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Abstract

Current top-notch deep learning (DL) based vision mod-
els are primarily based on exploring and exploiting the in-
herent correlations between training data samples and their
associated labels. However, a known practical challenge is
their degraded performance against “noisy” data, induced
by different circumstances such as spurious correlations, ir-
relevant contexts, domain shift, and adversarial attacks. In
this work, we incorporate this binary information of “exis-
tence of noise” as treatment into image classification tasks
to improve prediction accuracy by jointly estimating their
treatment effects. Motivated from causal variational infer-
ence, we propose a transformer-based architecture, Treat-
ment Learning Causal Transformer (TLT), that uses a latent
generative model to estimate robust feature representations
from current observational input for noise image classifica-
tion. Depending on the estimated noise level (modeled as
a binary treatment factor), TLT assigns the corresponding
inference network trained by the designed causal loss for
prediction. We also create new noisy image datasets incor-
porating a wide range of noise factors (e.g., object masking,
style transfer, and adversarial perturbation) for performance
benchmarking. The superior performance of TLT in noisy
image classification is further validated by several refuta-
tion evaluation metrics. As a by-product, TLT also improves
visual salience methods for perceiving noisy images.

1. Introduction
Although deep neural networks (DNNs) have sur-

passed human-level “accuracy” in many image recognition
tasks [22, 27, 70, 88], current DNNs still implicitly rely on
the assumption [59] on the existence of a strong correlation
between training and testing data. Moreover, increasing evi-
dence and concerns [4, 39] show that using the correlation
association for prediction can be problematic against noisy
images [90], such as pose-shifting of identical objects [4]
or imperceptible perturbation [18, 41, 48]. In practice, real-
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Figure 1: Causal graphical model (CGM) for causal video multi-modal sum-
marization (CVS) training phase (a) and testing phase (b). White nodes X
(e.g., input data) and y (e.g., output label) are observable. NodeZ , colored
by grey, is a not observable and latent confounder from representation learning.
X is a noisy view on the hidden confounderZ , say the input text query and
video. Nodet, colored by grey in (b), is a treatment, e.g., visual or textual per-
turbation, referring to Section 3.5 for details, which is only observable during
training.

1

Figure 1: (a) An example of deployed causal graphical model
(CGM), where Z denotes unobservable confounder variable
(e.g., the concept of “cat”), X denotes a noisy observation of
confounder (e.g., an image can still be recognized as a cat), y
denotes outcome (e.g., a label), and t denotes the information
of a binary treatment (e.g., the existence of extra semantic
patterns or additive noise; thus, it is equal to 0 or 1), which
is observable during training and unobservable during
testing time. (b) Images with “cat” labels, where (i) and (ii)
share the same context of “indoor”; (iii) shows a noisy setup
of (ii) undergoing additive Gaussian perturbation; (iv) shows
another setup of introducing extra noisy semantic patterns
(e.g., “waterside”) in NICO [23] noisy images dataset.

world image classification often involves rich, noisy, and
even chaotic contexts, intensifying the demand for general-
ization in the wild.

To address machine perception against noisy images, we
are inspired by how human performs visual recognition.
Learning processes of human are often mixed with logic
inference (e.g., a symbolic definition from books) and rep-
resentation learning (e.g., an experience of viewing a visual
pattern). One prominent difference between current DNNs
and human recognition systems is the capability in causal
inference. Mathematically, causal learning [56, 61] is a sta-
tistical inference model that infers beliefs or probabilities
under uncertain conditions, which aims to identify latent
variables (called “confounders”) that influence both inter-
vention and outcome. The unobserved confounders may be
abstract in a cognitive-level (e.g., concepts) but could be
observed via their noisy view in the real-world (e.g., objects).
For instance, as shown in Fig. 1 (a), confounder learning
aims to model a prediction process by finding a representa-
tion (e.g., “cat”) and avoiding relying on irrelevant patterns
(e.g., “waterside”). Intuitively, with causal modeling and
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confounder inference, correct prediction can be made on
noisy inputs, where the generative estimation process, such
as causal effect variational autoencoder (CEVAE) [44], af-
fects multiple covariates for predicting data profiles. In this
work, we aim to incorporate the effects of causal confounder
learning to image classification, as motivated by cognitive
psychology for causal learning. Specifically, we use the
attention mechanism for noise-resilience inference from pat-
terns. We design a novel sequence-to-sequence learning
model, Treatment Learning Causal Transformer (TLT),
which leverages upon the conditional query-based attention
and the inference power from a variational causal inference
model. Our TLT tackles noisy image classification by jointly
learning to a generative model of Z and estimating the effects
from the treatment information (t), as illustrated in Fig. 1 (a).
This model consists of unobservable confounder variables Z
corresponding to the ground-truth but inaccessible informa-
tion (e.g., the ontological concept [84] of a label), input data
X from a noisy view of Z (e.g., images), a treatment [60]
information t given X and Z (e.g., secondary information as
visual patterns and additive noise without directly affecting
our understanding the concept of “cat”), and a classification
label y from the unobservable confounder. Built upon this
causal graphical model, our contributions are:

