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Figure 1: Face swapping results of FastSwap. The face in the target image is replaced with the face in the source image while
preserving the pose and attributes. The source code is available in https://github.com/sahngmin/fastswap.

Abstract

Recent face swapping frameworks have achieved high-
fidelity results. However, the previous works suffer from
high computation costs due to the deep structure and the use
of off-the-shelf networks. To overcome such problems and
achieve real-time face swapping, we propose a lightweight
one-stage framework, FastSwap. We design a shallow net-
work trained in a self-supervised manner without any man-
ual annotations. The core of our framework is a novel de-
coder block, called Triple Adaptive Normalization (TAN)
block, which effectively integrates the identity and pose in-
formation. Besides, we propose a novel data augmenta-
tion and switch-test strategy to extract the attributes from
the target image, which further enables controllable at-
tribute editing. Extensive experiments on VoxCeleb2 and
wild faces demonstrate that our framework generates high-
fidelity face swapping results in 123.22 FPS and better pre-
serves the identity, pose, and attributes than other state-
of-the-art methods. Furthermore, we conduct an in-depth

study to demonstrate the effectiveness of our proposal.

1. Introduction

In this work, we consider a face swapping task, which
can replace the identity of a person in the image with an-
other person while preserving the pose and attributes, e.g.,
skin tone, make-up, and lighting condition (see Figure 1).
Given a source image and a target image, face swapping
framework aims to generate a facial image with an identity
of source image, and a pose and attributes of target image.
We mainly focus on overcoming the computational limi-
tation of the previous face swapping frameworks. Further-
more, we introduce a novel attribute editing manipulation
within a lightweight one-stage framework.

The previously popular DeepFakes [6] is a subject-aware
face swapping framework which has to be trained for each
new input source and target pair. At least 500 face images
of a source and target individual and 12 hours on GPU re-
source are required to train each network [6]. Despite ex-
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Figure 2: Failure cases of previous face swapping method,
DeepFakes.

pensive data collection and time-consuming training pro-
cedures, the swapped faces are not perceptually appealing.
DeepFakes fails to keep the identity of the source face and to
mimic the pose and attributes of the target face (see Figure
2). However, recent studies have succeeded in generating
realistic face swapping images of unseen individuals by de-
signing deep generative networks and training the network
with huge face datasets. Although the additional training
is unnecessary, a high-end desktop GPU is still required to
run the deep generative face swapping frameworks in real-
time. To overcome the computational limitation, we design
a lightweight face swapping framework which can be prac-
tically used in various application scenarios such as telep-
resence, gaming, AR/VR, etc.

Face swapping frameworks based on deep generative
networks attempt to handle an arbitrary source and target
pairs without additional training. [24, 27, 25, 21] used an
additional input such as landmark, action units (AU), and
3D Morphable Model (3DMM) [1] coefficients to provide
distinct pose and attribute information by adopting off-the-
shelf networks. However, such approaches are highly de-
pendent on the pre-trained network, and additional compu-
tations are required to use the frameworks. Alternatively,
[19, 20] presented the methods of decoupling an appear-
ance and keypoint-based motion information. Since these
methods used a relative face reenactment by tracing the
most similar frame in the input video, they have difficulties
in real-time conversion and suffer from video dependency
since the video is used as a target input. To better preserve
the source identity, [26, 3, 22, 9] used multiple source im-
ages and utilized an average feature as an identity represen-
tation. Consequently, it takes effort to collect various new
images when creating a neural head of unseen source iden-

tity. In order to achieve real-time face swapping without ad-
ditional networks or processes, we propose a lightweight
one-stage framework with a novel decoder structure, data
augmentation, and a switch-test strategy.

We introduce a novel face swapping framework,
FastSwap, which addresses the computational limitation
and generates a photorealistic face image in a self-
supervised learning scheme. While designing a shallow
and lightweight network to fulfill the real-time face swap-
ping, we utilize adaptive normalization to overcome the
low-fidelity problem appearing as a trade-off of the net-
work reduction. The proposed Triple Adaptive Normaliza-
tion (TAN) block integrates the identity and pose by ap-
plying three different adaptive normalizations in each di-
mensional space. Furthermore, we introduce a novel data
augmentation and switch-test strategy noting the task gap
between training and test steps and handling the inputs of
pose and attributes independently. In the face swapping
task, the output aims to follow the attributes of the target
image when testing. The target image is recommended as
an attribute provider, though it is a contradiction where the
input becomes a ground truth. Hence, we use the source im-
age as an attribute provider by matching the color augmen-
tation with the ground truth image during training. Then,
when testing, we switch the provider to the target image to
generate a suitable output. Consequently, our strategy en-
ables attribute manipulation while preserving identity and
pose through independent attributes input, unlike other face
swapping frameworks [22, 27, 25, 9, 24, 26, 3, 21].

