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Abstract

Transformer is eminently suitable for auto-regressive im-
age synthesis which predicts discrete value from the past
values recursively to make up full image. Especially,
combined with vector quantised latent representation, the
state-of-the-art auto-regressive transformer displays realis-
tic high-resolution images. However, sampling the latent
code from discrete probability distribution makes the out-
put unpredictable. Therefore, it requires to generate lots of
diverse samples to acquire desired outputs. To alleviate the
process of generating lots of samples repetitively, in this ar-
ticle, we propose to take a desired output, a style image, as
an additional condition without re-training the transformer.
To this end, our method transfers the style to a probabil-
ity constraint to re-balance the prior, thereby specifying the
target distribution instead of the original prior. Thus, gener-
ated samples from the re-balanced prior have similar styles
to reference style. In practice, we can choose either an im-
age or a category of images as an additional condition. In
our qualitative assessment, we show that styles of majority
of outputs are similar to the input style.

1. Introduction
Image generation is a task that learns a mapping from

a prior density to real image distribution. Recent works
of deep generative models developed for this task derive
from two major branches; one is Generative Adversarial
Nets (GAN) [11] which is a pioneering research of implicit
density models; the other is explicit density models which
include Variational Auto-Encoder (VAE) [17] and Autore-
gressive generative models. Until recently, studies derive
from GAN and VAE show distinguished achievement in im-
age quality, however, they yet have a couple of limitations;
first, they have a difficulty achieving high resolution and sat-
isfactory output quality due to inherent limitations in either
loss design or structurally restricted receptive field; second,
the training process is relatively unstable.

To improve the problems of GAN and VAE based meth-

ods, another direction of research heads towards more di-
rect formulation. To formulate tractable density, Pixel-
RNN [45] proposes an auto-regressive architecture to com-
pute the global relationship explicitly and model the image
components recursively. Thanks to the advantage in view-
ing global context, this research stably produces locally and
globally coherent results. Following research, Conditional
PixelCNN [31], introduces a condition in representing the
target distribution and displays qualitatively coherent re-
sults to given labels. Despite solving the two major prob-
lems in GAN and VAE, its computation complexity is pro-
portional to the square of the output size, hampering extend-
ing the size of an architecture and output resolution.

Recently, a transformer architecture from previous re-
search [46] provides clue for the above scalability problem
in a tractable density model. By replacing recursive com-
putation for long range relationships to transformer with
masked self-attention module, the study achieves both of
full receptive field and computational efficiency. Thus, fol-
lowing researches start adopting transformer instead of the
recursive architecture. The research [34] introduces trans-
former in image generation task and shows comparable
or even better performance than recursive neural network
(RNN) based architectures with a better computational ef-
ficiency. However, the limitation of these methods lies in
insufficient quality compared to GAN-based methods since
modeling low-level vision, pixel values in most cases, is
qualitatively inaccurate compared to GAN-based methods.

Instead of predicting low-level vision, predicting quan-
tised latent representation becomes a substitute. The first
of this appears in VAE approaches. The previous re-
searches [44], [36] introduce vector quantisation to latent
representation in VAE, called Vector Quantised-Variational
AutoEncoder (VQ-VAE), thereby the latent prior becomes
discrete and categorical. Inspired by this study, the recent
study [10] adopts VQ-VAE to represent latent representa-
tion while the transformer infers quantized code instead of
pixel value. Hence, the output of the transformer is a prior,
probability density over discrete codebook. After the trans-
former infers the prior, sampling a code from the prior prob-
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ability creates a sequence of codes which is deterministi-
cally translated to an image. Because a quantised latent rep-
resentation relieves the transformer from modeling the com-
plex low-level vision, instead it can focus more on learn-
ing the global context. With the advantage of efficient role
allocation, this study displays high-resolution and natural-
looking outputs. However, what would be generated from
prior sampling is unknown until it generates and decodes
the full sequence of quantised codes, which is much more
time consuming as the target resolution is getting higher.

