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Figure 1: Dance style transferred by CycleDance between two dance styles: left) locking dance and right) ballet-jazz dance.
The CycleDance framework is trained with unpaired dance motion together with music context.

Abstract

We present CycleDance, a dance style transfer system to
transform an existing motion clip in one dance style to a mo-
tion clip in another dance style while attempting to preserve
motion context of the dance. Our method extends an exist-
ing CycleGAN architecture for modeling audio sequences
and integrates multimodal transformer encoders to account
for music context. We adopt sequence length-based curricu-
lum learning to stabilize training. Our approach captures
rich and long-term intra-relations between motion frames,
which is a common challenge in motion transfer and syn-
thesis work. We further introduce new metrics for gauging
transfer strength and content preservation in the context of
dance movements. We perform an extensive ablation study
as well as a human study including 30 participants with 5
or more years of dance experience. The results demonstrate
that CycleDance generates realistic movements with the
target style, significantly outperforming the baseline Cycle-
GAN on naturalness, transfer strength, and content preser-
vation. 1

1Demo at https://youtu.be/kP4DBp8OUCk.

1. Introduction

Style transfer methods facilitate art creation of a target
style for media such as images [16] and music [4]. Similar
methods are promising for creators to use an existing dance
sequence as a starting point to generate variations across
different movement styles. In a video game context, these
style variations may -e.g. be associated to different charac-
ters with different attributes or personalities. In a chore-
ographic context, such a tool may lead to hybrid human-
artificial creative processes, where style transfers are used to
iterate on interesting, unexpected, or complementary varia-
tions of an initial choreographic material.

Existing research on transferring human movement
styles largely focuses on simple locomotive or exercise mo-
tions [30, 12, 1] and domain transfers between adults and
children. Technical methods for transferring such sequen-
tial data include cycle-consistent adversarial networks (Cy-
cleGAN) [46] and adaptive instance normalization (AdaIN)
[24]. However, a research gap remains for applying similar
techniques to enable style transfer of more complex move-
ments, such as dance movements. Dance movements usu-
ally have no explicit functional purpose and tend to exhibit
considerable richness in posture, rhythm and their compo-
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sition. Generation of dance movements can be particularly
challenging since it demands a multi-layer approach that
captures motion qualities such as the coordination of joint
dynamics and socio-cultural factors associated with the pro-
duction and perception of the movement. Meanwhile, there
exist a variety of such characteristics within different dance
styles, originating from different historical backgrounds.
Dance styles could be thought more generally of as styles
of performing certain dance movements rather than strictly
dance genres. This adds another layer of complexity to the
generation of high-quality dance movements of a specific
target style. All these challenges call for computational
models that can capture both high-frequency features and
long-term dependencies over time, and as such generate re-
alistic dance with aesthetic and coherence.

Moreover, dance is commonly accompanied by music
which can provide tremendous clues for understanding and
composing movement. Recent works have shown the ef-
fectiveness of music-conditioned dance synthesis [39, 6],
which can directly generate dance motion given music con-
text. However, it is unclear whether music context will also
facilitate style transfer tasks and how such a multi-modal
input should be processed in this context.

In this paper, we propose CycleDance, a multimodal sys-
tem (see Figure 1) for dance style transfer. CycleDance
adopts a generative scheme by extending CycleGAN-VC2
[23] to work with unpaired data. To tackle the challenges
identified above, we exploit a cross-modal transformer ar-
chitecture [39] that aims to effectively capture relevant fea-
tures among different modalities so as to enhance style
transfer quality. Specifically, we design a two pathways
transformer-based architecture to extract temporally aligned
motion and music representations in the context of style
transfer. We further propose to train CycleDance progres-
sively with a curriculum learning scheme inspired by Fu et
al. [14]. This alleviates issues of instability in training large
adversarial models and premature convergence that can lead
to inferior performance. We evaluate our framework on
the AIST++ [37] dance database, with the analysis focused
on transfer between various dance genres. Two new met-
rics based on probabilistic divergence and selected key pose
frames are proposed to quantitatively assess the quality of
dance style transfer. Moreoever, we invite a group of human
participants with extensive dancing experience to provide a
subjective evaluation and insights from an expert perspec-
tive. These evaluations show that CycleDance greatly out-
performs a baseline method and its ablative versions. As an
illustration, a video with generated examples can be found
at https://youtu.be/kP4DBp8OUCk.

