Treatment Learning Causal Transformer for Noisy Image Classification

Chao-Han Huck Yang*,1, Danny I-Te Hung*,2, Yi-Chieh Liu*,1, Pin-Yu Chen3
1Georgia Institute of Technology, 2Columbia University, 3IBM Research AI
{huckiyang, yliu3233}@gatech.edu; ih2320@columbia.edu; pin-yu.chen@ibm.com

Abstract

Current top-notch deep learning (DL) based vision models are primarily based on exploring and exploiting the inherent correlations between training data samples and their associated labels. However, a known practical challenge is their degraded performance against “noisy” data, induced by different circumstances such as spurious correlations, irrelevant contexts, domain shift, and adversarial attacks. In this work, we incorporate this binary information of “existence of noise” as treatment into image classification tasks to improve prediction accuracy by jointly estimating their treatment effects. Motivated from causal variational inference, we propose a transformer-based architecture, Treatment Learning Causal Transformer (TLT), that uses a latent generative model to estimate robust feature representations from current observational input for noise image classification. Depending on the estimated noise level (modeled as a binary treatment factor), TLT assigns the corresponding inference network trained by the designed causal loss for prediction. We also create new noisy image datasets incorporating a wide range of noise factors (e.g., object masking, style transfer, and adversarial perturbation) for performance benchmarking. The superior performance of TLT in noisy image classification is further validated by several refutation evaluation metrics. As a by-product, TLT also improves visual salience methods for perceiving noisy images.

1. Introduction

Although deep neural networks (DNNs) have surpassed human-level “accuracy” in many image recognition tasks [22, 27, 70, 88], current DNNs still implicitly rely on the assumption [59] on the existence of a strong correlation between training and testing data. Moreover, increasing evidence and concerns [4, 39] show that using the correlation association for prediction can be problematic against noisy images [90], such as pose-shifting of identical objects [4] or imperceptible perturbation [18, 41, 48]. In practice, real-world image classification often involves rich, noisy, and even chaotic contexts, intensifying the demand for generalization in the wild.

To address machine perception against noisy images, we are inspired by how human performs visual recognition. Learning processes of human are often mixed with logic inference (e.g., a symbolic definition from books) and representation learning (e.g., an experience of viewing a visual pattern). One prominent difference between current DNNs and human recognition systems is the capability in causal inference. Mathematically, causal learning [56, 61] is a statistical inference model that infers beliefs or probabilities under uncertain conditions, which aims to identify latent variables (called “confounders”) that influence both intervention and outcome. The unobserved confounders may be abstract in a cognitive-level (e.g., concepts) but could be observed via their noisy view in the real-world (e.g., objects). For instance, as shown in Fig. 1 (a), confounder learning aims to model a prediction process by finding a representation (e.g., “cat”) and avoiding relying on irrelevant patterns (e.g., “waterside”). Intuitively, with causal modeling and

Figure 1: (a) An example of deployed causal graphical model (CGM), where Z denotes unobservable confounder variable (e.g., the concept of “cat”), X denotes a noisy observation of confounder (e.g., an image can still be recognized as a cat), y denotes outcome (e.g., a label), and t denotes the information of a binary treatment (e.g., the existence of extra semantic patterns or additive noise; thus, it is equal to 0 or 1), which is observable during training and unobservable during testing time. (b) Images with “cat” labels, where (i) and (ii) share the same context of “indoor”; (iii) shows a noisy setup of (ii) undergoing additive Gaussian perturbation; (iv) shows another setup of introducing extra noisy semantic patterns (e.g., “waterside”) in NICO [23] noisy images dataset.
confounder inference, correct prediction can be made on noisy inputs, where the generative estimation process, such as causal effect variational autoencoder (CEVAE) [44], affects multiple covariates for predicting data profiles. In this work, we aim to incorporate the effects of causal confounder learning to image classification, as motivated by cognitive psychology for causal learning. Specifically, we use the attention mechanism for noise-resilience inference from patterns. We design a novel sequence-to-sequence learning model, Treatment Learning Causal Transformer (TLT), which leverages upon the conditional query-based attention and the inference power from a variational causal inference model. Our TLT tackles noisy image classification by jointly learning to a generative model of Z and estimating the effects from the treatment information (t), as illustrated in Fig. 1 (a). This model consists of unobservable confounder variables Z corresponding to the ground-truth but inaccessible information (e.g., the ontological concept [84] of a label), input data X from a noisy view of Z (e.g., images), a treatment [60] information t given X and Z (e.g., secondary information as visual patterns and additive noise without directly affecting our understanding the concept of “cat”), and a classification label y from the unobservable confounder. Built upon this causal graphical model, our contributions are:

- A transformer architecture (TLT) for noisy image classification are presented, which is based on a treatment estimation architecture and a causal variational generative model with competitive classification performance against noisy image.

