For each source-target domain pair, we
train our model using the training sets of each domain, and
perform evaluations on the standard test set of the target do-
main.

Office-31 [41] contains 4,652 images of 31 categories,
which were collected from three domains: Amazon (A),
DSLR (D), and Webcam (W). The Amazon (A) image were
downloaded from amazon.zom, while the DSLR (D), and
Webcam (W) were photoed under the office environment
by web and digital SLR camera, respectively.

Office-Home [50] consists of images from four different
domains: Artistic images (Ar), Clip Art (Cl), Product im-
ages (Pr), and Real-World images (Rw). A total of 65 cate-
gories are covered within each domain.

VisDA-2017 [38] is a synthesis-to-real object recognition
task used for the 2018 VisDA challenge. It covers 12 cat-
egories. The source domain contains 152,397 synthetic 2D
renderings generated from different angles and under dif-
ferent lighting conditions, while the target domain contains
55,388 real-world images.

5.1. Existing Methods

We use the results in their original papers for fair com-
parison. For each type of backbone, we report its lower
bound performance, denoted as Source Only, meaning the
models are trained with source data only. For digit recogni-
tion, we also show the Target Only results as the high-end
performance, which is obtained by both training and test-
ing on the labeled target data. Baseline denotes vanilla ViT
with adversarial adaptation [13].

5.2. Implementation Details

The ViT-Base with 16×16 input patch size (or ViT-B/16)
[11] pre-trained on ImageNet-21K [9] is used as our back-

525



Algorithm A→ W D→ W W→ D A→ D D→ A W→ A Avg

Source Only

A
le

xN
et

61.6 95.4 99.0 63.8 51.1 49.8 70.1
DDC [48] 61.8 95.0 98.5 64.4 52.1 52.2 70.6
DAN [29] 68.5 96.0 99.0 67.0 54.0 53.1 72.9
RevGrad [12] 73.0 96.4 99.2 72.3 53.4 51.2 74.3
PFAN [7] 83.0 99.0 99.9 76.3 63.3 60.8 80.4

Source Only

R
es

N
et

68.4 96.7 99.3 68.9 62.5 60.7 76.1
DDC [48] 75.6 96.0 98.2 76.5 62.2 61.5 78.3
DAN [29] 80.5 97.1 99.6 78.6 63.6 62.8 80.4
RevGrad [12] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
TAT [27] 92.5 99.3 100.0 93.2 73.1 72.1 88.4
SHOT [26] 90.1 98.4 99.9 94.0 74.7 74.3 88.6
ALDA [8] 95.6 97.7 100.0 94.0 72.2 72.5 88.7

Source Only-S

D
ei

T

86.9 97.7 99.6 87.6 74.9 73.5 86.7
CDTrans-S [58] 93.5 98.2 99.6 94.6 78.4 78.0 90.4
Source Only-B 90.4 98.2 100.0 90.8 76.8 76.4 88.8
CDTrans-B [58] 96.7 99.0 100.0 97.0 81.1 81.9 92.6

Source Only

Sw
in 89.2 94.1 100.0 93.1 80.9 81.3 89.8

BCAT [55] 99.2 99.5 100.0 99.6 85.7 86.1 95.0

Source Only

V
iT

89.2 98.9 100.0 88.8 80.1 79.8 89.5
Baseline 91.6 99.0 100.0 90.6 80.2 80.1 90.2
TVT* 95.7 98.7 100.0 95.4 80.6 80.3 91.8
TVT 96.4 99.4 100.0 96.4 84.9 86.1 93.9

Table 2. Performance comparison on the Office-31 dataset. TVT*
indicates that the backbone is pre-trained on ImageNet. ”-S” and
”-B” indicate that the backbone is DeiT-Small and DeiT-Base, re-
spectively

bone. The transformer encoder of ViT-B/16 contains 12
transformer layers in total. We train all ViT-based models
using mini-batch Stochastic Gradient Descent (SGD) opti-
mizer with the momentum of 0.9. We initialized the learn-
ing rate as 0 and linearly increase it to lr = 0.03 after 500
training steps. We then decrease it by the cosine decay strat-
egy. The only exception is that we set lr = 0.003 for D→
A and W→ A in Office-31 dataset.