In summary, our contributions are mainly as follows:

• Our approach is, to the best of our knowledge, the first
to combine complex dance motion and music context
in the style transfer task, unlocking potential applica-

tions in choreography, gaming, and animation, as well
as in tool development for artistic and scientific inno-
vations in the field of dance.

• We introduce new metrics based on probabilistic diver-
gence and selected key pose frames for gauging trans-
fer strength and content preservation in the context of
dance movements.

• We provide an extensive user study of the proposed
model. The evaluations and insights from a group of
experienced dance performers reveal essential aspects
of designing such systems.

2. Related Work
In this section, we first provide an overview of prior

works on general style transfer in Section 2.1 and focus
on motion style transfer in Section 2.2. As another rele-
vant topic, motion synthesis from multi-modal data will be
briefly reviewed in Section 2.3.

2.1. Style Transfer

In recent years, style transfer has achieved impressive
progress in computer vision, speech processing, music pro-
cessing, natural language processing, motion animation,
etc. In computer vision, the pioneering work of Gatys et
al. [16] introduces the concept of style transfer and uses
convolutional neural networks (CNNs) to merge the style
and content between arbitrary images. Huang et al. [21]
propose an adaptive instance normalization (AdaIN) layer
to directly apply arbitrary target styles to an image. Zhu et
al. [46] propose CycleGAN, using a pair of generators and
discriminators to translate image style. The general idea
of CycleGAN has been further developed and improved in
StarGAN [7], with domain labels as additional input, so that
image styles can be transformed to multiple corresponding
domains, such as facial appearances and expressions.

In research on voice conversion (VC), Kaneko and
Kameoka [22] develop CycleGAN-VC based on Cycle-
GAN, but with gated CNNs and an identity-mapping loss.
This is further improved by CycleGAN-VC2 [23] which
adopts two-step adversarial losses, a 2-1-2D convolution
structure, and PatchGAN. Fu et al. [14] further incorporate
transformers and curriculum learning in voice conversion.
Research has also been conducted to transfer symbolic mu-
sic styles, with examples such as Groove2Groove [8], which
employs an encoder-decoder structure and parallel data, and
[4] for MIDI music with a CycleGAN-based approach.

For style transfer in natural language processing (NLP),
Mueller et al. [31] propose recurrent variational auto-
encoders (VAE) to revise text sequences. Fu et al. [15] con-
struct a multi-decoder and a style-embedding model to learn
independent content and style representations with adver-
sarial networks. Dai et al. [9] propose a Style Transformer
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network with a special training scheme, which employs an
attention mechanism and makes no assumption about the
latent representation.

Our work focuses on transferring motion data, in partic-
ular, dance movements. We adopt CycleGAN-VC2, previ-
ously used for voice conversion, as the basis of our frame-
work and augment training with an extra music modality.

2.2. Motion Style Transfer

Early works on motion style transfer rely on hand-
crafted features [2, 38, 42, 3, 20], while most modern
studies advocate learning by extracting features from data
[19, 12, 18, 35, 27, 29, 33, 11]. Typical models in use
include convolutional auto-encoders [19], CycleGAN [11],
temporal invariant AdaIN layers [1], autoregressive flows
[41] and spatial-temporal graph neural networks [33]. Some
research also concerns efficient generation for real-time
style transfer [43, 35, 29]. All these works target relatively
simple human movements, such as locomotion and exer-
cise, for which the variation in style is often limited e.g.
transferring between adult and children locomotion [11].