To resolve the unpredictable behavior of sampling from
prior density, our proposal confers controllability on the
above research. We propose a novel method to guide prior
sampling by adopting a style image as a conditional input.
To this end, we reformulate conditional generative model
to posterior expression where conditional input is a given
observation. Therefore, our method guides the inference
of pre-trained transformer using a conditional input with-
out re-training the model. Our method inherits the merits of
the previous transformer-based generative approach, creat-
ing high-resolution photo-realistic output images. Besides,
our method accepts conditional input image and generates
outputs of similar styles to the given condition.

Our method can work both on a non-conditional and con-
ditional pre-trained transformer, and its output is visually
well persuasive, especially in landscape scenes where we
can feed a semantic label map as a condition. In the eval-
uation section, we show experiments of a single image and
multiple images as input styles. In the case of multiple im-
ages, we perform sampling and averaging the distribution
of latent features over the entire images.

2. Related Works
GAN-based Image Synthesis. Over the last years, the

field of image synthesis has been massively researched.
Since the debut of Generative Adversarial Network [11],
this field has progressed to higher resolution and better qual-
ity than ever before. However, the original GAN holds a
few drawbacks; the training process is unstable, enlarging
the resolution is limited by the architectural design and ma-
chine to run the model, and the output quality is not yet that
of the real world. Recently, a few cornerstone researches
break the limitations and enable to synthesize the real-
world scene. The pioneering research, PG-GAN [15], sug-
gests GAN generating higher resolution by progressively
stacking more layers and consequently enlarging the res-
olution. Meanwhile, to alleviate the instability in train-
ing process, we can find various former researches includ-
ing Wasserstain GAN [2], PGGAN [15], SN-GAN [25],
techniques for training GANs [38], LSGAN [22], and BE-
GAN [3]. Improving the architecture is another branch of
research; DCGAN [35] embraces convolutional architec-
ture, SA-GAN [52] adds self-attention blocks to its back-

bone, and BigGAN [4] composes many previously-existing
modules such as self-attention, spectral normalization, and
a discriminator with projection [26]. Lastly, StyleGAN [16]
is a foundation in its way. It proposes disentangled la-
tent priors from mapping network instead of random noise
for attribute control, stochastic variation, and better output
quality.

Conditional Generative Model. Conditional image
generation refers to the task that generates images condi-
tioning on a particular input data. For example, condition-
ing on a class label [24], [27], [4], [23], [26] allows the
generated samples to be in the class. Another case of con-
ditional generative models [37], [54], [13], [49] is based on
text to synthesize images. Recently, many researches [47],
[20], [32], [9], [43], [55], [56], [57], [42], [41] use semantic
segmentation map to indicate what to draw. SPADE [32]
suggests a spaital-varying normalization layer and becomes
a significant backbone for the following researches. CC-
FPSE [20] applies spatially-varying convolutional kernels
which are based on the semantic label map to fully uti-
lize semantic layout information to generate high-quality
and semantically high-fidelity images. SEAN [56] displays
per-semantic styling by applying region-adaptive normal-
ization. CLADE [42] proposes class-adaptive normaliza-
tion layer. INADE [41] presents an instance-adaptive mod-
ulation sampling and improves diversity. Our work also
extends the series of conditional generative model, except
that it suggests guided inference to follow a given condition
instead of architecturally accepting conditional input with
additional parameters and requiring full training process.

