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Abstract

Semi-supervised learning has the potential to improve
the data-efficiency of training data-hungry deep neural net-
works, which is especially important for medical image
analysis tasks where labeled data is scarce. In this work,
we present a simple semi-supervised learning method for
lesion segmentation tasks based on the ideas of cut-paste
augmentation and consistency regularization. By exploiting
the mask information available in the labeled data, we syn-
thesize partially labeled samples from the unlabeled images
so that the usual supervised learning objective (e.g., binary
cross entropy) can be applied. Additionally, we introduce
a background consistency term to regularize the training
on the unlabeled background regions of the synthetic im-
ages. We empirically verify the effectiveness of the proposed
method on two public lesion segmentation datasets, includ-
ing an eye fundus photograph dataset and a brain CT scan
dataset. The experiment results indicate that our method
achieves consistent and superior performance over other
self-training and consistency-based methods without intro-
ducing sophisticated network components.

1. Introduction
Deep neural networks are known to be data-hungry – a

large set of labeled training examples are required to gen-
eralize well to unseen testing data. In the medical imag-
ing domain, labels are prohibitively expensive to acquire as
it requires domain-specific knowledge from professionally
trained specialists. To relieve the burden of label collec-
tion, data-efficient learning methods such as those based on
semi-supervised learning are being actively pursued. Semi-
supervised learning enables joint learning on both labeled
and unlabeled examples, and the resulting model performs
better than just training on the labeled examples alone.
Semi-supervised learning methods can be broadly catego-
rized into three categories: 1) pseudo-labeling [12, 35, 22,
10], 2) consistency learning [24, 28, 7, 15, 18, 16, 10], and
3) auxiliary task learning [11, 31]. Pseudo-labeling utilizes
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Figure 1. Illustration of the proposed method. Partially labeled
samples are generated by blending the foreground objects from
labeled samples with unlabeled images. For binary segmentation
tasks, predictions and targets are probability maps of the positive
class. Target network can be an exact copy of the segmentation
network or an exponential moving average version of the network.
⊙ denotes element-wise multiplication.

pretrained models to generate pseudo-labels for the unla-
beled data, consistency learning encourages different per-
turbed views of the same input to have similar feature rep-
resentations or outputs, while auxiliary task learning makes
use of proxy tasks derived from the unlabeled data. De-
spite obtaining impressive performance gains, many meth-
ods rely on adding sophisticated components to the neu-
ral networks, which introduce a sizeable computation over-
head to the training process. In this work, a cut-paste
consistency-based semi-supervised learning method is pro-
posed for lesion segmentation tasks. This method does not
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introduce any computationally intensive component and is
specifically tailored for segmentation of small irregular ob-
jects such as lesions. Compared to organ segmentation, le-
sions have much larger variations in size, position and tex-
ture, which makes them harder to delineate. Based on the
observation that lesions are small and sparsely distributed
in images with much higher resolutions, the main idea is
to treat the unlabeled images as a set of lesion-free back-
grounds and use the mask information in labeled data as
a source of foreground objects to synthesize new training
examples, a process related to the cut-paste augmentation
technique.

Cut-paste, also known as Copy-paste, is an augmenta-
tion technique unique to image detection and segmentation
tasks. This augmentation technique extracts foreground ob-
jects using existing bounding boxes or segmentation masks
and pastes them on random images to create a more diverse
training set. Cut-paste has also been applied successfully
to the semi-supervised setting in a self-training setup [8], in
which labeled masks are randomly pasted onto the pseudo-
labeled masks. Unlike the self-training setup which requires
at least two rounds of training (first round – train on the la-
beled data; second round – train on mixture of labeled and
pseudo-labeled data), our proposed method only require one
round of training and does not rely on fixed pseudo-labels.

The main contribution in this work is three-fold: 1) we
demonstrated how to construct partially labeled samples for
tiny objects segmentation (e.g., lesions) using unlabeled im-
ages and the mask information of labeled data; 2) we formu-
lated a simple but effective training objective for joint learn-
ing on the pool of labeled and partially labeled samples; 3)
we conducted experiments to verify the effectiveness of the
proposed method on two public benchmarks for lesion seg-
mentation. 1

2. Literature Review
This section reviews related work on consistency-based

semi-supervised learning and cut-paste augmentations, the
two important ingredients in the proposed method.