Our work handles transfer of dance movements that ex-
hibit substantial richness in terms of postures, rhythms,
transitions and artistic styles and as such may be of greater
empirical value for e.g. video game or film industries. To
handle such complexities, our method significantly differs
from the reviewed work, with transformer and curriculum
learning leveraged on top of CycleGAN-VC2 for more ef-
fective training on more complex movement data.

2.3. Music-conditioned Motion Synthesis

A plethora of research works have focused on human
motion synthesis [5, 44, 17, 45, 28]. Since dance is often
combined with music, cross-modal motion generation, an
emerging research topic that explores the association be-
tween different modalities, is often explored for better un-
derstanding of human motion and music-conditioned mo-
tion synthesis. Most early works focus on statistical mod-
els [34, 13, 25] and typically generate motions by selec-
tion. To be specific, this means synthesizing motion by se-
lecting the motion segments in a database whose features
(such as rhythm, structure, and intensity) match each music
segment. With the development of deep learning, learning-
based methods have also been explored.

For example, in ChoreoMaster [6], an embedding mod-
ule is designed to capture music-dance connections. Sun
et al. [36] propose DeepDance, a cross-modal association
system, which correlates dance motion with music, and
Lee et al. [47] a decomposition-to-composition framework
that leverages MM-GAN for music based dance unit orga-
nization. In DanceNet [47], a musical context aware en-
coder fuses music and motion features, while in Dance-
Former [26] kinematics enhanced transformer guided net-

works are used for motion curve regression. More recently,
cross-modal transformers have been successfully applied to
model the distribution between music and motion [39].

Music-conditioned dance synthesis aims to generate
dance motion sequences associated to a given music con-
text. Our work explores the dance style transfer task, focus-
ing on manipulating the style of the existing dance move-
ments while keeping the contextual information. The mu-
sic modality is not mandatory for our style transfer model
to work, but can be incorporated to benefit the generation
quality when the data is available.

3. Methodology

This section formulates our target problem and estab-
lishes notations used throughout the paper. Preliminaries
about CycleGAN and CycleGAN-VC2 are also given for
self-containment. On the basis of these, we present the con-
tributed technical framework CycleDance.

3.1. Problem Formulation

Our goal is to learn mapping functions between two do-
mains X and Y without relying on paired data between
these domains. In our scenario, we transfer dance between
two style domains X and Y given dance sample x ∼ PX

and y ∼ PY . The dance samples may be paired with music
mx ∈ Mx and my ∈ My with associated styles, although
the music modality is only optional in the transfer task.

3.2. Adversarial Training Loss and Strategy

We address the formulated problem with a CycleGAN-
like architecture [46], as illustrated in Figure 3. The archi-
tecture includes two discriminators DX and DY which are
used to distinguish the real and generated data, as well as
two mappings GX→Y and GY→X for generating patterns
of the target style. The mappings are also cycled such that
the generated patterns can be converted back to the original
domains. To this end, we follow CycleGAN-VC2 [23] and
incorporate four types of losses, also see Figure 3.

Adversarial loss LX→Y
adv : this loss measures the discrep-

ancy between the transferred data GX→Y (x,mx) and the
target y, with the discriminator DY attempts to distinguish
the transferred data from real data:

LX→Y
adv = Ey∼PY

[logDY (y)]

+ Ex∼PX
[log(1−DY (GX→Y (x,mx)))].

(1)

Correspondingly, the adversarial loss LY→X
adv can be defined

for GY→X and discriminator DX .
Cycle-consistency loss Lcyc: this accounts for the loss

of contextual information by recovering the original x
and y from generated patterns through GX→Y (x,mx) and
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Figure 2: The CycleDance architecture. In the generator, there is a motion pathway and a music pathway. Each pathway
starts with downsampling blocks, followed by a 2D-1D block. The motion, music and cross-modal transformer blocks are
standard full-attention transformer encoders. Then the fused path is followed by a 1D-2D block and upsampling blocks. In
the discriminator, like in Kaneko et al. [23], convolution at used in the last layer.