- We further curated a new noisy images datasets, Causal Pairs (CPS), to study generalization under different artificial noise settings for general and medical images.

- We use formal statistical refutations tests to validate the causal effect of TLT, and show that TLT can improve visual saliency methods on noisy images.

2. Related Work

Noisy Image Classification

Prior works on noisy images classification have highlighted the importance of using generative models [54] to ameliorate the negative learning effects from noisy data. Xiao et al. [90] leverage a conditional generative model [79] to capture the relations among images and noise types from online shopping systems. Direct learning from noisy data is another approach by using statistical sampling [21, 37] and active learning [15] for performance enhancement. Meanwhile, new noisy images dataset and evaluation metrics [23] on context independence have been proposed, such as Strike simulator [4] for synthesizing pose-shifting images and NICO [23, 40, 95] as the open-access noisy image dataset. NICO further aims to highlight the importance of incorporating a statistical inference (e.g., causal model) for improved image classification with large-scale noisy context-patterns (e.g., an image shows “cat in waterfront” but given a single label of “cat”). However, different from context-wise noise in NICO, modeling sizeable artificial noise in images is crucial yet remains unexplored. In this work, we create a new image dataset containing various artificial noise and use the NICO [23] with a generative causal model for performance benchmarking.

Causal Learning for Computer Vision

Many efforts [13, 14, 34, 62] have leveraged upon causal learning to better understand and interpret toward vision recognition tasks. Lopez-Paz et al. [43] propose utilizing DNNs to discover the causation between image class labels for addressing the importance of this direct causal relationship affecting model performance and context grounding. Incorporating causal analysis and regularization showed improved performance in generative adversarial models such as Causal-GANs [5, 32]. However, infusing causal modeling and inference to DNN-based image recognition systems is still an open challenge. For instance, in previous works [43, 92], researchers focus on modeling a direct causal model (DCM) [60] for visual learning. The DCMs treat a visual pattern (e.g., texture) as a causal visual-representation (e.g., patterns of the “cat”) and barely incorporate additional label information (e.g., context) or apply noise as a treatment in causal analysis. In recent works, causal modeling also show promising results in a large-scale computer vision task, such scene graph [81] generation, visual and language learning [1, 2, 64], and semantic segmentation [94]. The work of Chalupka et al. [10] is closer to our work by deploying interventional experiments to target causal relationships in the labeling process. However, modeling the aforementioned treatment effects and designing efficient learning models are still not fully explored [59].

Causal Inference by Autoencoder

Recently, classical causal inference tasks, such as regression modeling [8], risk estimation [59], and causal discovery [50], have been incorporated with deep generative models [69] and attained state-of-the-art performance [44, 76]. These generative models often use an encoder-decoder architecture to improve both logic inference and features extracted from a large-scale dataset with noisy observations. TARNet [76] is one foundational DNN model incorporating causal inference loss from a causal graphical model (CGM) and feature reconstruction loss jointly for linear regression, showing better results compared with variational inference models [31]. Inspired by the CGM of TARNet [76], causal-effect variational autoencoder (CEVAE) was proposed in [44, 91] for regression tasks, which draws a connection between causal inference with proxy variables and latent space learning for approximating the hidden and unobservable confounder by the potential outcome model from Rubin’s causal inference framework [29, 73]. Our proposed causal model in TLT shares a similar CGM with CEVAE but has a different train-
Table 1: Causal hierarchy [58]: questions at level i can only be answered if information from the same or higher level is available.