2.1. Consistency-based Semi-Supervised Learning

Many popular semi-supervised learning methods are
based on consistency regularization which aims to learn
noise-invariant representations from unlabeled samples by
minimizing the discrepancy in the output distributions of
different perturbed views of the same input sample. To
generate diverse perturbations, Virtual Adversarial Train-
ing (VAT) [14] perturbs each sample towards an adversarial
direction that results in the largest change in output distri-
bution while Unsupervised Data Augmentation (UDA) [28]

1Codes are made available at https://github.com/BPYap/Cut-Paste-
Consistency.

perturbs the samples with stronger and more realistic data
augmentation strategies. For semi-supervised semantic seg-
mentation, different mixing-based perturbation strategies
have been explored, including an approach [7] of generat-
ing pseudo-targets by mixing the predictions of two unla-
beled samples using CutMix [30]. Another approach called
ClassMix [15] generates pseudo-targets with more refined
object boundaries by converting the predicted segmentation
maps into binary masks prior to mixing. More recent meth-
ods [1, 33, 32, 27] complement consistency regularization
with pixel-wise contrastive learning. Unlike these meth-
ods which only operate on unlabeled samples, the proposed
method in this work synthesizes partially labeled samples
from the labeled samples to improve the diversity of train-
ing samples.

2.2. Cut-paste Augmentation

First introduced for instance detection [5], cut-paste has
been studied extensively in tasks like instance segmentation
[8] and semantic segmentation [23, 29, 25, 2]. The idea
is simple – first, foreground objects are extracted from one
image using previously annotated bounding boxes or seg-
mentation masks. Then, the extracted objects are blended
with other image to create a new training sample. To prevent
neural networks from picking up shortcuts/noises caused by
the pasting operation, several works have been introduced to
generate more realistic images by modelling the context of
the backgrounds. For example, Cut&Paste [20] pastes ob-
jects on the same horizontal scanline to preserve the correct
scale after pasting, Context-DA [4] trains a context model
to select the most likely background position for pasting,
while InstaBoost [6] selects pasting locations according to
the appearance consistency heatmaps computed from hand-
crafted descriptors. Since medical images within the same
modality have similar appearance, previously proposed cri-
teria for modelling the contexts of natural images might not
be applicable to medical images without substantial modi-
fications. In this work, a simpler alternative based on mea-
suring the similarity of pixel values is explored.

3. Method
Similar to CutMix and ClassMix, this work focuses on

mixing-based perturbation strategy for semi-supervised se-
mantic segmentation. The core idea of the proposed cut-
paste consistency learning is as follow: utilizing the mask
information available in the labeled data, a set of synthetic
samples are generated by cutting and pasting masked re-
gions from the labeled data onto the unlabeled images. This
converts the unlabeled images into partially labeled syn-
thetic samples and allows the cross entropy function to be
used as training objective. This is useful for learning lesion
boundaries under different background conditions. Since
the synthetic samples are partially labeled (i.e., regions out-
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Figure 2. (a) Three fundus images and three CT scans randomly sampled from unlabeled datasets. (b) Synthetic images and (c) labels
generated by cutting and pasting random lesions from the labeled dataset. (d) Synthetic images and (e) labels generated by cutting and
pasting lesions from labeled images with similar colours (for fundus images) or grayscale intensities (for CT scans).

side the pasted objects are still considered as unlabeled),
the cross entropy objective will incorrectly penalize the un-
labeled regions that are actually positive. Thus, to account
for the uncertain labels in the backgrounds of the synthetic
samples, a background consistency term is added to regu-
larize the loss function. This consistency term encourages
similar outputs in the backgrounds for both the original im-
ages (before cut-paste) and synthetic images as their predic-
tions vary during the course of training. An illustration of
the proposed method is shown in Fig. 1. The rest of this
section describes the details of the image synthesis process,
followed by a description of background consistency regu-
larization and a formulation of the overall loss function.