 

 

Figure 3: The two step adversarial generative training strat-
egy. The full objective includes four types of losses; ad-
versarial loss Ladv , cycle-consistency loss Lcyc, identity-
mapping loss Lid, and second adversarial loss Ladv2. See
Section 3.2 for the definition of notations.

GY→X(y,my):

Lcyc = Ex∼PX
[∥GY→X(GX→Y (x,mx))− x∥1]

+ Ey∼PY
[∥GX→Y (GY→X(y,my))− y∥1].

(2)

Identity-mapping loss Lid: this further encourages in-
put preservation by enforcing an identity transformation
when GX→Y and GY→X are applied to the other domain:

Lid = Ex∼PX
[∥GY→X(x,mx)− x∥1]

+ Ey∼PY
[∥GX→Y (y,my)− y∥1]

(3)

Two-step adversarial loss Ladv2: this is a second ad-
versarial loss to alleviate the over-smoothing reconstruction
statistics in the cycle-consistency loss [23]. Note this intro-
duces an additional discriminator D

′

X and LY→X→Y
adv2 can

be defined in a similar way:

LX→Y→X
adv2 = Ex∼PX

[logD
′

X(x)]

+ Ex∼PX
[log(1−D

′

X(GY→X(GX→Y (x,mx))))]
(4)

The overall objective is finally written as a weighted sum
of the above terms

Lfull = LX→Y
adv + LY→X

adv + λcycLcyc + λidLid

+ LX→Y→X
adv2 + LY→X→Y

adv2 ,
(5)

where λcyc and λid trade off the consistency and identity
loss terms.

Besides, we adopt a curriculum learning algorithm as the
training scheme. The intuition is that the training can be
more effective by starting with simpler data and progres-
sively handle more complex data. Such a strategy has been
applied to various applications and scenarios, showing an
ability to improve the convergence rate and generalization
capacity, and providing better training stability [40]. We
adopt a length-based curriculum learning strategy by train-
ing data truncation, similar to [14]. The length of input se-
quences is increased gradually to allow the model to learn
from short samples to long samples.

3.3. Network Architecture

Our CycleDance framework adopts CycleGAN-VC2 as
the backbone and extends it with a cross-modal transformer,
as depicted in Figure 2. The cross-modal transformer con-
catenates two pathways of motion and music encodings,
both of which are obtained through a sequence of layers in-
cluding 2D convolution (purple blocks in Figure 2), 2D-1D
reshaping (red), residual convolution (green) and modality-
specific transformers (yellow). The 2D CNN layers are used
to perform downsampling while preserve the original se-
quential structure. The downsampled features are reshaped
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and pass through the residual blocks of 1D CNNs. The re-
shaped 1D sequences are processed by transformers which
adopt a position embedding and output encodings capturing
temporal relations among timesteps. Finally, the generator
takes the concatenated encodings and feed them into a 1D-
2D reshape block (red) and a upsampling block (purple) for
synthesizing transferred dance motions. In these blocks, we
adopt gated linear units (GLUs) [10] as a tunable activation
function to learn a sequential and hierarchical structure.

For the discriminator, CycleDance also first downsam-
ples motion data with a 2D CNN. We only use convolution
at the last layer to alleviate training instability, as is sug-
gested in [23]. The output layer uses sigmoid activation to
predict whether the motion clip is real or generated.

4. Experiments and Evaluations
In this section, we first describe the used dataset (Section

4.1), how they are processed and the concrete experimen-
tal setup. We then detail our assessments, including both
objective (Section 4.3) and subjective (Section 4.4) evalu-
ations, and report their results on benchmarking different
dance style transfer methods and ablations.