• A transformer architecture (TLT) for noisy image clas-
sification are presented, which is based on a treatment
estimation architecture and a causal variational generative
model with competitive classification performance against
noisy image.

• We further curated a new noisy images datasets, Causal
Pairs (CPS), to study generalization under different artifi-
cial noise settings for general and medical images.

• We use formal statistical refutations tests to validate the
causal effect of TLT, and show that TLT can improve visual
saliency methods on noisy images.

2. Related Work
Noisy Image Classification. Prior works on noisy im-

ages classification have highlighted the importance of using
generative models [54] to ameliorate the negative learning ef-
fects from noisy data. Xiao et al. [90] leverage a conditional
generative model [79] to capture the relations among images
and noise types from online shopping systems. Direct learn-
ing from noisy data is another approach by using statistical
sampling [21, 37] and active learning [15] for performance
enhancement. Meanwhile, new noisy images dataset and
evaluation metrics [23] on context independence have been
proposed, such as Strike simulator [4] for synthesizing pose-
shifting images and NICO [23, 40, 95] as the open-access
noisy image dataset. NICO further aims to highlight the im-
portance of incorporating a statistical inference (e.g., causal

model) for improved image classification with large-scale
noisy context-patterns (e.g., an image shows “cat in water-
side” but given a single label of “cat”). However, different
from context-wise noise in NICO, modeling sizeable artifi-
cial noise in images is crucial yet remains unexplored. In
this work, we create a new image dataset containing vari-
ous artificial noise and use the NICO [23] with a generative
causal model for performance benchmarking.
Causal Learning for Computer Vision. Many efforts
[13, 14, 34, 62] have leveraged upon causal learning to bet-
ter understand and interpret toward vision recognition tasks.
Lopez-Paz et al. [43] propose utilizing DNNs to discover
the causation between image class labels for addressing the
importance of this direct causal relationship affecting model
performance and context grounding. Incorporating causal
analysis and regularization showed improved performance in
generative adversarial models such as Causal-GANs [5, 32].
However, infusing causal modeling and inference to DNN-
based image recognition systems is still an open challenge.
For instance, in previous works [43, 92], researchers focus
on modeling a direct causal model (DCM) [60] for visual
learning. The DCMs treat a visual pattern (e.g., texture) as a
causal visual-representation (e.g., patterns of the “cat”) and
barely incorporate additional label information (e.g., context)
or apply noise as a treatment in causal analysis. In recent
works, causal modeling also show promising results in a
large-scale computer vision task, such scene graph [81] gen-
eration, visual and language learning [1, 2, 64], and semantic
segmentation [94]. The work of Chalupkaet al. [10] is closer
to our work by deploying interventional experiments to tar-
get causal relationships in the labeling process. However,
modeling the aforementioned treatment effects and design-
ing efficient learning models are still not fully explored [59].
Causal Inference by Autoencoder. Recently, classical
causal inference tasks, such as regression modeling [8], risk
estimation [59], and causal discovery [50], have been in-
corporated with deep generative models [69] and attained
state-of-the-art performance [44, 76]. These generative mod-
els often use an encoder-decoder architecture to improve
both logic inference and features extracted from a large-
scale dataset with noisy observations. TARNet [76] is one
foundational DNN model incorporating causal inference
loss from a causal graphical model (CGM) and feature re-
construction loss jointly for linear regression, showing better
results compared with variational inference models [31].
Inspired by the CGM of TARNet [76], causal-effect varia-
tional autoencoder (CEVAE) was proposed in [44, 91] for
regression tasks, which draws a connection between causal
inference with proxy variables and latent space learning for
approximating the hidden and unobservable confounder by
the potential outcome model from Rubin’s causal inference
framework [29, 73]. Our proposed causal model in TLT
shares a similar CGM with CEVAE but has a different train-
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Table 1: Causal hierarchy [58]: questions at level i can only
be answered if information from the same or higher level is
available.