<table>
<thead>
<tr>
<th>Level</th>
<th>Activity</th>
<th>PGM</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>Association</td>
<td>$P(y</td>
<td>x)$</td>
</tr>
<tr>
<td>(II)</td>
<td>Intervention</td>
<td>$P(y</td>
<td>do(x), z)$</td>
</tr>
</tbody>
</table>

3. TLT: Treatment Learning Transformer

3.1. Modeling under Causal Hierarchy Theorem

To model a general image classification problem with causal inference, we introduce Pearl’s causal hierarchy Theorem [7, 58, 77] as shown in Tab. 1, with a non-causal classification model and a causal inference model. Non-causal model is in level (I) of causal hierarchy, which associates the outcome (prediction) to the input directly by $P(y|x)$ from supervised model such as ResNet [22]. Non-causal model could be unsupervised by using approximate inference such as variational encoder-decoder [6] with two parameterized networks, Θ and Φ. The association-level (non-causal) setup in the causal hierarchy can solve visual learning tasks at level (I), such as non-noisy image classification.

For noisy image classification, we argue that the problem setup is elevated to level (II) of the causal hierarchy, requiring the capability of confounder learning and the do-calculus [59] (refer to causal inference foundations supplement A). We first make a formal definition on a pair of i^{th} query (x_i, y_i) including a noisy image input (x_i) and its associated label (y_i). Suppose for every noisy image, there exists a clean but inaccessible image (\tilde{x}_i) and treatment information (t_i), where the intervened observation is modeled as $P(x_i) = P(do(\tilde{x}_i)) \equiv P(\tilde{x}_i|t_i)$ and t_i encodes full information of the intervention through the do-operator notation $do(\cdot)$. The corresponding confounder z_i follows $P(z_i) = P(\tilde{x}_i, t_i, \tilde{z}_i)$, where \tilde{z}_i is the unobservable part (e.g., undiscovered species of “cat” but belong to its ontological definition) of the confounder. To make a prediction (y_i) of a noisy input of (x_i), we could have the intervened view of the question by:

$$P(y_i|x_i) = P(y_i|do(\tilde{x}_i), z_i) = P(y_i|\tilde{x}_i, t_i, z_i) \quad (1)$$

with do-operator in level (II) of the causal hierarchy. Based on the causal hierarchy, we could use the model with the proxy variables (z_i, t_i) in the higher level (III) to answer the question in equal or lower level. Next, we introduce our training objective using an encoder-decoder architecture to reparameterize the aforementioned proxy variables for causal learning.

3.2. Training Objective of TLT

We build our TLT model based on the foundational framework of conditional variational encoder-decoder (CVED) [6, 31], which learns a variational latent representation z_i from data x_i and conditional information (e.g., label y_i) for reconstruction or recognition. To effectively learn visual causal pattern recognition, our TLT model uses variational inference to approximate the complex non-linear relationships involving: the pair probability $(p(x_i, z_i))$, the treatment likelihood $P(t_i)$, the model outcome $p(y_i)$, and the joint distribution $p(z_i, x_i, t_i, y_i)$. Specifically, we propose to characterize the causal graphical model in Fig. 1 (a) as a latent variable model parameterized by a DNN encoder-decoder as shown in Fig. 6 (in Appendix A). Note that TLT uses an advanced decoding method $p(a_i) = F_T(H_x, H_z \sim P(x_i))$ for approximating $p(z_i)$ from $p(x_i)$ based on the attention (F_T) from transformer [87], which will be detailed in Sec. 3.3.

First, we assume the observations factorize conditioned on the latent variables and use an general inference network (encoder) which follows a factorization of the true posterior. For the model network (decoder), instead of conditioning on observations, we approximate the latent variables z. For vision tasks, x_i corresponds to a noisy input image indexed by i, $t_i \in \{0, 1\}$ corresponds to the treatment assignment, y_i corresponds to the outcome and z_i corresponds to the latent hidden confounder. Note that general formation of an approximation of individual outcome (δ_i) is modeling by $\delta_i = t_i \cdot y_i + (1 - t_i) \cdot y_i$ as potential outcome model [25, 29] with its foundation over the causal inference. Next, each of the corresponding factors is described as:

$$p(z_i) = \prod_{z \in z_i} N(z|0, 1); \quad p(x_i|z_i) = \prod_{x \in x_i} p(x|z_i);$$

$$p(t_i|z_i) = Bern(\sigma(f_1(z_i)));$$

$$p(y_i|t_i, z_i) = \sigma(t_i f_2(z_i) + (1 - t_i) f_3(z_i))$$

with $N(\mu, \sigma^2)$ denoting a Gaussian distribution with mean μ and variance σ^2, $p(x|z_i)$ being an appropriate probability distribution, $\sigma(.)$ being a logistic function, and $Bern(.)$ denotes the probability of success of a Bernoulli random variable. Each of the $f_k(.)$ function is an Adaptive Average Pooling plus Linear layer parameterized by its own parameters θ_k for $k = \{1, 2, 3\}$. Here y_i is tailored for categorical classification problems, but our formulation can be naturally extended to different tasks. For example, one can simply remove the final $\sigma(.)$ layer of $p(y_i|z_i, t_i)$ for regression tasks.