In summary, the main contributions of our work are as
follows: (1) We propose a lightweight one-stage face swap-
ping framework. Our framework swaps the face in 123.22
FPS and shows high-fidelity face swapping results with
quantitative and qualitative evaluations. (2) We design a
TAN block to achieve an effective disentanglement and in-
tegration of identity and pose in an adaptive fashion. (3) We
introduce a novel data augmentation and switch-test strat-
egy which deals with an attribute input in a self-supervised
manner. Our strategy enables controllable attribute editing
with a one-stage framework. (4) We analyze the effect of
each component of our proposed framework by conducting
an ablation study.

2. Related Work

2.1. Neural Talking Head

Neural talking head synthesis frameworks focus on the
source face to imitate the pose of the target face while main-
taining the attributes of the source image. LPD [3] concate-
nated both identity and pose features to generate adaptive
parameters and used AdaIN [11] in each decoding layer. On
the other hand, [23] presented an appearance adaptive nor-
malization mechanism inspired by SPADE [17] to optimize
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Figure 3: Overall architecture of FastSwap (left) and examples of inputs and outputs of training and test steps (right). Xs, Xt

and Xatt (a resized image) are used as inputs of our framework. The color-distorted data augmentation is applied to Xs and
Xt in the training step to disentangle the identity, pose, and attributes from Xs, Xt, and Xatt, respectively. Test 1 and Test 2
indicate a normal face swapping case and a controllable attribute editing case, respectively. Note that for Test 1, Xt is used
as Xatt, and for Test 2, the desired attribute image is used as Xatt.

the layers to improve the identity appearance locally. In our
framework, we design a differentiated decoder block that
can combine the identity and pose information comprehen-
sively by executing triple adaptive normalization: AdaIN,
1-channel SPADE, and multi-channel SPADE.

2.2. Face Swapping

Face swapping frameworks replace the face of the tar-
get image with the reenacted source face while preserving
the attributes of the target face. FSGAN [16] suggested a
cascaded face swapping framework consisting of reenact-
ment, inpainting, and blending modules. FaceShifter [13] is
a two-stage framework consisting of a face synthesis de-
coder utilizing adaptive attentional normalization and an
anomaly recovering module. SimSwap [4] presented a one-
stage framework with an ID injection module that transfers
the identity information into the decoder using AdaIN. In
our framework, we propose a switch-test strategy to apply
the attributes of the target image into a reenacted image
without any additional networks.

3. Methods
Given three input images, a source image Xs ∈

R3×256×256, a target image Xt ∈ R3×256×256, and an at-
tribute input Xatt ∈ R3×H1×W1 (resized image), our goal
is to generate a swapped image Ŷ preserving the identity of
Xs, pose of Xt, and attributes of Xatt with a lightweight
framework. To achieve the goal, we propose a FastSwap

network structure, train the network with novel data aug-
mentation and use a switch-test strategy. Note that we han-
dle the inputs of pose and attributes independently, whereas
the previous face swapping frameworks deal with pose and
attributes from the target image at once.

The proposed FastSwap network extracts identity fea-
tures of Xs and pose features of Xt by using an identity en-
coder and pose network, respectively. Then FastSwap takes
advantage of an adaptive normalization mechanism inspired
by AdaIN [11] and SPADE [17] to integrate the features in
a Triplet Adaptive Normalization (TAN) decoder. In addi-
tion, our data augmentation induces the network to extract
attributes from Xatt in the training step. Then, when testing,
the desired attributes are applied to the output Ŷ through the
switch-test strategy.