Autoregressive Generative Model. Autoregressive
model formulates a tractable density function as a gener-
ative approach. Due to its simplicity and directness, it is
broadly used in image and audio generation. In image gen-
eration, autoregressive deep generative model predicts the
probability over discrete pixel value regressively using the
architectures called PixelRNN and PixelCNN [45], [31],
[6]. In audio generation, WaveNet [30] introduces Pixel-
CNN architecture to the 1D audio data by applying dilated
causal convolution layer, followed by many researches [48],
[1], [39], [29] that improve the quality of synthesis. Af-
terwards, a transformer architecture [46] is newly intro-
duced in autoregressive generative method [34] replacing
the former RNN based architecture. Transformer becomes
prevalent and also appears in GAN based approaches [52],
[14]. Recently, the state-of-the-art study, Taming Trans-
former [10], adopts vector quantisation introduced in VQ-
VAE [44], [36] and predicts probability density over the en-
tries of a quantised latent vector instead of direct prediction
of a discrete pixel value. Thanks to lessen the burden of
transformer from predicting low-level complex vision fea-
ture, this work generates photo-realistic and high-resolution
scenes.
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Figure 1. System overview of image-generative process of baseline method [10] (top) and our method (bottom). The major difference
from the baseline work is applying style likelihood P (zu|T ) in the middle of the process to apply an additional condition u. P (zu) and
PD(T ) are probability distributions of all indices in latent maps. Latent map for P (zu) is from conditional image u. Latent maps for
PD(T ) are from images in training dataset D. Encoder E, decoder G, and transformer T are pre-trained. In case of landscape synthesis,
baseline method accepts semantic segmentation map as a conditional input, while in case of face synthesis, baseline is unconditional.

Arbitrary Photorealistic Style Transfer. Arbitrary
photorealistic style transfer is partially in line with our
method in that it stylizes the output, though it requires a
real input image. Some recent studies [21], [18], [19], [40],
[51], [50], [33], [7] introduce various methods to transfer
style from a single image, but they demand a large dataset
for training. Besides, they often yield undesirable transfer
of color and texture due to the nature of the neural network.

3. Method

3.1. Baseline Work

The upper half of Figure 1 overviews the baseline
method [10]. The baseline model is possible to be both un-
conditional and conditional. Specifically, it is conditional
upon a semantic label map in the case of landscape synthe-
sis. The training process of the baseline is a two-stage. In
the first stage, encoder E and decoder G are trained. While
in the second stage, transformer T is trained, and E is omit-
ted later. Z is a discrete codebook of size |Z|. Transformer
model T auto-regressively outputs a probability distribution

p(si) over indices s in Z, where an index si is random-
sampled. Latent code zi is a paired entry of si in Z. zi
fills the i-th entry in the latent map zq . As a result of an
auto-regressive process, zq is formed and fed into G to syn-
thesize the output. In this process, random sampling from
p(si) makes the output unpredictable. Thus it is hard to find
desired styles such as u from random samples.

3.2. Style-guided Inference of Transformer

Our method aims for high-resolution conditionally
guided image generation without re-training the trans-
former. On top of the latest progress of transformer [10],
which incorporates an auto-regressive prediction and a
quantized prior, our method will be a missing-piece to guide
the inference of transformer conditionally and to stylize the
output. To this end, we present a method to control the prob-
ability distribution over an auto-regressive latent prediction.

The bottom half of Figure 1 indicates an overview of
the proposed method. P (zu) is a probability distribution
of indices in the latent map of style image u, and PD(T ) is
the model’s probability distribution of all indices in latent
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maps of images sampled from the training dataset D. A
style likelihood P (zu|T ) is drawn from P (zu) and PD(T ).
Then, it is repetitively multiplied to p(si) to form a posterior
P (T |zu). (Throughout the paper, we write p(si) as P (T )
to denote a model’s prior probability distribution.) From
P (T |zu), a style-guided index si is sampled, and z(i) is the
paired entry of si.

To be specific, if we condition P (T ), the inference of
pre-trained model, on a style input u, then conditional prob-
ability is written as P (T |u). Previously, to make T rep-
resent this distribution, T needed supervised learning on a
style-labeled dataset. Our method, however, proposes the
conditionally guided-inference of pre-trained transformer
without learning such condition. Without re-train, we rep-
resent the given problem to a style likelihood and a model’s
prior: (Note that ⊙ and ⊘ we use in this paper are element-
wise multiplication and division of two vectors; i-th entries
of A⊙B and A⊘B are Ai ×Bi and Ai/Bi each)