4.1. Dataset

We generate 3D dance motion samples with paired music
from an existing database called AIST++ Dance Database
[27]. AIST++ reconstructs 3D motions from multi-view
videos in the AIST Dance Database in terms of SMPL pa-
rameters [37]. To obtain motion features, we downsample
all the motion data to 30 frames per second (fps) and re-
target the motion to a skeleton with 21 body joints using
Autodesk MotionBuilder. Similarly to [39], we use expo-
nential map parametrization of the 3D rotation to repre-
sent all the joints (non-root). The root joint (hip) has four
extra features representing the vertical root position, the
ground-projected position changes, and the 2D facing angle
changes. In total, each motion frame of dance sequences
is represented by a 63-dim vector. The music features are
extracted with the Librosa toolbox in a similar way to [37].
We combine 20-dim MFCC, 12-dim chroma, 1-dim one-hot
peaks, and 1-dim one-hot beats, resulting in a total 35-dim
audio feature.

The selected dance styles are ballet-jazz, locking, waack-
ing, hip-hop, pop and house dance. As the example of data
statistics, the ballet-jazz set and the locking dance set both
contain 141 motion sequences with 6 songs, lasting 1910.8
seconds and 1898.5 seconds respectively.

4.2. Baseline Models and Ablations

We implement the proposed CycleDance model and the
CycleGAN-VC2 baseline with PyTorch and train both mod-
els on the preprocessed dataset. In order to assess the sig-
nificance of contributed design choices, such as the cross-

modal transformer and curriculum learning strategy, three
alternative architectures are also implemented for an abla-
tion study. The first ablated configuration is CycleTrans-
GAN, which removes the music pathway and the cross-
modal transformer and disables the curriculum learning
strategy. We expect to use this comparison to highlight
the utility of the introduced transformer architecture. The
second ablation, CycleTransGAN+CL, applies curriculum
learning to CycleTransGAN. We aim to assess the perfor-
mance gains by meticulously modulating the complexities
of samples that the model is exposed to during training. The
final ablation, CycleCrossTransGAN, also uses cross-modal
transformers for motion and music information as the en-
coder. Curriculum learning is, however, not adopted in this
configuration. We aim to see the impact of having cross-
modal transformers by analyzing the differences between
CycleTransGAN and CycleCrossTransGAN.

4.3. Objective Evaluation

The main task of all these models is to transfer dance
style from a source to a target dance style. To allow for
thorough quality assessment of complex motion patterns,
common in dance, we perform evaluations from both ob-
jective and subjective perspectives. In the objective evalua-
tion, we use 17 dance sequences per style. We transferred
the style for each ablated model and evaluated two metrics
that capture how well the style is transferred and how well
the content is preserved. To this end, we design metrics
based on the Fréchet distance, similar to [39].

Transfer strength. The most important aspect of style
transfer is transfer strength, which measures the degree of
conversion from the source style to the target style. To as-
sess the transfer strength, for one dance style, we use the
Fréchet distance between the true dance motion and the
generated dance motion. Specifically, we use two consec-
utive raw poses (xi−1, xi) to convert the representations of
both true and generated motions to joint velocity vi, without
normalization. Similarly, we use three consecutive poses
(xi−1, xi, xi+1) to calculate the joint acceleration ai. We
call this measure the motion Fréchet distance (MFD) and
use it to measure how close the generated motion is to the
true motion of a target style.

Content preservation. Another indispensable evalua-
tion metric for style transfer is content preservation. For this
dimension, for one dance movements, we use the Fréchet
distance between distributions of key poses xk. Keyframes
containing such poses are extracted by detecting local max-
ima in joint acceleration. To make frames comparable,
skeleton poses in keyframes are normalized to a hip-centric
origin. We call this measure the pose Fréchet distance
(PFD) and evaluate to what extent these salient poses are
kept after the transfer.