5.3. Results of Digit Recognition

For the digit recognition task, we perform evaluations
on SVHN→MNISt, USPS→MNIST, and MNIST→USPS,
following the standard evaluation protocol of UDA. Shown
in Table 1, TVT obtains the best mean accuracy for each
task and outperforms prior work in terms of the average
classification accuracy. TVT also performs better than
Baseline (+2.7%) due to the contribution of the proposed
TAM and DCM. In particular, TVT achieves comparable re-
sults to Target Only model, indicating that the domain shift
problem is well alleviated.

5.4. Results of Object Recognition

For object recognition task, Office-31, Office-Home, and
VisDA-2017 are used in evaluation. As shown in Ta-
ble 2 3, 4, TVT sets up new benchmark results for all the
three datasets. On the medium-sized Office-Home dataset
(Table 3), we achieve the significant improvement over the
best prior UDA method (83.6% vs 71.8%).

(A) Source Only (B) Baseline

(C) TAM (D) TVT

Figure 2. t-SNE visualization of VisDA-2017 dataset, where red
and blue points indicate the source (synthetic rendering) and the
target (real images) domain, respectively

Results on the large-scale VisDA-2017 dataset (Table 4)
show that we not only achieve a higher average accu-
racy, but also compete favorably against ALDA and SHOT.
Specifically, we use the most naive pseudo-labeling strat-
egy (pseudo labels with high confidence) [23] in this exper-
iment. Note that DTA also enforces the cluster assumption
to learn discriminative features, but it fails to encourage the
global diversity which may leads to a degenerate solution
where every point is assigned to the same class. Besides,
TVT surpasses both Source Only and Baseline, revealing
its effectiveness in transferring domain knowledge by (i)
capturing both transferable and discriminative fine-grained
features and (ii) retaining discriminative information while
searching for the domain-invariant representations. This is
also evidenced by the t-SNE visualization of learned fea-
tures as showcased in Figure 2. Obviously, TAM can effec-
tively align source and target domain features by exploiting
the local feature transferability. However, the target feature
is not well-separated due to that target labels in training are
absent and the discriminative information are destroyed by
adversarial alignment. Fortunately, this problem is allevi-
ated by DCM by assuming that datapoints should be clas-
sified with large margin, as illustrated in Figure 2 (D). It is
noteworthy that several contemporary work [58, 55, 32] use
DeiT [46] or Swin [28] as the backbone and outperforms
our method. We argue that this can be mainly explained by
the data-efficient merits of DeiT and Swin. Detailed discus-
sion are referred to the supplementary.

5.5. Ablation Study

To learn the individual contribution of TAM and DCM
in improving the knowledge transferability of ViT, we con-
duct the ablation study in Table 5. Compared to Source
Only, TAM consistently improves the classification accu-
racy with average 4.9% boost, indicating the significance of
capturing both transferable and discriminative features. The
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Algorithm A→CA→PA→RC→AC→PC→RP→AP→CP→RR→AR→CR→P Avg

Source Only

A
le

xN
et 26.4 32.6 41.3 22.1 41.7 42.1 20.5 20.3 51.1 31.0 27.9 54.9 34.3

DAN [29] 31.7 43.2 55.1 33.8 48.6 50.8 30.1 35.1 57.7 44.6 39.3 63.7 44.5
RevGrad [12] 36.4 45.2 54.7 35.2 51.8 55.1 31.6 39.7 59.3 45.7 46.4 65.9 47.3

Source Only

R
es

N
et

34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [29] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
RevGrad [12] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
SHOT [26] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

Source Only-S

D
ei

T

55.6 73.0 79.4 70.6 72.9 76.3 67.5 51.0 81.0 74.5 53.2 82.7 69.8
CDTrans-S [58] 60.6 79.5 82.4 75.6 81.0 82.3 72.5 56.7 84.4 77.0 59.1 85.5 74.7
WinTR-S [32] 65.3 84.1 85.0 76.8 84.5 84.4 73.4 60.0 85.7 77.2 63.1 86.8 77.2
Source Only-B 61.8 79.5 84.3 75.4 78.8 81.2 72.8 55.7 84.4 78.3 59.3 86.0 74.8
CDTrans-B [58] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5