Level Activity PGM Example
(I) Association Observing P (y|x) ResNet [22]
(II) Intervention Intervening P (y|do(x), z) TLT (ours)

ing objective, probabilistic encoding, and specific design for
visual recognition, such as the use of attention mechanism.

3. TLT: Treatment Learning Transformer

3.1. Modeling under Causal Hierarchy Theorem

To model a general image classification problem with
causal inference, we introduce Pearl’s causal hierarchy The-
orem [7, 58, 77] as shown in Tab. 1, with a non-causal clas-
sification model and a causal inference model. Non-causal
model is in level (I) of causal hierarchy, which associates the
outcome (prediction) to the input directly by P (y|x) from
supervised model such as ResNet [22]. Non-causal model
could be unsupervised by using approximate inference such
as variational encoder-decoder [6] with two parameterized
networks, Θ and Φ. The association-level (non-causal) setup
in the causal hierarchy can solve visual learning tasks at level
(I), such as non-noisy image classification.

For noisy image classification, we argue that the prob-
lem setup is elevated to level (II) of the causal hierarchy,
requiring the capability of confounder learning and the do-
calculus [59] (refer to causal inference foundations sup-
plement A). We first make a formal definition on a pair of
ith query (xi, yi) including a noisy image input (xi) and
its associated label (yi). Suppose for every noisy image,
there exists a clean but inaccessible image (x̃i) and treat-
ment information (ti), where the intervened observation is
modeled as P (xi) = P (do(x̃i)) ≡ P (x̃i|ti), and ti encodes
full information of the intervention through the do-operator
notation do(·). The corresponding confounder zi follows
P (zi) = P (x̃i, ti, z̃i), where z̃i is the unobservable part
(e.g., undiscovered species of “cat” but belong to its ontolog-
ical definition) of the confounder. To make a prediction (yi)
of a noisy input of (xi), we could have the intervened view
of the question by:

P (yi|xi) = P (yi|do(x̃i), zi) = P (yi|x̃i, ti, zi) (1)

with do-operator in level (II) of the causal hierarchy. Based
on the causal hierarchy, we could use the model with the
proxy variables (zi, ti) in the higher level (II) to answer
the question in equal or lower level. Next, we introduce
our training objective using an encoder-decoder architecture
to reparameterize the aforementioned proxy variables for
causal learning.

3.2. Training Objective of TLT

We build our TLT model based on the foundational frame-
work of conditional variational encoder-decoder (CVED) [6,
31], which learns a variational latent representation zi from
data xi and conditional information (e.g., label yi) for recon-
struction or recognition. To effectively learn visual causal
pattern recognition, our TLT model uses variational infer-
ence to approximate the complex non-linear relationships
involving: the pair probability (p(xi, zi)), the treatment like-
lihood P (ti), the model outcome p(yi), and the joint distribu-
tion p(zi, xi, ti, yi). Specifically, we propose to characterize
the causal graphical model in Fig. 1 (a) as a latent variable
model parameterized by a DNN encoder-decoder as shown
in Fig. 6 (in Appendix A). Note that TLT uses an advanced
decoding method p(ai) = FT (Hx, Hz ∼ P (xi)) for ap-
proximating p(zi) from p(xi) based on the attention (FT )
from transformer [87], which will be detailed in Sec. 3.3.

First, we assume the observations factorize conditioned
on the latent variables and use an general inference network
(encoder) which follows a factorization of the true posterior.
For the model network (decoder), instead of conditioning
on observations, we approximate the latent variables z. For
vision tasks, xi corresponds to a noisy input image indexed
by i, ti ∈ {0, 1} corresponds to the treatment assignment,
yi corresponds to the outcome and zi corresponds to the
latent hidden confounder. Note that general formation of
an approximation of individual outcome (δi) is modeling by
δi = ti ·yi+(1− ti) ·yi as potential outcome model [25, 29]
with its foundation over the causal inference. Next, each of
the corresponding factors is described as:

p(zi) =
∏
z∈zi

N (z|0, 1); p(xi|zi) =
∏
x∈xi

p(x|zi);

p(ti|zi) = Bern(σ(f1(zi)));

p(yi|zi, ti) = σ(tif2(zi) + (1− ti)f3(zi))

with N (µ, σ2) denoting a Gaussian distribution with mean
µ and variance σ2, p(x|zi) being an appropriate probabil-
ity distribution, σ(.) being a logistic function, and Bern(.)
denotes the probability of success of a Bernoulli random
variable. Each of the fk(.) function is an Adaptive Average
Pooling plus Linear layer parameterized by its own parame-
ters θk for k = {1, 2, 3}. Here yi is tailored for categorical
classification problems, but our formulation can be naturally
extended to different tasks. For example, one can simply re-
move the final σ(.) layer of p(yi|zi, ti) for regression tasks.