3.1. Image Synthesis

Most existing semi-supervised learning methods indi-
rectly propagate label information to the unlabeled data
through a joint optimization of separate loss terms. Our
proposed cut-paste consistency method explicitly creates a
direct link between the labeled and unlabeled data through
an image synthesis process that pastes masked regions from
the labeled images onto the unlabeled images. This ap-
proach allows known foreground objects (e.g., lesions) to
be incorporated into a wide variety of background scenes in
the unlabeled images to create a more diverse training data

for better model generalization. To synthesize a new sam-
ple, each unlabeled image is first matched with a labeled
sample (an image-mask pair). Foreground objects are ex-
tracted from the labeled image with the object mask and
transformed before blending with the unlabeled image. The
blended image, along with its mask, are added to the labeled
dataset and is used as the training set for semi-supervised
learning.

Color Matching When matching unlabeled images with
labeled samples, simply choosing a random sample usually
results in a synthesized image that are visually inconsis-
tent, making it too trivial for the segmentation network to
learn meaningful features. To achieve a more realistic syn-
thetic image, the samples are matched according to their
pixel value similarities. For color images, unlabeled im-
ages are matched with labeled images with the lowest Delta
E distances (a measure of color difference in the CIELAB
color space); for grayscale images, the samples are matched
based on the lowest L2 distance in gray-level pixel inten-
sity. Some synthetic samples generated using the random
and color matching scheme are shown in Fig. 2 for com-
parison. From the figure, the fundus images synthesized via
the color matching scheme appear to be more realistic com-
pared to those generated with random matching. For the CT
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Figure 3. Post-processing step to remove objects pasted on out-of-
bound regions.

scans, the color matching scheme is more likely to select the
appropriate lesions by matching the unlabeled images with
similarly-sized scans. During training, the synthetic sam-
ples are generated on the fly and each unlabeled image is
paired with a randomly selected sample from the five most
similar labeled samples.

Image Blending To increase diversity in the synthetic
samples, small amount of geometric and color jitterings are
added to the foreground objects before pasting onto the un-
labeled images. The geometric jittering consists of random
rotation, random translation, and random resizing while
the color jittering includes random jittering in the bright-
ness, contrast, and saturation level. The transformed fore-
ground objects are then blended with the unlabeled images
via Gaussian blurring. We found that it is also beneficial
to add a small amount of Gaussian noise to the unlabeled
images prior to image blending. This also acts as a source
of noise for background consistency regularization. A post-
processing step is applied to mask out any possible out-of-
bound objects from the blended images. As illustrated in
Fig. 3, this is achieved using image-specific binary masks
obtained by thresholding each un-blended image with the
pixel value of the out-of-bound regions.

3.2. Background Consistency Regularization

In the synthesized images, regions outside of the pasted
objects are still considered as unlabeled. To prevent in-
correct penalization of the potential false-negative regions
by the cross entropy objective, a consistency regulariza-
tion term is applied to the background predictions. Specif-
ically, the background prediction of each synthetic image

is obtained as the result of an element-wise multiplication
between the network prediction and the inverted synthetic
mask. The original unlabeled image is passed through a tar-
get network to obtain a background target, which is then
multiplied by the same inverted synthetic mask used in the
computation of the background prediction. When comput-
ing the background target, a stop gradient operation is ap-
plied to prevent the weights of the target network from be-
ing updated. This target network can either be an exact copy
of the segmentation network being optimized, or an expo-
nential moving average version of the network [24]. The
latter tends to produce a more stable target for consistency
regularization. The background prediction is then encour-
aged to be consistent with the background target by mini-
mizing the mean squared error of the output distributions:

Lbg(x, x̃, ỹ) = ∥f(x̃)⊙ (1− ỹ)− f ′(x)⊙ (1− ỹ)∥22 (1)

where f and f ′ are the segmentation network and target net-
work respectively, x, x̃ and ỹ are the original (unlabeled)
images, synthetic images and synthetic segmentation masks
respectively.