Our TLT inference network (encoder), as illustrated in Fig. 2, aims to learn meaningful causal representations in the latent space. As we can see from Fig. 1 (a), the true posterior over $z \in \mathbf{Z}$ depends on $x \in \mathbf{X}$, t_i, and y_i.

We are required to know the treatment assignment t along with its outcome y prior to inferring the distribution over z. Therefore, unlike variational encoders, which simply passes the feature
map directly to latent space (the top path in our encoder), the feature map extracted from a residual block is provided to the other switching (the lower and middle paths in our encoder), which provides posterior estimates of treatment t_i and outcome y_i. The switching mechanism (binary selection based on the treatment information of $t_i = 0$ or 1) and its alternative loss training have been widely used in TARNet [76] and CEVAE [44] with theoretical and empirical justification. We employ the distribution by the switching mechanism:

$$q(t_i | x) = \text{Bern}(\sigma(g_1(x_i)));$$
$$q(y_i | x_i, t_i) = \sigma(t_i)g_2(x_i) + (1 - t_i)g_3(x_i),$$

(2)

with each g_k being a neural network approximating $q(t_i | x)$ or $q(y_i | x_i, t_i)$. They introduce auxiliary distributions that help us predict t_i and y_i for new samples. To optimize these two distributions, we add an auxiliary objective to our overall model training objective over N data samples:

$$\mathcal{L}_{aux} = \sum_{i=1}^{N} \log q(t_i = t^*_i | x^*_i) + \log q(y_i = y^*_i | x^*_i, t^*_i),$$

(3)

where x^*_i, t^*_i and y^*_i are the observed values in training set. Since the true posterior over z depends on x, t and y, finally we employ the posterior approximation below:

$$q(z_i | x_i, y_i, t_i) = \prod_{z_i} \mathcal{N}(\mu_i, \sigma^2_i)$$

(4)

$$\mu_i = t_i \mu_{t=1,i} + (1 - t_i) \mu_{t=0,i}, \quad \sigma^2_i = t_i \sigma^2_{t=1,i} + (1 - t_i) \sigma^2_{t=0,i}$$

$$\mu_{t=0,i} = g_4 \circ g_0(x_i, y_i), \quad \sigma^2_{t=0,i} = \sigma(g_5 \circ g_0(x_i, y_i))$$
$$\mu_{t=1,i} = g_6 \circ g_0(x_i, y_i), \quad \sigma^2_{t=1,i} = \sigma(g_7 \circ g_0(x_i, y_i))$$

where g_k again denotes neural network approximation, and $g_0(x_i, y_i)$ is a shared, bilinear-fused representation of x, t and y. More specifically, we multiply the feature map with approximated posterior $q(y_i | x_i, t_i)$ without logistic function σ to get $g_0(x_i, y_i)$. Finally, we can have the overall training objective for the inference and model networks. The variational lower bound of TLT to be optimized is given by:

$$\mathcal{L}_{TLT} = \mathcal{L}_{aux} + \sum_{i=1}^{N} \mathbb{E}_{q(z_i | x_i, y_i, t_i)}[\log p(x_i, t_i | z_i)] + \log p(y_i | t_i, z_i) - \log q(z_i | x_i, t_i, y_i)].$$

(5)

As shown in Fig. 6 (in Appendix A), we could model $q(t|x)$ to access the treatment information directly for training to guide one corresponding sub-network in Fig. 2: for testing, $q(t|x)$ could be inferred by a given input x without knowing treatment information from an unsupervised perspective.