Our TLT inference network (encoder), as illustrated in
Fig. 2, aims to learn meaningful causal representations in the
latent space. As we can see from Fig. 1 (a), the true posterior
over z ∈ Z depends on x ∈ X, t, and y. We are required
to know the treatment assignment t along with its outcome
y prior to inferring the distribution over z. Therefore, un-
like variational encoders, which simply passes the feature
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(a) Inference Network (Encoder) (a) Model Network (Decoder)

(with Attention Module)

Figure 2: The encoder (inference network) structure of our proposed causal transformer. We leverage bilinear fusion (BF) for
q(z|x, y, t) instead of concatenation [44], and decoding conditional queries Hz ∼ q(y|x, t) and encoding features Hx ∼ p(x)
as keys and values to conduct attention. Decoder is shown as Fig. 2 (a) with potential outcome modeling [29, 73] from p(z).

map directly to latent space (the top path in our encoder),
the feature map extracted from a residual block is provided
to the other switching (the lower and middle paths in our
encoder), which provides posterior estimates of treatment ti
and outcome yi. The switching mechanism (binary selection
based on the treatment information of ti = 0 or 1) and its al-
ternative loss training have been widely used in TARNet [76]
and CEVAE [44] with theoretical and empirical justification.
We employ the distribution by the switching mechanism:

q(ti|xi) = Bern(σ(g1(xi)));

q(yi|xi, ti) = σ(tig2(xi) + (1− ti)g3(xi)), (2)

with each gk being a neural network approximating q(ti|xi)
or q(yi|xi, ti). They introduce auxiliary distributions that
help us predict ti and yi for new samples. To optimize these
two distributions, we add an auxiliary objective to our overall
model training objective over N data samples:

Laux =

N∑
i=1

(log q(ti = t∗i |x∗
i ) + log q(yi = y∗

i |x∗
i , t

∗
i )), (3)

where x∗
i , t∗i and y∗i are the observed values in training set.

Since the true posterior over z depends on x, t and y, finally
we employ the posterior approximation below:

q(zi|xi, yi, ti) =
∏
zi

N (µi,σ
2
i ) (4)

µi = tiµt=1,i + (1− ti)µt=0,i, σ2
i = tiσ

2
t=1,i + (1− ti)σ

2
t=0,i

µt=0,i = g4 ◦ g0(xi, yi), σ2
t=0,i = σ(g5 ◦ g0(xi, yi))

µt=1,i = g6 ◦ g0(xi, yi), σ2
t=1,i = σ(g7 ◦ g0(xi, yi))

where gk again denotes neural network approximation, and
g0(xi, yi) is a shared, bilinear-fusioned representation of x,

t and y. More specifically, we multiply the feature map with
approximated posterior q(yi|xi, ti) without logistic function
σ to get g0(xi, yi). Finally, we can have the overall train-
ing objective for the inference and model networks. The
variational lower bound of TLT to be optimized is given by:

LTLT = Laux +

N∑
i=1

Eq(zi|xi,ti,yi)[log p(xi, ti|zi)

+ log p(yi|ti, zi) + log p(zi)− log q(zi|xi, ti, yi)].
(5)

As shown in Fig. 6 (in Appendix A), we could model
q(t|x) .

= p(t) to access the treatment information directly for
training to guide one corresponding sub-network in Fig. 2;
for testing, q(t|x) could be inferred by a given input x with-
out knowing treatment information from an unsupervised
perspective.

3.3. Attention mechanism of TLT

Attention mechanism is one of the human learning com-
ponents to capture global dependencies for discovering logi-
cal and causal relationships [53] from visual patterns in the
cognitive psychology community [11]. Transformer [87]
based attention mechanism has, recently, shown its connec-
tion from the sequential energy update rule to Hopfield
networks [67], which stands for a major framework to model
human memory. With the intuition on leveraging human-
inspired attention upon inference from noisy images, we
incorporate a new type of Transformer module for the pro-
posed causal modeling, which explicitly model all pairwise
interactions between elements in a sequence. The idea is to
learn the causal signal [43] via self-attention setup, where
we set the interference signal (Hz) for learning query and
image features (Hx) for learning key and value. As shown
in Fig 2, we use a feature map with a ResNet34 [22] encoder
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extracting from input image p(xi) feeding into keys (K) and
value (V ) with queries q(yi) from Eq. (2):