3.3. Overall Loss Function

Combined with the labeled term, the overall loss func-
tion is given by:

L = Lℓ + λuLu (2)

Lℓ =
∑

(x,y)∈Dℓ

Lbce(f(x), y) (3)

Lu =
∑

(x,x̃,ỹ)∈Ds

[Lbce(f(x̃), ỹ) + Lbg(x, x̃, ỹ)] (4)

where Dℓ and Ds are the labeled dataset and synthetic
dataset respectively, and λu is a task-specific hyperparam-
eter controlling the contribution of the unlabeled loss term.
Notably, the unlabeled term (Lu) takes additional syn-
thetic samples as inputs, in contrast to prior semi-supervised
learning objectives which only takes unlabled samples as
inputs. Lbce represents the (weighted) binary cross entropy
loss. As most lesion segmentation datasets are heavily im-
balanced, more weights are given to the positive instances
in Lbce. Specifically, the positive weight is calculated as:

wpos = ln
Ptotal

Ppos
(5)

where Ptotal refers to the total number of pixels in all im-
ages, and Ppos is the number of pixels labeled as positive.

4. Experiments and Results
This section presents the details and results of semi-

supervised learning experiments on two public benchmarks

6163



for lesion segmentation. Additionally, ablation studies are
conducted to study the impact of each component in the pro-
posed method.

4.1. Datasets

The effectiveness of the proposed method is evaluated on
two publicly available datasets for lesion segmentation: the
Indian Diabetic Retinopathy Image Dataset (IDRiD)2 [19]
and a computed tomography (CT) dataset for intracranial
hemorrhage segmentation (CT-ICH)3 [9].

IDRiD is a challenge dataset consisting of up to 81 color
fundus images with pixel-level annotation for four types of
retinal lesions: microaneurysms (81 images), hemorrhage
(80 images), hard exudates (81 images), and soft exudates
(40 images). It also contains 435 other images with image-
level annotation for diabetic retinopathy and diabetic macu-
lar edema. For semi-supervised lesion segmentation, these
435 images are treated as unlabeled data.

The CT-ICH dataset contains 82 CT scans, of which 36
of them are collected from patients diagnosed with intracra-
nial hemorrhage. Each CT scan includes about 30 slices
with 5 mm slice-thickness, and regions with intracranial
hemorrhage were manually delineated by two radiologists.
In total, 2814 slices were extracted from the CT scan data.
Unlike IDRiD where each fundus image from the labeled
data is guaranteed to contain at least one type of lesion,
most of the slices in the CT-ICH dataset does not contain in-
tracranial hemorrhage. This makes it a heavily imbalanced
dataset and extra challenging for semi-supervised learning.
To simulate the scenario of semi-supervised learning, a por-
tion of the full dataset are chosen as labeled data via patient-
wise stratified sampling. The rest of the dataset is treated as
unlabeled data.

4.2. Experiment Setups

Baselines The proposed cut-paste consistency learning
method is benchmarked against six baseline methods, in-
cluding a fully supervised (i.e., training on the available
labeled data only) baseline and five prior semi-supervised
learning methods: (i) self-training [35], (ii) self-training +
cut-paste [8], (iii) Mean Teacher [24], (iv) CutMix consis-
tency [7], and (v) ClassMix consistency [15]. To standard-
ize the benchmarking process and ensure fair comparisons,
all semi-supervised methods are re-implemented in a shared
codebase using the Pytorch [17] library.

Data Augmentations Each image along with its segmen-
tation mask is resized to 512 pixels along the shorter side.
During training, standard augmentations such as random ro-
tation, random flipping, and random grayscaling (only ap-

2https://idrid.grand-challenge.org/Home/
3https://physionet.org/content/ct-ich/1.3.1/

plicable for IDRiD) are applied to each input sample. Dur-
ing inference, the predicted segmentation masks are up-
scaled to their original sizes.