3.3. Attention mechanism of TLT

Attention mechanism is one of the human learning components to capture global dependencies for discovering logical and causal relationships [53] from visual patterns in the cognitive psychology community [11]. Transformer [87] based attention mechanism has, recently, shown its connection from the sequential energy update rule to Hopfield networks [67], which stands for a major framework to model human memory. With the intuition on leveraging human-inspired attention upon inference from noisy images, we incorporate a new type of Transformer module for the proposed causal modeling, which explicitly model all pairwise interactions between elements in a sequence. The idea is to learn the causal signal [43] via self-attention setup, where we set the interference signal (H_z) for learning query and image features (H_x) for learning key and value. As shown in Fig 2, we use a feature map with a ResNet34 [22] encoder.
extracting from input image $p(x_i)$ feeding into keys (K) and value (V) with queries $q(y_i)$ from Eq. (2):
\[
Q = \text{unroll } (F_Q(h_x \sim q(y_t|x_i, t_i))) \quad (6)
\]
\[
K = \text{unroll } (F_K(h_x \sim p(x_i))) \quad (7)
\]
\[
V = \text{unroll } (F_V(h_x \sim p(x_i))) \quad (8)
\]

where F_Q, F_K, F_V are convolutional neural networks and d_k is dimension of keys. Finally, we model $q(z_i)$ by using $q(t_i|x_i)$ and $p(a_i|x_i)$ with the causal two model extended from Eq. (4) for approximating posterior distribution $p(z_i)$:

\[
p(z_i) \leftarrow q(z_i|x_i, a_i, y_i, t_i) = \prod_{z_i} N(\mu_i, \sigma_i^2). \quad (9)
\]

We also have conducted ablation studies on architecture selection and required parameters with respect to supervised learning [22], attention networks [87], and causal model [76] in supplement B to validate our model design of TLT. To sum up, the proposed causal architecture attains the best performance with the same amount of parameters.

4. Evaluating Causal Effects on Noisy Images

In this section, we introduce noisy image datasets and conduct statistical refutation tests on TLT to evaluate its causal effect based on the CGM in Fig. 1 (a). That is, we provide an affirmative answer to whether there exist causal effects in the studied noisy image classification tasks.

4.1. Estimate Causal Effects

Estimation of expected causal effects is one general approach [44, 58, 59] to evaluate whether a CGM (from a logic hypothesis) is valid on the selected test dataset. The underlying graphical model will undergo a series of randomization tests of graphical connection and sub-set sampling to measure its estimation errors on estimating causal effects. In general, a causal model is reliable with the CGM when exhibiting a lower absolute error on the causal effects. In this work, we use average treatment effects (ATE), as used in prior arts [44], for comprehensive analysis.

Average Treatment Effects (ATEs). In the binary treatment setting [56], for the i-th individual and its associated model outcome y_i considering the treatment effect, the ATE is calculated by:

\[
y_i = y_{i,=0,t} (1 - t_i) + y_{i,=1,t} (t_i), \quad (10)
\]

\[
ATE = \mathbb{E} [y_i = y^*_i | t^*_i = 1] - \mathbb{E} [y_i = y^*_i | t^*_i = 0], \quad (11)
\]

where $y_{i,=0,t}$ denotes the prediction with estimated treatment $t_i \in \{0, 1\}$, y^*_i and t^*_i are the observations. The ATE is taken over all subjects. From [20], these metrics cannot be properly estimated if there are confounding variables in the system. On the other hand, Pearl [56] introduces the “do-operator” [59] on treatment to study this problem under intervention. The do symbol removes the treatment t from the given mechanism and sets it to a specific value by some external intervention. The notation $P(y|do(t))$ denotes the probability of y with possible interventions on treatment. Following Pearl’s back-door adjustment formula [58] and the CGM in Fig. 1, it is proved in [44] that the causal effect for a given binary treatment t, a proxy variable x, an outcome y and a confounding variable z can be evaluated by (similarly for $t = 0$):

\[
p(y|x, do(t = 1)) = \int_z p(y|x, t = 1, z) p(z|x)dz \quad (12)
\]

To intervene the information of t (do(t)), flipping errors [44] with different rates (see supplement C) are applied to change the t_i label(s) [55] in our experiments in Section 5.1. The proposed CGM and its associated TLT show resilient ATE estimation under statistical refutations.

Visual Patterns in the Intervention Level (II). We clarify two common scenarios, noisy context and under perturbation, in the intervention level (II) for noisy image classification. As shown in Tab. 2, the treatment information (t) is binary with an accessible noisy input x and inaccessible ontological (clean) representation \tilde{x} from Eq. (1) for visual pattern modeling. Next, we introduce datasets in the regime of the case 1 and 2 for our experiments in this work.