Table 1 summarises the quantitative results of the pro-
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Table 1: Quantitative objective evaluation: Motion Fréchet distance (MFD) and pose Fréchet distance (PFD) for the
five competing models, includes the baseline model, our proposed CycleDance, as well as the ablations. BJ2LC denotes
transferring from ballet-jazz to locking dance. Correspondingly, LC2BJ denotes transferring from locking dance to ballet-
jazz. Similarly, WK, HP, PO, HO denotes waacking, hip-hop, pop, and house dance.

Method MFD PFD
BJ2LC LC2BJ WK2HP HP2WK PO2HO HO2PO BJ2LC LC2BJ WK2HP HP2WK PO2HO HO2PO

CycleGAN-VC2 9.9430 3.4063 1.4354 1.2645 2.2841 1.9515 0.4897 0.3499 0.4847 0.3313 0.5212 0.5625
CycleTransGAN 3.5643 0.7886 1.0564 0.9464 1.5515 1.5354 0.4749 0.2501 0.4754 0.2834 0.4048 0.5215

CycleTransGAN+CL 2.9188 0.5848 1.0847 0.9847 1.4852 1.5521 0.4897 0.2543 0.4644 0.2882 0.4125 0.4185
CycleCrossTransGAN 2.7446 0.5819 0.9872 1.0782 1.4254 1.5251 0.4419 0.2244 0.4490 0.2880 0.3841 0.4126

CycleDance 2.6109 0.5755 0.8752 0.9501 1.3452 1.4855 0.4216 0.2230 0.4485 0.2960 0.3954 0.3827

posed model and ablations. We transfer the dance style
between three pairs of dance genres in both directions, in-
cluding ’ballet-jazz to locking dance’ (BJ2LC) and ’locking
dance to ballet-jazz’ (LC2BJ), ’waacking to hip-hop dance’
(WK2HP) and ’hip-hop to waacking dance’ (HP2WK), as
well as ’pop to house dance’ (PO2HO) and ’house to pop
dance’ (HO2PO).

Figure 4: Example locking dance sequences (top, blue y-
bot) transferred to ballet-jazz dance by CycleGAN-VC2
(mid, red x-bot) and CycleDance (bottom, red x-bot).

Figure 5: Example ballet-jazz dance sequences (top, red x-
bot) transferred to locking dance by CycleGAN-VC2 (mid,
blue y-bot) and CycleDance (bottom, blue y-bot).

We observe that the baseline model CycleGAN-VC2
struggles in this style transfer task, evident from the much
higher MFD for the baseline model than for all other ab-
lation methods. The complete framework, CycleDance,
achieves the best performance on both metrics and almost
all transfer pairs. This highlights the necessity of all intro-
duced techniques in this task.

An example of synthesized motion clip is presented in

Figure 4, which illustrates dance style transfer from lock-
ing to ballet-jazz dance. The top keyframe sequence shows
the original locking dance. The sequence in the middle is
generated by CycleGAN-VC2 and the bottom one by the
proposed CycleDance. Another example in Figure 5 shows
dance style transfer from ballet-jazz to locking dance. By
comparing the poses of each column, it can be observed that
the extracted key gestures are representative to the pose se-
quences. CycleDance has a higher similarity to the source
gestures and can thus preserve more content while having
better alignment to the target dance style.

In addition, through the ablation study, we observe that
CycleTransGAN (CycleGAN-VC2 and transformer com-
bined) achieves lower MFD, which can be seen as, with the
help of the transformer, the model benefits from capturing
richer intra-relations among frames. By comparing Cycle-
TransGAN and CycleCrosTransGAN, both MFD and PFD
are improved. We take this as evidence that the music in-
formation facilitates accurate generation of the target style
and that this context information is successfully encoded by
the cross-modal transformer. The comparison between of
CycleTransGAN and CycleTransGAN+CL reveals that cur-
riculum learning greatly improves transfer strength, show-
ing the effectiveness of gradually increasing the difficulty
by training with longer clips.