3.1. FastSwap Architecture

We focus on disentangling the identity and pose with
a shallow network and designing an effective integration
method. Hence, as shown in Figure 3, our FastSwap con-
sists of three modules: 1) Identity Encoder which extracts
the identity feature and provides the skip connections to
the generator, 2) Pose Network which extracts pose from
target image and decodes the spatial pose feature, and 3)
Decoder with TAN Block which effectively integrates the
features from 1) and 2) in an adaptive fashion. FastSwap
network is trained in a self-supervised manner without any
manual annotations or the off-the-shelf network.
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Figure 4: Detailed structure of the k-th TAN block with
three separate adaptive normalizations. ⊕ denotes a sum op-
eration.

3.1.1 Identity Encoder

The identity encoder extracts identity information from Xs.
We only use two down-sampling blocks and extract the
identity feature z1s,id in a quarter size of each input height
and width. z1s,id passes through one 1×1 convolution layer,
becomes zs,in, then zs,in is used as an input of the gen-
erator. Moreover, the intermediate outputs of the identity
encoder {zks,id}Nk=1, where N = 2 is a number of down-
sampling blocks, are further used to generate the adaptive
normalization parameters in each TAN block for identity
integration.

3.1.2 Pose Network

In the pose network, Xt is encoded into zt,c ∈ RC×1×1 to
avoid any spatial identity information from Xt. While the
identity encoder maintains the spatiality of the feature map
in a quarter, a low-dimensional bottleneck target code zt,c is
extracted to induce a self-disentanglement of the pose [3].
We then decode zt,c to train spatial pose features to reenact
the pose of Xt. Target code zt,c and multi-level pose fea-
tures {zkt,pose}Nk=1 from the pose network are fed into TAN
block for pose integration, where N = 2 is the number of
TAN blocks in the TAN decoder.

3.1.3 Decoder with TAN Block

We incorporate zs,in, {zks,id}Nk=1 from the identity encoder
and zt,c, {zkt,pose}Nk=1 from the pose network to generate a
swapped face image Ŷ . We propose a novel Triple Adap-
tive Normalization (TAN) block inspired by AdaIN and
SPADE. TAN block guides the fusion of identity and pose

with three adaptive normalizations considering each feature
dimension. The TAN decoder is constructed with multiple
TAN blocks to generate the output.

In the k-th TAN block, we design two parallel branches
which combine spatial adaptive parameters from zks,id and
zkt,pose, and non-spatial adaptive parameters from zt,c as
shown in Figure 4. We arrange spatial and non-spatial pose
integration in the two branches, respectively, and identity
integration is placed in the rear since the identity feature
zs,in is used as a decoder input. In other words, two adap-
tations are applied in a sequence of pose integration and
identity integration in a spatial-adaptive branch, and a non-
spatial pose integration is held in the other.

We perform three different adaptive normalizations of
the activation map with their corresponding parameters gen-
erated from each input: 1) spatial pose integration with
zkt,pose, 2) identity integration with zks,id, 3) non-spatial
pose integration with target code zt,c (see Figure 4). Let
hk
p, h

k
i , h

k
c ∈ RCk×Hk×Wk denote the activation map that

is fed into each adaptive normalization of the k-th TAN
block as an input, where Ck is the number of channels and
Hk ×Wk is the spatial dimensions.

For spatial pose integration, pose activation function P
denormalizes the normalized h̄k

p with 2D adaptive parame-
ters generated from zkt,pose:

h̄k
p =

hk
p − µk

p

σk
p

P (hk
p) = γk

p ⊙ h̄k
p + βk

p

(1)

where µk
p , σk

p ∈ R1×Hk×Wk are the mean and standard
deviation of hk

p over HW -wise activations, and βk
p , γ

k
p ∈

R1×Hk×Wk are modulation parameters convolved from
zkt,pose and ⊙ is an element-wise multiplication.

For identity integration, we define the identity activation
function I as denormalizing the normalized h̄k

i according to
the zks,id:

h̄k
i =

hk
i − µk

i

σk
i

I(hk
i ) = γk

i ⊙ h̄k
i + βk

i

(2)

where µk
i , σk

i ∈ RCk×Hk×Wk are the mean and standard
deviation of hk

i over CHW -wise activations, and βk
i , γ

k
i ∈

RCk×Hk×Wk are modulation parameters generated from
zks,id.