Training Details The popular U-Net [21] is chosen as
the segmentation network. For each task, the weight decay
value is fixed at 10−5 and the learning rate is tuned on the
fully supervised baseline only. The selected learning rates
are kept fixed for all the semi-supervised learning experi-
ments. Each segmentation network is optimized using the
AdamW optimizer [13] for up to 500 epochs and 50 epochs
for the IDRiD and CT-ICH datasets, respectively. 10% of
the training samples are randomly selected as validation
dataset and early stopping is applied based on the perfor-
mance on the validation dataset. During training, the learn-
ing rate is linearly warmup in the first 10 epochs and gradu-
ally decayed after the 10-th epoch using a cosine scheduler.
The batch size for the IDRiD and CT-ICH dataset is set to
be 5 and 8, respectively. The task-specific weighting param-
eters (λu) for cut-paste consistency learning are empirically
set to 0.01 for all tasks in IDRiD and 0.1 for intracranial
hemorrhage segmentation in the CT-ICH dataset. For lesion
segmentation with IDRiD, training is repeated with differ-
ent random seeds on the training set and the average per-
formance measure on the testing set is reported. For hem-
orrhage segmentation with the CT-ICH dataset, five-fold
cross-validations are performed. All segmentation networks
are optimized using a single NVIDIA V100 GPU with 16
GB memory.

4.3. Results on IDRiD

Table 1 shows the evaluation results on the test set of
each lesion segmentation task in IDRiD. For this dataset,
the segmentation performance is measured using area un-
der the precision-recall curve (AUC-PR), following the of-
ficial performance measure from the challenge organizer.
From the table, the proposed cut-paste consistency learn-
ing method consistently places among the top performing
methods and achieves the best performance in hemorrhage
(HE) segmentation. Through a straightforward extension
with the Mean Teacher model [24] (i.e., replacing the target
network with the exponential moving average version of the
segmentation network), our method achieved the best aver-
age result across the four lesion segmentation tasks, with
3.96% improvement over the fully supervised baseline and
a margin of 1.85% compared to the best baseline method
(self-training + cut-paste). Self-training, with or without
cut-paste, is a competitive and simple-to-implement semi-
supervised method. However, it requires longer training
time compared to other methods, since multiple rounds of
trainings is typically needed to propagate labels from the
labeled data to the unlabeled data. By contrast, cut-paste
consistency learning is more computationally efficient as it

6164



Method MA HE EX SE Average

Supervised (labeled data only) 48.64 62.40 82.95 73.82 66.95

Self-training [35] 49.57 65.66 86.08 73.96 68.82
Self-training + Cut-Paste [8] 49.63 65.84 86.92 73.86 69.06
Mean Teacher* [24] 50.37 64.71 83.23 75.86 68.54
CutMix consistency* [7] 51.11 63.10 85.17 72.13 67.88
ClassMix consistency* [15] 42.29 63.63 87.17 76.29 67.34

Cut-Paste consistency (this work) 50.20 66.67 87.24 76.91 70.26
Cut-Paste consistency* (this work) 51.03 65.92 88.47 78.20 70.91

Table 1. Comparison of AUC-PR scores (%) on four lesion segmentation tasks in IDRiD. Best result is shown in bold, and the second best
result is underlined. *Method that uses Mean Teacher model [24] in consistency learning. (Abbreviations: MA - microaneurysms; HE -
hemorrhage; EX - hard exudates; SE - soft exudates)

30% 50% 70% 100%

Method F1 Jacc. F1 Jacc. F1 Jacc. F1 Jacc.

Supervised (labeled data only) 23.93 14.39 37.65 24.38 46.92 30.80 55.71 39.50

Self-training [35] 27.49 16.52 40.88 26.60 48.18 32.41 - -
Self-training + Cut-Paste [8] 32.59 21.28 43.00 28.47 48.52 32.43 - -
Mean Teacher* [24] 24.70 14.78 39.61 25.75 48.26 32.21 - -
CutMix consistency* [7] 27.02 16.70 39.89 26.10 47.87 32.35 - -
ClassMix consistency* [15] 15.01 8.77 33.54 21.50 49.51 33.37 - -

Cut-Paste consistency* (this work) 35.68 23.94 42.55 28.69 49.82 33.38 - -

Table 2. Comparison of F1 scores (%) and Jaccard indices (%) on the CT-ICH dataset with different ratios of labeled examples. 100%
labeled setting represents the performance upper bound achievable using all available labels. Best result is shown in bold, and the second
best result is underlined. *Method that uses Mean Teacher model [24] in consistency learning.

can attain strong segmentation performance after just one
round of training.