P (T |u) ∝ P (u|T )P (T ). (1)

Instead of u, we replace it with the probability distribution
of latent codes, P (zu), by ignoring the sequence of latent
map zu and expressing all indices in zu as a probability dis-
tribution. (Note that the generator part is deterministic, and
the specific sequence of zu restores the correct u.) However,
ignoring the sequence makes P (zu) ill-posed to rebuild u.
Instead, we rely on the last term, P (T ), to build the se-
quence as this term is recursive. In the same way we get
P (zu), we also obtain the probability distribution of T of
the training dataset D, PD(T ), by counting indices in latent
maps from images in D. Then, we can view the likelihood
term is proportional to the events of latent indices of con-
ditional input u divided by model’s general event counts:
P (zu)⊘PD(T ). Accordingly, the problem is rewritten into

P (zu|T )⊙ P (T ) ∝ {P (zu)⊘ PD(T )} ⊙ P (T ), (2)

where P (·) ∈ R|Z|, probability over the codebook indices.
Practically, instead of calculating all latent maps from

images in D to get PD(T ), we perform Monte-Carlo sam-
pling and take the average, 1/K

∑K
k=1 P (zxk

), for all K
number of randomly sampled x from the training dataset
D. Hence, the Eq. (2) becomes

P (zu|T )P (T ) ∝ P (zu)⊘ { 1

K

K∑
k=1

P (zxk
)} ⊙ P (T ) (3)

where
∑

is element-wise summation.
Consequently, as the auto-regressive generative process

continues, P (z), the distribution of sampled indices from
P (T |u), is getting closer to P (zu), making the style of the
generated sample similar to u.

In practice, to reinforce accuracy lost from dropping the
spatial and sequential information when representing P (u)

as P (zu), we can use a semantic label map or coordinates
in latent map. For example, when we have a semantic label
map as a conditional input, we use it to count P (zu|T ) par-
tially by semantic regions: P (zu,j)⊘ PD(Tj) for j labeled
semantic region. (So we have J number of style likelihoods
where J is the number of semantic labels.) In this way,
we can accurately transfer the style of each semantic to a
corresponding semantic. In the following chapter, we show
experiments on single style image and a categorized set of
style images. In case of a categorized set of style images,
we can compute the average style likelihood.

4. Experiments
In this section, firstly, we design experiments on a land-

scape images because these have visually distinguishable
styles like snowy or rocky mountain. To prepare a land-
scape dataset for training, we collect 80k images from var-
ious sources, including Flickr, Pixabay, and Google search.
Then, we generate pseudo-semantic labels using the well-
known semantic segmentation method, DeepLabv3 [5] with
ResNeSt-101 [53] backbone. As a base architecture for im-
age generation, we configure an autoregressive transformer
conditioning on a semantic label map presented by the pre-
vious paper [10]. To get the model’s probability PD(T )
over the training dataset, we randomly select K = 700
number of images from dataset. Since our method can ac-
cept one or more style inputs, firstly, we show experiments
on a single style image, then on a style-categorized set of
multiple images sequentially for diversity. Note that we can
also choose different source of style for each semantic.

In the first experiment shown in Figure 2, we experiment
with our method conditioned on a single style image. For
exact modeling of style likelihood probability distribution
from a style image, we divide regions by semantic labels
and extract the style likelihood regionally. Then, we apply
each distribution of semantic labels to the target semantic
label, which we call semantic-aware stylization. For this
experiment, we choose 11 different styles for the sky from
the Flickr dataset and two different styles for the mountain
from randomly synthesized samples. Then, style from one
of the sky images and one of the mountain images are ap-
plied to the sky and mountain semantics each. Thus, the
results have stylized sky and mountain in each image. (It
is also possible to stylize more semantic labels with differ-
ent style images.) As a conditional input, we prepare three
types of semantic label maps, (a), (b), and (c). (It can be in-
ferred from result images.) We repeat the guided-synthesis
four times and pick the best one for each result image.