Source Only

Sw
in 64.5 84.8 87.6 82.2 84.6 86.7 78.8 60.3 88.9 82.8 65.3 89.6 79.7

BCAT [55] 75.3 90.0 92.9 88.6 90.3 92.7 87.4 73.7 92.5 86.7 75.4 93.5 86.6

Source Only

V
iT

66.2 84.3 86.6 77.9 83.3 84.3 76.0 62.7 88.7 80.1 66.2 88.7 78.7
Baseline 71.9 80.7 86.7 79.9 80.4 83.5 76.9 70.9 88.3 83.0 72.9 88.4 80.3
TVT* 67.1 83.5 87.3 77.4 85.0 85.6 75.6 64.9 86.6 79.1 67.2 88.0 78.9
TVT 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

Table 3. Performance comparison on the Office-Home dataset. TVT* indicates that the backbone is pre-trained on ImageNet. ”-S” and
”-B” indicate that the backbone is DeiT-Small and DeiT-Base, respectively

Algorithm planebcycl bus car houseknifemcyclpersonplant sktbrd train truck Avg

Source Only

R
es

N
et

55.1 53.3 61.959.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
RevGrad [12] 81.9 77.7 82.844.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD [43] 87.0 60.9 83.764.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
ALDA [8] 93.8 74.1 82.469.4 90.6 87.2 89.0 67.6 93.4 76.1 87.7 22.2 77.8
DTA [24] 93.7 82.2 85.683.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5
SHOT [26] 94.3 88.5 80.157.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9

Source Only-B

D
ei

T 97.7 48.1 86.661.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1
CDTrans-B [58] 97.1 90.5 82.477.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
WinTR-B [32] 98.7 91.2 93.091.9 98.1 96.1 94.0 72.7 97.0 95.5 95.3 57.9 90.1

Source Only

Sw
in 98.7 63.0 86.768.5 94.6 59.4 98.0 22.0 81.9 91.4 96.7 25.7 73.9

BCAT [55] 99.1 91.6 86.672.3 98.7 97.9 96.5 82.3 94.2 96.0 93.9 61.3 89.2

Source Only

V
iT

98.2 73.0 82.562.0 97.3 63.5 96.5 29.8 68.7 86.7 96.7 23.7 73.2
Baseline 94.6 81.6 81.869.9 93.5 69.9 88.6 50.5 86.8 88.5 91.5 20.1 76.4
TVT* 97.1 88.8 86.464.4 96.4 97.4 90.6 64.1 92.0 90.3 93.7 59.6 85.1
TVT 97.1 92.9 85.366.4 97.1 97.1 89.3 75.5 95.0 94.7 94.5 55.1 86.7

Table 4. Performance comparison on the VisDA-2017 dataset. TVT* indicates that the backbone is pre-trained on ImageNet. ”-B” indicates
that the backbone is DeiT-base

Methods Digits Office-31 Office-Home VisDA-2017 Avg

Source Only 88.3 89.5 78.7 73.2 82.4
+TAM 97.2 91.2 81.3 79.3 87.3
+DCM 98.9 93.9 83.6 86.7 90.8

Table 5. Ablation study of each module
performance is further improved by incorporating DCM,
justifying the necessary of retaining the discriminative in-
formation of the learned representation. It is noteworthy
that DCM brings the largest improvement on the large-scale
synthetic-to-real VisDA-2017 dataset. We suspect that the
large domain gap in VisDA-2017 (synthetic 2D rendering
to natural image) is the leading reason, since simply align-
ing two domains with large domain shift results in a mess
distributed feature space. This challenge, however, can be

largely addressed by DCM that enables retaining discrimi-
native information based on a cluster assumption.

6. Conclusion
In this paper, we perform a comprehensive investigation

of ViT’s generalization ability in UDA task. To further im-
prove the power of ViT in transferring domain knowledge,
we propose TVT by explicitly considering the intrinsic mer-
its of transformer architecture. Specifically, TVT captures
both transferable and discriminative features in the given
image, and retains discriminative information of the learnt
domain-invariant representations. Experimental results on
widely used benchmarks show that TVT outperforms prior
UDA methods by a large margin.
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