4.4. Subjective Evaluation

In addition to the objective evaluation, we conducted a
user study to evaluate our model and the baseline by scor-
ing three aspects: motion naturalness, transfer strength, and
content preservation. We also ask some open-ended ques-
tions to gather opinions that may not be covered by the
above aspects, to provide suggestions for future work.

Our analysis mainly focuses on ballet-jazz and locking
dance, since the characterics of these are well understood by
dance professionals. The user study was performed through
an online survey covering transfer tasks for both ’locking
dance to ballet-jazz’ and ’ballet-jazz to locking dance’. We
used Blender to render 8-second video clips with an x-bot
character (for ballet-jazz) and a y-bot character (for lock-
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ing dance) for each source and target dance sequence. The
participants could play video clips and get acquainted with
the animated dance in an introduction phase. In the actual
survey, the participants were asked to watch a source dance
video clip and a corresponding generated target dance clip.
The target dance video clip was generated either from Cy-
cleDance or from the baseline, and the order of target dance
clips was randomly selected and balanced to relieve poten-
tial order effects. The participants could repeatedly play the
clips before answering three questions:

• Motion naturalness: To what extent do you agree
with the following statement? — The generated mo-
tion clip looks natural after style transfer. (Likert
item ranging from 1 (strongly disagree) to 5 (strongly
agree)).

• Transfer strength: To what extent do you agree with
the following statement? — The generated motion clip
looks like the target dance style. (Likert item ranging
from 1 (strongly disagree) to 5 (strongly agree)).

• Content preservation: Which feature(s) do you think
is (are) the most preserved between the original and
the result video? — Orientation through space; —
Shapes of the limbs; — Shape of the body trunk; —
Rhythmic patterns — Other: . (One or more of these
four aspects could be selected). This list was based
on the most salient features that dance analysts look at
when analyzing expressive movement [32].

In the study, 30 participants with at least 5 (cumula-
tive) years of dance experience (including training, per-
forming, choreographing, or teaching) were recruited. Par-
ticipants were between 20 and 41 years of age (median 30),
37.9% male, 58.6% female, and 3.4% others. According
to the demographic questions, the participants’ familiarity
with the ballet-jazz dance and locking dance were M=3.93
(SD=1.05) and M=3.03 (SD=1.18) respectively, where 1
meant not at all and 5 meant very familiar. Since the gener-
ated motions were shown using virtual characters, we also
counted the frequency at which participants played video
games, which were 34.5% weekly, 13.8% monthly, 13.8%
yearly, and 37.9% rarely.

We analyzed the subjective responses to provide sta-
tistical support for the results of the user study, and as-
sessed whether the proposed method could be further im-
proved. Figure 6 demonstrates the responses of the mo-
tion naturalness and transfer strength. On both aspects, the
experts rated CycleDance higher on average compared to
the baseline model. The subjective responses were com-
pared through a Wilcoxon signed-rank test statistical sig-
nificance. Both the median value of motion naturalness
(Z = −9.2262, p < 0.0001) and transfer strength (Z =

Figure 6: Subjective evaluation results on motion natural-
ness and transfer strength. Error bars represent standard er-
rors of the averages. Statistical significance is the result of
the Wilcoxon signed-rank test that compares the medians
(∗ ∗ ∗ means p < 0.0001).

Figure 7: Subjective evaluation results on content preserva-
tion. The CycleDance outperforms the baseline model on
orientation through space, shape of the limbs, shape of the
body trunk, and rhythmic patterns. Statistical significance
represents the results of the Wilcoxon signed-rank test that
compares the medians (∗ ∗ ∗ means p < 0.00001, ∗∗ means
p < 0.0001, and n.s. means p > 0.05).