In the following experiment shown in Figure 3, we per-
form experiment on categorized set of style images. At
first, we search images by keywords - “mountain” + “rock”,
“mountain” + “snow”, “night”, “sunset”, and “winter” - in
Pixabay website. Then we choose 30 to 50 images for each
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Figure 2. Qualitative results of our proposed method. Images on the left are style references of the sky, and on the top are styles of the
mountain. Style of one of the sky references is applied to where semantic label matches the sky, while one of the mountain references is
applied to where the semantic label matches the mountain. Three different semantic types (a), (b), and (c) are used. Thus, each cell is a
mixture of semantically one of (a), (b), and (c), sky from sky reference on the left, and mountain from mountain reference on the top.
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Figure 3. Qualitative results for categorized styles. We create
six categories (a-f) and collect around 30 to 50 images each by
keyword-search and manual inspection. Those images are used
as style images to get average probabilities for categorized styles.
Then we generate images of each category four times

category. Additionally, category “green” is collected by
manually selecting images of green fields. After collecting
images by style category, we get the likelihood probabili-
ties for every semantic labels from semantic regions in all
style images. Therefore, results in Figure 3 well reflects the
common styles of collected images in the category. In this
figure, we repeat the inference four times for each category
and contain all of them.

To the best of our knowledge, this is the first conditional
image generation using pre-trained generative model with-

Methods Babies Sunglasses

Random sampling 155.30 94.21
[28] 74.39 42.13
Ours 49.96 39.15

Table 1. Quantitative evaluation on FFHQ. FID scores on two
categories of FFHQ dataset are measured. Our work synthesizes
images that are closer to the category of given guidance than the
state-of-the-art competitor [28]. “Random sampling” means ran-
dom sampling using unconditional baseline [10].

out learning such condition. To achieve a similar result
using any existing method, we have a few workarounds.
Firstly, there are a few researches on few-shot learning of
image generative model, however, they requires hundreds
of samples and hardly generate plausible samples on com-
plex scenes. Instead, we can stylize the randomly gen-
erated samples using an arbitrary style transfer method.
Since our method can apply style conditions by semantic
regions, we compare it with one of the state-of-the-art arbi-
trary style transfer, WCT2 [51], especially which can per-
form a semantic-aware style transfer. Also we prepare re-
cently well-known texture transferring method, Swappin-
gAE [33]. Although the style transfer method produces
reasonable outputs in some cases, it does not consistently
generate pleasant outputs in most cases. Furthermore, style
transfer approach still yields unmatched or ruined color and
texture, which is not desirable in high-resolution realistic
scene generation. SwappingAE is excellent at transferring
tones and texture details. However, it fails to maintain se-
mantic contents. Moreover, it tends to follow the spatial
scene compositions of style image. (For example, it alters
mountain to sky in the first two images, river to ground in
the second last, and ground to river in the last image.) De-
tailed results are shown in Figure 4.

Our work uses pseudo-segmentation map which is al-
ready available for semantic image synthesis of our base-
line work [10]. Having a semantic segmentation map im-
proves extracting the exact per-semantic style and lets us
partially stylize the output. On the contrary, in cases of un-
conditional face synthesis, we can use aligned dataset and
collect the probability vectors by spatial locations. To per-
form a quantitative assessment of an unconditional model,
we measure Frechet Inception Distance (FID) [12] score on
Flickr-Faces-HQ (FFHQ) [16] dataset and compare with the
state-of-the-art few shot image generation [28]. To use as a
guidance, we randomly select 10 images of baby and sun-
glasses each. Then we calculate FID using 2492 and 2683
images of baby and sunglasses each which are the same test
sets made public by [28]. We use the same face synthesis
model that the baseline work [10] released. Quantitative re-
sults of guided-inference of unconditional transformer are
given in Table 1. One limitation is, however, our proposed
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Figure 4. Qualitative comparison with arbitrary style transfer. Given a style images, our semantic-aware conditional generation shows
plausible outputs in every semantic regions. “Segmap” is a semantic segmentation map to feed as a conditional input to baseline and
our method for semantic-aware stylization. For comparison, we run semantic-aware style transfer, WCT2 [51], and texture swapping,
SwappingAE [33] (official “Flickr Mountains” pretrained model), on randomly generated samples from the baseline method
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Figure 5. FFHQ babies/sunglasses-guided samples using our
method. (Top): Babies-guided random samples. (Bottom):
Sunglasses-guided random samples.