Q = unroll (FQ(Hz ∼ q(yi|xi, ti))) (6)
K = unroll (FK(Hx ∼ p(xi))) (7)

V = unroll (FV (Hx ∼ p(xi))) ; ai = softmax

(
QKT

√
dk

)
V

(8)

where FQ, FK , FV are convolutional neural networks and
dk is dimension of keys. Finally, we model q(zi) by using
q(ti|xi) and p(ai|xi) with the causal two model extended
from Eq. (4) for approximating posterior distribution p(zi):

p(zi)← q(zi|xi, ai, yi, ti) =
∏
zi

N (µi,σ
2
i ). (9)

We also have conducted ablation studies on architecture
selection and required parameters with respect to supervised
learning [22], attention networks [87], and causal model [76]
in supplement B to validate our model design of TLT. To
sum up, the proposed causal architecture attains the best
performance with the same amount of parameters.

4. Evaluating Causal Effects on Noisy Images
In this section, we introduce noisy image datasets and

conduct statistical refutation tests on TLT to evaluate its
causal effect based on the CGM in Fig. 1 (a). That is, we
provide an affirmative answer to whether there exist causal
effects in the studied noisy image classification tasks.

4.1. Estimate Causal Effects

Estimation of expected causal effects is one general ap-
proach [44, 58, 59] to evaluate whether a CGM (from a
logic hypothesis) is valid on the selected test dataset. The
underlying graphical model will undergo a series of random-
ization tests of graphical connection and sub-set sampling
to measure its estimation errors on estimating causal effects.
In general, a causal model is reliable with the CGM when
exhibiting a lower absolute error on the causal effects. In
this work, we use average treatment effects (ATE), as used
in prior arts [44], for comprehensive analysis.
Average Treatment Effects (ATEs). In the binary treat-
ment setting [56], for the i-th individual and its associated
model outcome yi considering the treatment effect, the ATE
is calculated by:

yi = yti=0,i (1− ti) + yti=1,i(ti), (10)
ATE = |E [yi = y∗i |t∗i = 1]− E [yi = y∗i |t∗i = 0] |, (11)

where yti,i denotes the prediction with estimated treatment
ti ∈ {0, 1}. y∗i and t∗i are the observations. The ATE is
taken over all subjects. From [20], these metrics cannot

Table 2: Applying causal modeling on noisy images classi-
fication. Case 1: perfect labeled visual pattern (Hlab) with
secondary patterns (Hiid); Case 2: original labeled images
(Hori) under an additive perturbation (Fper).

Treatment x̃ do(x̃) t=1 or 0
1. Context Hlab Hlab+ Hiid Additional patterns (e.g., “waterside”) (1) or not (0)
2. Perturbation Hori Fper(Hori) Artificial noise (e.g., Gaussian) (1) or not (0)

be properly estimated if there are confounding variables in
the system. On the other hand, Pearl [56] introduces the
“do-operator” [59] on treatment to study this problem under
intervention. The do symbol removes the treatment t from
the given mechanism and sets it to a specific value by some
external intervention. The notation P (y|do(t)) denotes the
probability of y with possible interventions on treatment.
Following Pearl’s back-door adjustment formula [58] and
the CGM in Fig. 1, it is proved in [44] that the causal effect
for a given binary treatment t, a proxy variable x, an outcome
y and a confounding variable z can be evaluated by (similarly
for t = 0):

p(y|x, do(t = 1)) =
∫
z
p(y|x, t = 1, z)p(z|x)dz (12)

To intervene the information of t (do(t)), flipping
errors [44] with different rates (see supplement C) are
applied to change the ti label(s) [55] in our experiments in
Section 5.1. The proposed CGM and its associated TLT
show resilient ATE estimation under statistical refutations.

Visual Patterns in the Intervention Level (II). We
clarify two common scenarios, noisy context and under per-
turbation, in the intervention level (II) for noisy image clas-
sification. As shown in Tab. 2, the treatment information (t)
is binary with an accessible noisy input x and inaccessible
ontological (clean) representation x̃ from Eq. (1) for visual
pattern modeling. Next, we introduce datasets in the regime
of the case 1 and 2 for our experiments in this work.