For non-spatial pose integration, code activation function
C denormalizes the normalized h̄k

c according to the target
code zt,c:

h̄k
c =

hk
c − µk

c

σk
c

C(hk
c ) = γk

c ⊙ h̄k
c + βk

c

(3)
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Figure 5: Results of FastSwap with various source and target pairs.

where µk
c , σk

c ∈ RCk×1×1 are the mean and standard devia-
tion of hk

c over C-wise activations, and βk
c , γ

k
c ∈ RCk×1×1

are modulation parameters learned from MLP with flat-
tenned zt,c input.

The total activation of the k-th TAN block is formulated
as

TANk(hk
in, z

k
s,id, zt,c, z

k
t,pose)

= I
(
Conv

(
P (Conv(hk

in))
))

+ C
(
Conv(hk

in)
) (4)

where hk
in is the input of the k-th TAN block, Convs are

1 × 1 convolution layers, and ReLU activation is omitted
for readability.

3.2. Data Augmentation and Switch-Test Strategy

Our data augmentation facilitate the FastSwap network
to extract identity information from Xs, pose information
from Xt, and attribute information from Xatt. We exploit
the characteristic of color distortion for data augmentation.
As shown in the Train case in Figure 3, we operate differ-
ent color distortion augmentation on Xs and Xt, respec-
tively, since identity and pose information in the images are
not compromised by color distortion. On the other hand,
attribute information is sensitive to color changes. Conse-
quently, Xatt and the ground truth (G.T.) maintain their
original color so that the attributes are extracted from Xatt.

Note that we use a resized source image as Xatt in accor-
dance with our switch-test strategy.

We introduce a switch-test strategy that considers the
task gap between the training and test steps of the face
swapping task. Xs and Xt have the same attributes in the
training stage, but different attributes are used in the test
stage. Considering the test stage, it is recommended to use
Xt as Xatt, but this is a situation where the G.T. is pro-
vided as input. Therefore, we use self-supervised learning
by taking advantage of the fact that the attributes of Xs and
Xt are the same in the training stage. We set Xatt with a re-
sized Xs maintaining the original color at the training stage.
Then, at the test stage, we switch Xatt with a resized Xt to
reconstruct the attributes of Xt, as shown in the Test 1 case
in Figure 3. Furthermore, we can generate various outputs
with the desired attributes by adjusting the independent in-
put Xatt, as in the Test 2 case in Figure 3. The effects of
using various Xatt are reported in Section 4.4.

3.3. Training Objectives

We combine five losses to train the FastSwap framework.
First, we define a L-2 reconstruction loss Lrec and a VGG-
19-based perceptual loss [12] Lper between the output Ŷ
and the ground truth (G.T.).

Next, we take advantage of adversarial training with the
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discriminator to improve image quality. The discriminator
is trained via its adversarial loss LD

adv , while FastSwap is
trained with the adversarial loss LG

adv . Multi-scale discrim-
inator [17] is used and each original binary cross entropy
loss is substituted with hinge loss [15].

To preserve identity and pose of Xs and Xt, we utilize
identity preservation loss Lid and pose reconstruction loss
Lpose. Lid is calculated with cosine similarity of the identity
feature from Arcface [7] between Ŷ and Xs. Lpose is the L-
2 distance between zt,c and ẑc, where ẑc is the target code
reconstructed by output Ŷ fed to the pose network encoder.
ẑc is expected to be close to zt,c since Ŷ is intended to have
the same pose with Xt.

FastSwap is finally trained to minimize a weighted sum
of the above losses formulated as

Lrec(Ŷ , G.T.) + λperLper(Ŷ , G.T.)

+ λadvL
G
adv(Ŷ , G.T.) + λidLid(Ŷ , Xs)

+ λposeLpose(zt,c, ẑc)

(5)

with λper = λadv = 1, λid = 0.1, and λpose = 10.

4. Experiments

4.1. Implementation Details

FastSwap is trained with the large face dataset Vox-
Celeb2 [5]. We align and crop the face in a size of 256 ×
256 using [18]. The number of layers in identity encoder
and TAN block, N , is set to 2 while the pose network
downsamples the feature 8 times, which results in zs,in ∈
R128×64×64, zt,c ∈ R128×1×1, respectively.