4.4. Results on CT-ICH

The five-fold cross-validation results, comprising the F1
scores and Jaccard indices (Jacc.), on the CT-ICH dataset
are shown in Table 2. Different ratios of labeled examples
(30%, 50%, 70%) are evaluated and the 100% setting rep-
resents the performance upper bound when all examples
are labeled. Under the 30% labeled setting, our method
significantly outperforms the supervised baseline, with an
improvement of 11.75% in F1 score and 9.55% in Jac-
card index. This illustrates the benefits of cutting and past-
ing labeled masks onto unlabeled images when labels are
scarce. Under all semi-supervised settings, cut-paste con-
sistency emerges as the best-performing method in terms of
Jaccard indices, while having competitive performance in
terms of F1 score under the 50% labeled setting. It is in-
teresting to note that ClassMix consistency [15] struggles
to outperform the supervised baseline under the 30% and
50% labeled settings, despite our best attempts at tuning its
weighting parameter. One reason might be that ClassMix

was originally proposed for segmentation tasks with more
than two classes, and the highly imbalance nature of the CT-
ICH dataset with only two classes might produce confusing
and noisy targets for the consistency learning objective. Un-
der the 70% labeled setting where there is sufficient labeled
samples, ClassMix recovers its semi-supervised learning
performance and ranked second in terms of F1 scores and
Jaccard indices. Meanwhile, the proposed cut-paste consis-
tency learning method consistently produces large perfor-
mance improvements across different ratios of labeled sam-
ples.

4.5. Ablation Study

To investigate the impact of different components intro-
duced in the cut-paste consistency learning method, abla-
tion studies are conducted on the hard exudates (EX) and
microaneurysms (MA) segmentation tasks in IDRiD. The
comparisons are shown in Table 3. Starting with a plain
random cut-paste baseline (first row), components such as
mask blurring, background blurring, color matching and
consistency regularization are gradually added. As more
components are added, the performance on EX segmen-
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Mask
Blurring

Background
Blurring

Color
Matching

Image
Consistency

Background
Consistency λu EX MA

0.01 81.27 49.85
✓ 0.01 82.35 49.78

✓ 0.01 82.60 49.12
✓ ✓ 0.01 84.31 48.90
✓ ✓ ✓ 0.01 85.24 49.29
✓ ✓ ✓ ✓ 0.01 85.86 50.85
✓ ✓ ✓ CE 0.01 88.24 50.31
✓ ✓ ✓ MSE 0.01 88.47 51.03

✓ ✓ ✓ MSE 0.009 86.60 50.50
✓ ✓ ✓ MSE 0.03 88.37 49.83
✓ ✓ ✓ MSE 0.05 87.03 50.90

Table 3. Results of ablation studies (AUC-PR scores) on hard exudates (EX) and microaneurysms (MA) segmentation tasks in IDRiD.

0.2871 0.2557 0.3555

(e) (f)

0.5900 0.6110 0.7033 0.7959

(a) (b) (c) (d)

0.2280hard exudates

0.3768 0.3858 0.0031 0.3904

0.3308 0.4549 0.3606 0.5120hemorrhages

microaneurysms

soft exudates

Figure 4. Visualization of the segmentation results on IDRiD. From left to right columns: (a) input images, (b) ground truth segmentation
masks, (c) predictions from the fully supervised baseline, (d) predictions from the CutMix baseline [7], (e) predictions from the ClassMix
baseline [15], and (f) predictions from the proposed method. The type of lesion is indicated under each ground truth mask while the
intersection over union between the ground truth mask and the predicted mask is provided under each predicted mask.