−8.7677, p < 0.0001) were significantly higher for Cy-
cleDance compared to the baseline model. Thus from the
view of dance experts, CycleDance is favoured for im-
proved naturalness as well as similarity to the target dance
style, consistent with what we observe from the objective
quantitative results (Section 4.3). As for the responses of the
content preservation, Figure 7 summarizes the total statis-
tics on the four aspects queried. On all four aspects, the ex-
perts chose CycleDance more often than the baseline model,
when asked which specific features they believe are pre-
served. We ran a McNemar test for assessing the statistical
significance of these gaps. The test revealed no significant
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Figure 8: Example ballet-jazz dance (top, red x-bot) transferred to locking dance (bottom, blue y-bot) by CycleDance.

statistical differences between the Baseline model and Cy-
cleDance on ’Orientation through space’ (p = 0.1724) and
’Shapes of the limbs’ (p = 0.1573). In terms of median
value of the ’Shapes of the body trunk’ (p = 0.000002)
and ’Rhythmic patterns’ (p = 0.00004), the McNemar test
showed a strong significance in support of the proposed Cy-
cleDance model. Among the four aspects, both CycleDance
and the baseline received higher scores on rhythmic patterns
and orientation through space. This implies that it is com-
paratively easier to keep dance orientation and rhythm while
performing dance style transfer. CycleDance outperforms
the baseline on preserving the shape of the body trunk. Pre-
serving the shape of the limbs, on the other hand, appears
to be more challenging.

Responding to open-ended questions, the dance experts
commented that for ’ballet-jazz to locking dance’, both
methods have a jerky style that emulates pop and lock
dance. The example shown in Figure 8 is frequently men-
tioned as a major indication of ’transfer’ with a visible
locking dance style from the view of experienced dancers.
For CycleDance samples of transferring ’locking dance to
ballet-jazz’, the dance experts responded that the character
arms are clearly jazz or ballet and are really good at holding
’traditional’ shapes. The dance experts also commented on
some limitations. One commonly mentioned point is that
some motions look wobbly, which may indicate the need
for applying some filters to smooth the generated results.
The experts also pointed out that ballet-jazz usually requires
dancers to point their feet while the generated motions al-
ways show flexed ankle joints. This shows the limitation of
the considered data which currently do not capture fine foot
movements. This caveat also causes some physically unre-
alistic effects such as the character appears floating when
sometimes its body does not have a contact point on the
floor.

5. Discussion of Societal Impact
This work contributes a framework for style transfer that

aims to offer artistic and scientific innovations to the field
of dance. In the short term, we could foresee several im-
pacts on industries and society. The positive effect would be

the progress in choreographic practice and dance research,
which unlock new possibilities in terms of hybrid human-
artificial co-creation of dance material. Certain industry
sectors could benefit as well, such as video game and an-
imation industries (e.g., group dances where each character
has a different motion style). Such effects could lead to dis-
placement of jobs and a shift towards jobs that relies more
on a combination of creativity and automation, as well as
development of new user-friendly interfaces and tools. We
also foresee potentially negative impacts or misuses. This
technology could blur the lines of ownership in creative pro-
cesses, i.e., who is/are the creator(s). For movement styles
beyond dance, such transfer models, if trained on non-
representative datasets, could reinforce movement stereo-
types of certain societal groups by learning a biased asso-
ciation between group membership and movement styles,
e.g. elderly people or people with disabilities.

6. Conclusion and Future work
This work explores challenging style transfer for sequen-

tial data with rich variations and complex frame dependen-
cies such as dance movements. The proposed CycleDance
manages to alleviate these challenges by exploiting expres-
sive data encoders, cross-modal contexts and a curriculum
based training scheme. Quantitative results from similarity
metrics and human expert evaluations confirm the effective-
ness of CycleDance. To the authors’ knowledge, this is the
first work where music context is used for dance or general
motion style transfer. In the future, we plan to extend the
backbone from the CycleGAN-based model to StarGAN or
an AdaIN-based model to handle more than two dance gen-
res. Research is also needed to address identified limitations
on preserving limb shapes. Based on these techniques, we
envision new tools in dance motion design for choreogra-
phy, film industry, and video games.
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