method is not able to stylize out of learnt domain because
our method guides the inference of transformer only, not
re-training the model. Thus, in this experiment, we exclude
“Sketches” category from the experiment shown in the com-
petitor [28].

5. Limitations
Our method provides a style image to guide the infer-

ence of transformer introduced in our baseline work [10].
To achieve similar effect, most of the recent studies require
a re-training process and thousands of style images as well,
and this makes recent studies harder to apply to the cases
where only one or dozens of style images are provided. Our
paper is unique in that, instead of requiring a re-training
process, it only needs a single or a few style images to get
the output of the desired style, while it inherits advantages
of the pre-trained backbone. However, since it does not in-
clude a re-training process, it cannot generate samples out
of the distribution of the training dataset. Therefore, as
shown in Table 1, it is impossible to generate “Sketches”
style output using the model trained on real face images.

To model the ill-posed P (u|T ) with the known variables,
we use probability distributions of P (zu) and PD(T ). To
improve accuracy in the process, we use semantic label
maps in case of landscape synthesis and coordinates of a
latent map in case of aligned face synthesis. However, if
we aggregate probability distribution over all entries of a
latent map without spatial separation, it generates a limited
result. To show this limitation, where we claim the mini-
mal performance, we carry out an ablation study on WikiArt

Styles Random sampling Ours

Abstract Expressionism 94.24 80.82
Art Nouveau Modern 65.73 58.13
Baroque 83.02 68.63
Cubism 96.18 69.45
Naive Art Primitivism 79.25 70.58
Northern Renaissance 84.42 80.21
Rococo 96.79 82.26

Table 2. Ablation study of unconditional image synthesis on
WikiArt dataset [8]. Unlike above experiments, in this experi-
ment, our method is not provided any spatial aid for style likeli-
hood. FID scores on the styles of the art by the history are mea-
sured. We only count styles that have more than 2000 images
and less than 4500 images to prevent biased random sampling.
“Baseline” stands for random sampling-based synthesis of base-
line transformer, while “Ours” does for our style-guided synthesis.

dataset [8]. In this experiment of unconditional image syn-
thesis, we collect style vectors from the entire region of the
image. As shown in Table 2, FID scores using our method
are lower than random sampling-based synthesis. However,
it is not dramatic gab like proven in Table 1.

6. Conclusion and Future Work
We believe that this is the first study on the guided in-

ference of transformer to accept an additional arbitrary con-
dition to stylize the output without requiring any parameter
nor training procedure. To this end, we interpret probability
distribution conditioned on style to a product of style dis-
tribution and a prior from transformer. In the experiment
section, we prove our method on landscape dataset where
styles are diverse and distinguishable. Compared to ran-
dom generation of the original architecture [10], our method
can generate scenes of an arbitrary style that are rare from
the original method such as night scene. As an additional
arbitrary condition, our work can use a single style image
as well as a categorized set of style images. Our work is
also similar to style transfer in a way that it stylizes the out-
put image. However, our method uses the pretrained ar-
chitecture and lets it describe target condition without re-
training nor requiring any additional architecture, and thus
our method does not need a condition-labeled dataset either.

Since our approach is built upon autoregressive latent
code prediction, our work is currently applied on a limited
previous work. In the future, we therefore plan to build a
general conditional autoregressive module to support an ar-
bitrary conditional input. In addition, our work relies on
transformer to build the proper sequence, not the relative
layout or sequence of latent codes of style image. There-
fore, for more accurate spatial application of style, we will
work on space-aware style-guided inference of transformer
in the near future.
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