4.2. Case 1: NICO Dataset with Noisy Extra Visual
Patterns

NICO [23] is a large-scale and open-access benchmark
dataset for noisy image classification, which is motivated by
studying non-independent image classification with causal
modeling. The NICO dataset labels images with both main
concepts (e.g., “cat”) and contexts as sub-labels (e.g., “wa-
ter”). NICO is constructed by two super-classes: “animal”
and “vehicle”, with 10 classes for “animal” and 9 classes
for “vehicle”. In total, NICO contains 19 classes, 188 con-
texts, and 25,000 images. The design intuition of NICO is to
provide a causal modeling benchmark for large-scale image
classification. The authors evaluate several major image clas-
sification dataset (e.g., ImageNet, Pascal, and MS-COCO)
and found out the auxiliary context information (treatment)
is much random and inaccurate from statistical measurement
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for structuring validated causal inference. By selecting dif-
ferent contexts of the concept, testing data distribution can
be unknown and different from training data distribution,
which can be used to evaluate a causal inference model.

In our experiments, we follow the standard NICO eval-
uation process [23], where a concept is incorporated with
two contexts. We further use context as treatment in the
intervention level as in Case 1 of Tab. 2. One context is
the attribute of concept (t = 1) while another context is the
background or scene of a concept (t = 0).

4.3. Case 2: Curated Causal Pairs (CPS) Dataset
with Additive Artificial Noises

Despite many efforts in providing benchmark datasets
for causal inference on non-vision tasks [24, 26, 33, 61], vi-
sual causal data collection is relatively limited to bare causal
effect evaluation with conditional visual treatments [43]. Mo-
tivated by the perturbation-based causation studies testing
biological network and the efforts from NICO, we further
curate two datasets from public sources, named causal pairs
(CPS), by using a diverse set of image perturbation types
as treatment (i.e., Case 2 in Tab. 2). We select two repre-
sentative datasets, Microsoft COCO [38], and a medicine
dataset, Decathlon [78], to create our CPS datasets. Each
CPS contains pairs of original and perturbed images, as well
as five different perturbation types described in Sec. 4.4.
Table. 3 summarizes the NICO and our CPS datasets. Next,
we introduce how to generate noisy images in CPS.

Table 3: Comparison of noisy image classification datasets:
CPS with perturbation as a treatment (see Sec. 4.4) and
NICO with noisy context (e.g., “indoor”).

Dataset Treatment (Binary Information) Numbers Super-classes Total classes
CPS (ours) Receiving artificial noise (or not) 13,752 General / Medical 16
NICO Existing context-wise pattern (or not) 25,000 Animal / Vehicle 19

Super-class 1: Generating Noisy General Objects. To
generate CPS dataset from MS-COCO [38] for general super-
class, we selected six similar object classes that could pos-
sibly result in confusing interpretation and recognition by
human psychology studies [51, 68] (e.g., giraffe and ele-
phant, etc.). We conduct a survey with 1,000 volunteers
from Amazon mechanical turk [85] and pick the top-3 sim-
ilarity label pairs. Specifically, we format three different
common causal pairs, namely giraffe-elephant (CPS1) with
3316 images, stop sign-fire hydrant (CPS2) with 2419 im-
ages, and bike-motorcycle (CPS3) with 4729 images, where
the dataset is visualized in Fig. 3 (a).
Super-class 2: Generating Noisy Medical Images. For the
medical super-class, we use an identical setting with 2630
training and 658 test CT images for ten different types (to-
tal classes) of human disease from Decathlon [78], which
includes: (1) Liver Tumours; (2) Brain Tumours; (3) Hip-
pocampus; (4) Lung Tumours; (4) Prostate; (5) Cardiac; (6)

Pancreas Tumour; (7) Colon Cancer; (8) Hepatic Vessels,
and (10) Spleen. More details and visualization (Fig. 3 (b))
about this dataset are given in supplement B. From these
two super-classes, we randomly selected 50% of these la-
beled images and applied visual modifications to generate
interventional observations. Each generated image is as-
signed with a binary treatment indicator vector ti, where its
i-th element denotes the binary treatment label according to
the i-th visual modification.

4.4. Visual Perturbation (Treatment) in CPS

We employ five distinct types of image modification meth-
ods as independent intervention variables: (i) image scram-
bling; (ii) neural style transfer; (iii) adversarial example; (iv)
object masking, and (v) object-segment background shift-
ing. Below we provide brief descriptions for these visual
treatments as illustration in Fig. 3.Image Scrambling (IS)
[93] algorithms re-align all pixels in an image to different
positions to permute an original image into a new image,
which is used in privacy-preserved classification [82].