tation steadily increases. The largest relative performance
gain was observed when the background consistency term

is added (3.23% improvement comparing the fifth row to
the eighth row). This is the default setup used in the main
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experiments. On the sixth row, another formulation of cut-
paste consistency learning based on enforcing whole-image
consistency is studied. This formulation simply treats the
pasted objects as distractors and is equivalent to passing the
synthetic images to both networks of Mean Teacher model.
Although this formulation outperforms the vanilla Mean
Teacher model, its performance is worse when compared
to those of the background consistency formulation. This
shows that the asymmetric nature of the background con-
sistency formulation is beneficial for learning from partially
labeled synthetic samples. For the background consistency
term, mean square error performs slightly better than the
cross-entropy function (CE). Different values of λu are also
tested (last three rows) and 0.01 was found to be the opti-
mal value. On MA segmentation, the results are generally
stable across different configurations, with the default setup
achieving the best overall performance.

4.6. Qualitative Results

Samples of the segmentation results for the baseline and
proposed methods on the IDRiD dataset are compared in
Fig. 4. In general, the proposed cut-paste consistency
learning method produces predictions with lesser number
of false positives compared to other baselines. A failure
case can be observed from the ClassMix consistency base-
line on the segmentation of microaneurysms (row 1, column
5). The quantitative results from Table 1 shows that Class-
Mix struggles to reach the performance of the supervised
baseline. This might be due to the inherent difficulty of
this task, as evidenced by the lower AUC-PR scores across
all methods in Table 1. In contrast to other lesion types, mi-
croaneurysms are extremely small, typically only a few pix-
els wide, which can be challenging for ClassMix as it uses
pseudo-labels to mix two images together. For extremely
small objects like microaneurysms, the pseudo-labels at the
first few iterations of the training stage may consist of large
portions of false positives and overwhelm the true positive
cases. Our proposed method does not suffer from this issue,
and is shown to perform competitively in many lesion types
of different shapes and sizes.

5. Discussion
The generation of the partially labeled synthetic samples

can be viewed as an oversampling strategy for the positive
instances in the input space. This is particularly suitable
for lesion segmentation tasks, where lesions are typically
small and sparsely distributed over the regions of interest.
Pasting positive instances on top of matching unlabeled im-
ages exposes existing foreground objects to different back-
ground scenes, which effectively increases the diversity of
training samples and helps boost the generalization capa-
bility of segmentation networks, as demonstrated in the ex-
periments. Furthermore, the introduction of the background

consistency regularization term helps to curb the false nega-
tive cases in the unlabeled regions of the synthetic samples.
By combining them together, the proposed cut-paste con-
sistency learning method is effective in reducing the anno-
tation cost for lesion segmentation tasks.

It is noted that the synthesis process might not be appli-
cable to the segmentation of large regular body structures
that typically occupy a fixed location relative to other ob-
jects, such as the segmentation of lungs and livers. The
generated samples will contain multiple occluding organs,
which are not representative of real images and will likely
cause degradation in segmentation performance. Likewise,
the proposed training objective might not be suitable for
panoptic segmentation tasks (e.g., the Cityscapes bench-
mark [3]) because of the diversity in sizes and types of ob-
jects that can appear in the background. Nevertheless, we
believe that the proposed method could serve as a strong
baseline in other tasks involving semi-supervised segmenta-
tion or detection of small irregular objects. Some examples
include the segmentation of manufacturing defects from in-
dustrial photos, and detection of small targets from remote
sensing images.

6. Conclusion
A consistency-based semi-supervised learning method

for lesion segmentation is presented in this work. By uti-
lizing lesion masks from labeled images to generate par-
tially labeled synthetic samples and enforcing background
consistency, our simple but effective cut-paste consistency
method achieves significant improvements on two bench-
mark datasets involving fundus images and brain CT scans.
This method is architecture-agnostic and could be incor-
porated easily into other training frameworks. For future
work, one potential direction would be improving the im-
age synthesis component using advanced techniques such
as context modelling [4] and image harmonization [34, 26].

Acknowledgements
The computational work for this article was fully performed
on resources of the National Supercomputing Centre, Sin-
gapore (https://www.nscc.sg).

References
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