4.2. Case 1: NICO Dataset with Noisy Extra Visual Patterns

NICO [23] is a large-scale and open-access benchmark dataset for noisy image classification, which is motivated by studying non-independent image classification with causal modeling. The NICO dataset labels images with both main concepts (e.g., “cat”) and contexts as sub-labels (e.g., “water”). NICO is constructed by two super-classes: “animal” and “vehicle”, with 10 classes for “animal” and 9 classes for “vehicle”. In total, NICO contains 19 classes, 188 contexts, and 25,000 images. The design intuition of NICO is to provide a causal modeling benchmark for large-scale image classification. The authors evaluate several major image classification dataset (e.g., ImageNet, Pascal, and MS-COCO) and found out the auxiliary context information (treatment) is much random and inaccurate from statistical measurement

| Table 2: Applying causal modeling on noisy images classification. Case 1: perfect labeled visual pattern (H_{lab}) with secondary patterns (H_{ori}); Case 2: original labeled images (H_{ori}) under an additive perturbation (F_{per}). |
|---|---|---|
| 1. Context | H_{lab} | H_{ori} |
| 2. Perturbation | F_{per} | H_{ori} |
| Additional patterns (e.g., “waterside”) | (1) or not (0) | | |
for structuring validated causal inference. By selecting different contexts of the concept, testing data distribution can be unknown and different from training data distribution, which can be used to evaluate a causal inference model.

In our experiments, we follow the standard NICO evaluation process [23], where a concept is incorporated with two contexts. We further use context as treatment in the intervention level as in Case 1 of Tab. 2. One context is the attribute of concept \((t = 1)\) while another context is the background or scene of a concept \((t = 0)\).

4.3. Case 2: Curated Causal Pairs (CPS) Dataset with Additive Artificial Noises

Despite many efforts in providing benchmark datasets for causal inference on non-vision tasks [24, 26, 33, 61], visual causal data collection is relatively limited to bare causal effect evaluation with conditional visual treatments [43]. Motivated by the perturbation-based causation studies testing biological network and the efforts from NICO, we further curate two datasets from public sources, named causal pairs (CPS), by using a diverse set of image perturbation types as treatment (i.e., Case 2 in Tab. 2). We select two representative datasets, Microsoft COCO [38], and a medicine dataset, Decathlon [78], to create our CPS datasets. Each CPS contains pairs of original and perturbed images, as well as five different perturbation types described in Sec. 4.4. Table 3 summarizes the NICO and our CPS datasets. Next, we introduce how to generate noisy images in CPS.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Treatment (Binary Information)</th>
<th>Numbers</th>
<th>Super-classes</th>
<th>Total classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS (ours)</td>
<td>Receiving artificial noise (or not)</td>
<td>13,752</td>
<td>General / Medical</td>
<td>16</td>
</tr>
<tr>
<td>NICO</td>
<td>Existing context-wise pattern (or not)</td>
<td>25,000</td>
<td>Animal / Vehicle</td>
<td>19</td>
</tr>
</tbody>
</table>

Super-class 1: Generating Noisy General Objects. To generate CPS dataset from MS-COCO [38] for general super-class, we selected six similar object classes that could possibly result in confusing interpretation and recognition by human psychology studies [51, 68] (e.g., giraffe and elephant, etc.). We conduct a survey with 1,000 volunteers from Amazon mechanical turk [85] and pick the top-3 similarity label pairs. Specifically, we format three different common causal pairs, namely giraffe-elephant (CPS1) with 3316 images, stop sign-fire hydrant (CPS2) with 2419 images, and bike-motorcycle (CPS3) with 4729 images, where the dataset is visualized in Fig. 3 (a).

Super-class 2: Generating Noisy Medical Images. For the medical super-class, we use an identical setting with 2630 training and 658 test CT images for ten different types (total classes) of human disease from Decathlon [78], which includes: (1) Liver Tumours; (2) Brain Tumours; (3) Hippocampus; (4) Lung Tumours; (4) Prostate; (5) Cardiac; (6) Pancreas Tumour; (7) Colon Cancer; (8) Hepatic Vessels, and (10) Spleen. More details and visualization (Fig. 3 (b)) about this dataset are given in supplement B. From these two super-classes, we randomly selected 50% of these labeled images and applied visual modifications to generate interventional observations. Each generated image is assigned with a binary treatment indicator vector \(t_i\), where its \(i\)-th element denotes the binary treatment label according to the \(i\)-th visual modification.