4.2. Quantitative Comparison

4.2.1 Evaluation Metrics

We use various evaluation metrics to compare the effi-
ciency of the swapping process and the plausibility of the
results. Specifically, we use 1) Frames per second (FPS)
representing the swapping speed, which are measured un-
der a common environment with one RTX2080Ti GPU,
2) Multiply-accumulate operations (MACs) measuring the
computational complexity and 3) Number of parameters
(Param.) of each framework, 4) Identity similarity (ID), the
cosine similarity between the embedding vectors of Arc-
face [7] from the output and the source image evaluating
the identity match, 5) Pose error (Pose), the normalized
mean error of the head pose by using 68 landmarks [2] of
the synthesized image and the target image, and 6) Frechet-
inception distance (FID) [10] measuring perceptual realism
computed with target image as a ground truth.

Method FPS↑ MACs↓ Param.↓ ID↑ Pose↓ FID↓

FOMM 41.64 56.24G 73.98M 0.65 0.88 138.29
LPD 57.81 30.81G 40.07M 0.68 0.96 138.45
OSFV 10.97 384.65G 195.08M 0.66 1.01 143.57
Ours-M 123.22 14.34G 26.50M 0.70 0.71 90.63

FSGAN 6.62 846.84G 226.36M 0.38 0.57 88.52
SimSwap 24.48 55.79G 107.24M 0.48 0.66 77.46
FaceShifter 17.36 81.58G 418.75M 0.44 0.70 42.40
Ours 123.22 14.34G 26.50M 0.54 0.61 60.08

Table 1: Quantitative comparison results with evaluation
metrics. ↑ indicates that the higher the value, the better per-
formance, and the ↓ indicates the opposite. The best per-
formance is presented in bold, and the second-best perfor-
mance is underlined.

4.2.2 Experimental Results

For the quantitative comparison, we sample 118 videos
from the VoxCeleb2 test set (one video for each individ-
ual) and swap ten source faces on wild evenly distributed
by gender and race. Table 1 shows the comparison results
with the previous neural talking head frameworks and the
face swapping frameworks in two sections, respectively.

FastSwap swaps the face at the fastest speed with the
fewest parameters and computational cost when seeing
the FPS, MACs, and Param.. Even though the MACs and
Param. of LPD are relatively on par with Ours-M, LPD
requires a few-shot fine-tuning process inevitably. Since
FaceShifter focuses on preserving the unexpected attributes,
FaceShifter has the lowest FID score calculated with the
target image. FSGAN has the lowest Pose because FSGAN
tends to maintain the shape and size of the eyes, nose, and
mouth of the target image at the expense of missing the
identity of the source image. However, it can be said that
FastSwap preserves the identity of the source and the pose
of the target in high quality when judging by the overall ID,
Pose, and FID values. Finally, our study may exceptionally
show performance on par or less fidelity against the com-
parison models, but it is clear that our framework has an ev-
ident strength in terms of swapping speed, which is 7 times
faster than the FaceShifter.

4.3. Qualitative Comparison

We compare FastSwap with the state-of-the-art neural
talking head frameworks, FOMM [19], LPD [3], and OSFV
[20], as shown in Figure 6. The neural talking head methods
follow the background and attributes of the source image
while our framework follows the background and attributes
of the target image. Since the frameworks follow different
backgrounds, we mask out the background of the results of
each framework with Graphonomy [8]. We denote our re-
sults without background as Ours-M. Here, it is challenging
to compare identities at a glance since the skin tone varies
depending on the attributes. However, our framework bet-

3563



Figure 6: Comparison with state-of-the-art neural talking
head methods. Ours-M denotes our results with the back-
ground masked out for ease of comparison.

Figure 7: Comparison with state-of-the-art face swapping
methods.

ter preserves the identity of the source face when looking
at facial components separately. In addition, our framework
best reconstructs the pose of the target when looking at the
movement of the pupil or the shape of the mouth. Figure 6
row 3 shows that FastSwap determines the target pose even
for low-fidelity input.

Figure 7 shows the comparison results with the state-
of-the-art methods in face swapping, which are FSGAN

Figure 8: Results of FastSwap when using various Xatt.
The results follow the attributes of Xatt, especially lip
make-up and skin tone, while maintaining the same iden-
tity and pose.