Neural Style Transfer (ST) [16] creates texture effect
with perceptual loss [30] and super-resolution along with
instance normalization [86].

Adversarial Example (AE) adds input perturbation for
prediction evasion. We employ the Fast Gradient Sign
Method (FGSM) [19] with a scaled ℓ∞ perturbation bound of
ϵ = 0.3. We also evaluated other attacks including C&W [9]
and PGD [47] in supplement B.

Object Masking (OM) & Background Refilling (BR):
Object masking (OM) was proposed in previous studies
[43, 92] for causal learning. We applied OM and another
masking methods, background refilling (BR), that duplicates
non-object background into the mask segment as treatments.

5. Experiments
5.1. Noisy Image Classification on NICO and CPS

Generative Model Baselines
For a fair comparison, we select two benchmark con-

ditional generative model incorporating both information
of label (y) and binary treatment (t): modified conditional
VAE [31, 79] (CVAE’) and modified CEVAE [44] (CEVAE’),
where CVAE’ use p(t, y) for concatenation as a conditional
inference and CEVAE’ follows a similar causal variational
inference process [44] without features fusion and condi-
tional queries. Both model are enhanced by ResNet [22]
and attention layers with similar parameters (7.1M) with
TLT. Noted CEVAE [44] is originally designed and applied
only on linear regression tasks but benefited from our causal
modeling for noisy image classification.

Performance on NICO Dataset. We first evaluate mod-
els performance trained on NICO dataset. From the reported
results in the paper [23, 95], we select the best reported
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Figure 3: Illustration of our generated CPS dataset for noisy image classification. We randomly selected 50% of labeled
images from both datasets and applied visual modifications to generate interventional observations. We selected similar
object classes by 1,000 human surveys. Left: three causal pairs – giraffe/elephant, fire-hydrant/stop-sign, and motorcycle/bike.
From left to right in CPS, the visual treatments are: (a) original input image, (b) image scrambling, (c) neural style transfer;
(d) adversarial example. We further discuss masking intervention effects used in [43, 92] on general subjects by (e) object
masking; and (f) background refilling. Right: a demonstration of Lung Tumours in Decathlon of the same format.

Table 4: Perturbation (e.g., texture) effects with classification accuracy (%) on the average of CPS images (∼13.7k) for
different treatments and their causal effect estimates. Note that TLT (7.39M) has similar parameters compared with CVAE’
and CEVAE’, which are enhanced by ResNet as discussion in the ablation studies. n is for treatment noise level.

Classification Accuracy (↑) Average Treatment Effect (↑)
Type of t (with n = 0.05) CVAE’ CEVAE’ TLT (ours) CVAE’ CEVAE’ TLT (ours)
Original (without t) 83.31 ±0.12 83.31 ±0.23 83.31 ±0.13 0.012 0.018 0.017
Style Transfer (ST) 73.67 ±0.31 74.34 ±0.26 76.12 ±0.27 0.324 0.343 0.359
Image Scrambling (IS) 72.31 ±1.27 76.21 ±0.81 80.12 ±0.54 0.057 0.295 0.288
Adversarial Example (AE) 79.12 ±0.25 81.12 ±0.17 83.12 ±0.12 0.025 0.027 0.036
Object Masking (OM) 70.12 ±0.19 72.73 ±0.21 74.06 ±0.11 0.179 0.241 0.253
Background Refilling (BR) 71.32 ±0.28 72.59 ±0.29 74.91±0.17 0.213 0.221 0.238

Table 5: Classification accuracy (%) on NICO.

Model StableNet [23] CVAE’ CEVAE’ TLT
Acc. 59.76 ±1.52 57.23 ±2.12 62.17 ±1.82 65.98 ±1.74

model, StableNet from [95] with sample weighting, which
outperforms six existing competitive models [36, 49, 52, 74,
83, 97] including SagNet [52] and GroupDRO [74] from
official report. As shown in Table. 5, generative models
with proposed causal modeling attain competitive results
on NICO with compositional bias setup, where TLT attains
a best performance of 65.98%. We provide more analysis
under different setup of NICO, where TLT remains as the
best model in supplement C.