4.4. Visual Perturbation (Treatment) in CPS

We employ five distinct types of image modification methods as independent intervention variables: (i) image scrambling; (ii) neural style transfer; (iii) adversarial example; (iv) object masking, and (v) object-segment adversarial background shifting. Below we provide brief descriptions for these visual treatments as illustration in Fig. 3. Image Scrambling (IS) [93] algorithms re-align all pixels in an image to different positions to permute an original image into a new image, which is used in privacy-preserved classification [82].

Neural Style Transfer (ST) [16] creates texture effect with perceptual loss [30] and super-resolution along with instance normalization [86].

Adversarial Example (AE) adds input perturbation for prediction evasion. We employ the Fast Gradient Sign Method (FGSM) [19] with a scaled \(\epsilon\) perturbation bound of \(\epsilon = 0.3\). We also evaluated other attacks including C&W [9] and PGD [47] in supplement B.

Object Masking (OM) & Background Refilling (BR): Object masking (OM) was proposed in previous studies [43, 92] for causal learning. We applied OM and another masking methods, background refilling (BR), that duplicates non-object background into the mask segment as treatments.

5. Experiments

5.1. Noisy Image Classification on NICO and CPS

Generative Model Baselines

For a fair comparison, we select two benchmark conditional generative model incorporating both information of label \((y)\) and binary treatment \((t)\): modified conditional VAE [31, 79] (CVAE’) and modified CEVAE [44] (CEVAE’), where CVAE’ use \(p(t, y)\) for concatenation as a conditional inference and CEVAE’ follows a similar causal variational inference process [44] without features fusion and conditional queries. Both model are enhanced by ResNet [22] and attention layers with similar parameters (7.1M) with TLT. Noted CEVAE’ [44] is originally designed and applied only on linear regression tasks but benefited from our causal modeling for noisy image classification.

Performance on NICO Dataset. We first evaluate models performance trained on NICO dataset. From the reported results in the paper [23, 95], we select the best reported
Figure 3: Illustration of our generated CPS dataset for noisy image classification. We randomly selected 50% of labeled images from both datasets and applied visual modifications to generate interventional observations. We selected similar object classes by 1,000 human surveys. Left: three causal pairs – giraffe/elephant, fire-hydrant/stop-sign, and motorcycle/bike. From left to right in CPS, the visual treatments are: (a) original input image, (b) image scrambling, (c) neural style transfer; (d) adversarial example. We further discuss masking intervention effects used in [43, 92] on general subjects by (e) object masking; and (f) background refilling. Right: a demonstration of Lung Tumours in Decathlon of the same format.

Table 4: Perturbation (e.g., texture) effects with classification accuracy (%) on the average of CPS images (∼13.7k) for different treatments and their causal effect estimates. Note that TLT (7.39M) has similar parameters compared with CV AE’ and CEV AE’, which are enhanced by ResNet as discussion in the ablation studies. Right: a demonstration of Lung Tumours in Decathlon of the same format.

Table 5: Classification accuracy (%) on NICO.

<table>
<thead>
<tr>
<th>Type of t (with n = 0.05)</th>
<th>Classification Accuracy (↑)</th>
<th>Average Treatment Effect (↑)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CVAE’</td>
<td>CEVAE’</td>
</tr>
<tr>
<td>Original (without t)</td>
<td>83.31 ±0.12</td>
<td>83.31 ±0.23</td>
</tr>
<tr>
<td>Style Transfer (IS)</td>
<td>73.67 ±0.31</td>
<td>74.34 ±0.26</td>
</tr>
<tr>
<td>Adversarial Example (AE)</td>
<td>79.12 ±0.25</td>
<td>81.12 ±0.17</td>
</tr>
<tr>
<td>Object Masking (OM)</td>
<td>70.12 ±0.19</td>
<td>72.73 ±0.21</td>
</tr>
<tr>
<td>Background Refilling (BR)</td>
<td>71.32 ±0.28</td>
<td>72.59 ±0.29</td>
</tr>
</tbody>
</table>