[16], SimSwap [4], and FaceShifter [14]. Our framework
best reenacts the pose of the target image, judging from the
eyes, pupils, and lips movement of the results. In addition,
FastSwap not only replaces the source face without loss of
identity but also generates photo-realistic results by apply-
ing plausible attributes to the reenacted face than the other
works. While unexpected attributes such as scars are bet-
ter applied in SimSwap and FaceShifter (row 1), FastSwap
focuses on preserving the source identities, including beard
(row 2), wrinkles (row 4), and mole (row 5). Figure 1 right-
lower result and Figure 7 row 5 show that FastSwap can
extract the identity and pose of the input images even if the
image is a cartoon or a drawing.

4.4. Controllable Attribute Editing

In the previous experiments, we focused on the face
swapping task using only two image inputs by putting the
target image in Xatt. However, our framework can edit the
attributes of the result separately by using an extra image
that has desired attributes. We visualize the results in Fig-
ure 8 by replacing Xatt with several different images while
maintaining input Xs and Xt the same. Figure 8 shows
that the results are created according to the attributes of
Xatt, such as skin tone and make-up, while maintaining the
same pose and identity. Unlike previous works, our frame-
work can freely generate results representing the desired at-
tributes by changing only Xatt.

4.5. Analysis of FastSwap

4.5.1 TAN Block

To verify the necessity of each adaptive normalization in
TAN block, we compare the results with a model without
identity and pose activation functions (I , P , and C), respec-
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Figure 9: Comparison results of FastSwap with the ablation
models detaching adaptive normalizations (I , P , and C) of
TAN block. ‘Ours’ is omitted for readability from the name
of ablation models.

tively. Figure 9 shows the results of the TAN block ablation
study. As shown in Figure 9, I of TAN blocks improves the
resolution of the output and integrates the detailed identity
of the source image. P of TAN blocks affects mainly the
detailed pose such as eyes and lips reenactment. C of TAN
block reconstructs the general pose of the target image. The
results denote that I , P , and C integrate identity and pose
information as described in Section 3.1.3.

4.5.2 Data Augmentation

To examine the effect of our data augmentation (D.A.), we
compare the results with a model trained without D.A. in
Figure 10. Despite inputting the target image as Xatt us-
ing the switch-test strategy, the model w/o D.A. follows
the attributes of the source image since it is trained with
source image attributes. Xatt becomes meaningless since
the model trained without D.A. extracts identity and at-
tributes from Xs and pose from Xt. The results show that
our proposed D.A. guides FastSwap to extract identity,
pose, and attribute information from Xs, Xt, and Xatt, re-
spectively, during the training process.

4.5.3 Depth Design

To analyze whether our depth design is plausible, we com-
pare the results with a deep identity encoder model 1*1
ID (zs,in ∈ R128×1×1) and a shallow pose network model
64*64 Pose (zt,c ∈ R128×64×64) in Figure 11. 1*1 ID shows
extreme pose and attributes loss leading to low-fidelity
swapping results, and 64*64 Pose fully reconstructs the tar-
get face. The results show that reducing the target code zt,c
until 1 × 1 spatial resolution helps FastSwap to extract the
pose, not the identity of the target images. The original shal-
low identity encoder improves the detail of identity from the
source image by minimizing the loss of spatial feature size.
The original deep pose network induces the activation P
and C to focus on pose integration by preventing identity
leakage from the target image. In short, our depth design

Figure 10: Comparison results of FastSwap between with
and without the proposed data augmentation (D.A.).

Figure 11: Results of FastSwap when changing the depth
design. 1*1 ID and 64*64 Pose refer to the deep identity
encoder model (N = 8) and the model in which the pose
network downsamples Xt only twice, respectively.

supported TAN-block to prevent identity leakage of target
images and improved the detail of identity from source im-
ages.

5. Conclusion
We have presented and evaluated our novel face swap-

ping framework, FastSwap, which achieves the real-time
swapping and preservation of identity, pose, and attributes
of the given inputs. The main contribution of our paper
is the TAN block that integrates identity and pose within
a lightweight network. Our secondary finding is that the
switch-test strategy with data augmentation guided an at-
tributes extraction from the target image even though we
used the source image during the training procedure. Our
strategy facilitates controllable attribute editing, previously
done through additional procedures, with a lightweight one-
stage framework. Future work shall be on improvements to
manipulate unexpected attributes.
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