Performance on CPS Dataset. In Table 4, we compare
TLT with modified CVAE’ and modified CEVAE’ as base-

lines1 trained on CPS dataset. The accuracy of TLT in the
original image, IS, ST, AE, OM and BR settings are consis-
tently better than CVAE’ and CEVAE’, with substantially
large margins ranging from 1.60% to 7.81%. CEVAE’ and
TLT are also shown to have higher causal estimate (CE)
than CVAE’ in all settings except for ST. Interestingly, ST
leads to a higher causal value (from 0.318 to 0.354) when
compared to the other modifications such as IS and AT. This
finding accords to the recent studies on DNN’s innate bias of
using edges and textures for vision task [17]. CEVAE’ and
TLT having lower value in ST setting could be explained by
a more unbiased representation learned by inference network
with lower dependency on edges and textures. A benchmark

1We have also conducted experiments on the seven algorithms used in
the NICO for CPS. However, all the evaluated algorithms perform worse
than our selected CPS baselines, possibly due to the challenges of visual
perturbation deployed in CPS. The code and weights will open for reference.
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Figure 4: (a) With proposed TLT and CPS dataset, neural
saliency methods can be extended to visual pattern from
inference. Take the top row as an example, using TLT,
guided grad-CAM [75] can be more aligned with the concise
human-interpretable giraffe patterns instead of forest tex-
ture and edges. More correlation analyses between saliency
and labels in NICO and CPS are given in supplement C. (b)
Visualization of learned manifolds of q(z) by tSNE [46],
proposed TLT’s results largest intra-cluster pair-wise sample
distances between additive noise (adversarial) (t = 1) and
vanilla (t = 0) image samples from CPS1.

visualization of Guided Grad-CAM [75] in Fig. 4 (a) vali-
dates this hypothesis and highlights the importance of our
inference network in gaining robust visual understanding
from latent space z as tSNE [46] results Fig. 4 (6). One
critical issue for visual intervention is its difficulty in investi-
gating the effect on object mask size [43, 62]. supplement C
shows a consistent and stable performance of TLT against
varying mask sizes.

Case Study on the medical super-class: We conduct
the same experiments with medical super-class to identify
visual clinical features. Both the classification and estima-
tion performance are consistent with general CPS objects,
where TLT attains the highest accuracy 88.74% in the origi-
nal setting and 82.57% in the scrambling setting (e.g., data
encryption operation) settings. TLT is most effective in clas-
sifying noisy image and more sensible in measuring ATE on
adversarial example. We also conduct expert evaluation on
the activation saliency of clinical patterns (Fig. 4). Based
on their domain knowledge [65, 66, 89], three physicians
independently and unanimously give the highest confidence
scores on saliency attributes to our method.

Statistical Refutation of Causal Models: To rigorously
validate our ATE estimation result, we follow a standard
refuting setting [57, 60, 72] with the causal model in Fig. 1
to run three major tests, as reported in supplement E and

Table S15, which validate our method is robust.

5.2. Neural Causation Coefficient (NCC)

Neural Causation Coefficient (NCC) [43] is a benchmark
causal discovery technique to validate its significance of
causal signal [43, 92] in a deployed experiment.

NCC is used to discover for joint distribution of a pair of
related proxy variables that are computed by applying CNNs
to the image pixels. Lopez et al. [43] used an augmented
NCC network to prove the existence of causal relations in
ResNet [22] between object and context in an image, and
showed that in object-feature ratio anticausal signal consis-
tently has stronger relation than causal signal.
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(a) TFR calculated by feature fR from ResNet34 [22] as [43].
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(b) TFR calculated by feature fC from our proposed TLT.

Figure 5: Evaluation of causal pairs by treatment feature
ratio (TFR) score [43]. The average and standard deviation
of TFR associated to the top-1% causal/anticausal feature
scores are displayed. The results show the visual perturba-
tion measurement is coherent with the previous study [43].

We reproduce the NCC architecture from [43] and find
all the anti-causal scores of COCO is larger than causal score
as shown as [43], where the causal signals in the proposed
dataset have been validated with extra NCC tests.

6. Conclusion
Motivated by human-inspired attention mechanism and

causal hierarchy theorem, in this paper we proposed a novel
framework named treatment learning transformer (TLT) for
tackling noisy image classification with treatment estimation.
In addition to showing significantly improved accuracy of
TLT on the NICO dataset with noisy contexts, we also cu-
rated a new causal-pair dataset (CPS) based on five different
visual image perturbation types for performance benchmark-
ing in general and medical images. We validated the causal
effect of TLT through statistical refutation testing on average
treatment effects. We also show derived advantages of TLT
in terms of improved visual saliency maps and representation
learning. Our results suggest promising means and a new
neural network architecture for the advancement of research
at the intersection of deep learning and visual causal infer-
ence. Our supplementary code will be open-resource under
Apache License 2.0 to the community.
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