Performance on CPS Dataset. In Table 4, we compare TLT with modified CVAE’ and modified CEV AE’ as base-lines trained on CPS dataset. The accuracy of TLT in the original image, IS, ST, AE, OM and BR settings are consistently better than CVAE’ and CEV AE’, with substantially large margins ranging from 1.60% to 7.81%. CEV AE’ and TLT are also shown to have higher causal estimate (CE) than CVAE’ in all settings except for ST. Interestingly, ST leads to a higher causal value (from 0.318 to 0.354) when compared to the other modifications such as IS and AT. This finding accords to the recent studies on DNN’s innate bias of using edges and textures for vision task [17]. CEV AE’ and TLT having lower value in ST setting could be explained by a more unbiased representation learned by inference network with lower dependency on edges and textures. A benchmark model, StableNet from [95] with sample weighting, which outperforms six existing competitive models [36, 49, 52, 74, 83, 97] including SagNet [52] and GroupDRO [74] from official report. As shown in Table 5, generative models with proposed causal modeling attain competitive results on NICO with compositional bias setup, where TLT attains a best performance of 65.98%. We provide more analysis under different setup of NICO, where TLT remains as the best model in supplement C.

1We have also conducted experiments on the seven algorithms used in the NICO for CPS. However, all the evaluated algorithms perform worse than our selected CPS baselines, possibly due to the challenges of visual perturbation deployed in CPS. The code and weights will open for reference.
visualization of Guided Grad-CAM [75] in Fig. 4 (a) validates this hypothesis and highlights the importance of our inference network in gaining robust visual understanding from latent space z as tSNE [46] results Fig. 4 (6). One critical issue for visual intervention is its difficulty in investigating the effect on object mask size [43, 62]. Supplement C shows a consistent and stable performance of TLT against varying mask sizes.

Case Study on the medical super-class: We conduct the same experiments with medical super-class to identify visual clinical features. Both the classification and estimation performance are consistent with general CPS objects, where TLT attains the highest accuracy 88.74% in the original setting and 82.57% in the scrambling setting (e.g., data encryption operation) settings. TLT is most effective in classifying noisy image and more sensible in measuring ATE on adversarial example. We also conduct expert evaluation on the activation saliency of clinical patterns (Fig. 4). Based on their domain knowledge [65, 66, 89], three physicians independently and unanimously give the highest confidence scores on saliency attributes to our method.

Statistical Refutation of Causal Models: To rigorously validate our ATE estimation result, we follow a standard refuting setting [57, 60, 72] with the causal model in Fig. 1 to run three major tests, as reported in Supplement E and Table S15, which validate our method is robust.

5.2. Neural Causation Coefficient (NCC)

Neural Causation Coefficient (NCC) [43] is a benchmark causal discovery technique to validate its significance of causal signal [43, 92] in a deployed experiment.

NCC is used to discover for joint distribution of a pair of related proxy variables that are computed by applying CNNs to the image pixels. Lopez et al. [43] used an augmented NCC network to prove the existence of causal relations in ResNet [22] between object and context in an image, and showed that in object-feature ratio anticausal signal consistently has stronger relation than causal signal.

![Figure 4: (a) With proposed TLT and CPS dataset, neural saliency methods can be extended to visual pattern from inference. Take the top row as an example, using TLT, guided grad-CAM [75] can be more aligned with the concise human-interpretable giraffe patterns instead of forest texture and edges. More correlation analyses between saliency and labels in NICO and CPS are given in supplement C. (b) Visualization of learned manifolds of $q(z)$ by tSNE [46], proposed TLT’s results largest intra-cluster pair-wise sample distances between additive noise (adversarial) ($t = 1$) and vanilla ($t = 0$) image samples from CPS1.](image)

![Figure 5: Evaluation of causal pairs by treatment feature ratio (TFR) score [43]. The average and standard deviation of TFR associated to the top-1% causal/anticausal feature scores are displayed. The results show the visual perturbation measurement is coherent with the previous study [43]. We reproduce the NCC architecture from [43] and find all the anti-causal scores of COCO is larger than causal score as shown as [43], where the causal signals in the proposed dataset have been validated with extra NCC tests.](image)
References

[17] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. ICLR, 2019. 7

[18] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. ICLR, 2015. 1

[28] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. Adversarial examples are not bugs, they are features. arXiv preprint arXiv:1905.02175, 2019. 18

