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Figure 1. Illustration of few-shot object counting, where we would like to find how many exemplar objects described by a few support
images occur in the query image. Besides the objects included in the training phase, we also expect the model to handle novel classes at the
test stage without retraining.

Abstract

This work studies the problem of few-shot object counting,
which counts the number of exemplar objects (i.e., described
by one or several support images) occurring in the query
image. The major challenge lies in that the target objects can
be densely packed in the query image, making it hard to rec-
ognize every single one. To tackle the obstacle, we propose a
novel learning block, equipped with a similarity comparison
module and a feature enhancement module. Concretely,
given a support image and a query image, we first derive a
score map by comparing their projected features at every
spatial position. The score maps regarding all support
images are collected together and normalized across both the
exemplar dimension and the spatial dimensions, producing
a reliable similarity map. We then enhance the query
feature with the support features by employing the developed
point-wise similarities as the weighting coefficients. Such
a design encourages the model to inspect the query image
by focusing more on the regions akin to the support images,
leading to much clearer boundaries between different objects.
Extensive experiments on various benchmarks and training
setups suggest that we surpass the state-of-the-art methods
by a sufficiently large margin. For instance, on a recent
large-scale FSC-147 dataset, we surpass the state-of-the-
art method by improving the mean absolute error from
22.08 to 14.32 (35%↑). Code has been released in https:
//github.com/zhiyuanyou/SAFECount.

1. Introduction

Object counting [3, 4], which aims at investigating how
many times a certain object occurs in the query image, has
received growing attention due to its practical usage [8, 13,
17,45]. Most existing studies assume that the object to count
at the test stage is covered by the training data [1, 10, 11, 17,
26, 44, 45]. As a result, each learned model can only handle
a specific object class, greatly limiting its application.

To alleviate the generalization problem, few-shot object
counting (FSC) is recently introduced [21]. Instead of pre-
defining a common object that is shared by all training
images, FSC allows users to customize the object of their
own interests with a few support images, as shown in Fig. 1.
In this way, we can use a single model to unify the counting
of various objects, and even adapt the model to novel classes
(i.e., unseen in the training phase) without any retraining.

A popular solution to FSC is to first represent both
the exemplar object (i.e. the support image) and the
query image with expressive features, and then pinpoint the
candidates via analyzing the feature correlation [18, 21, 40].
Active attempts roughly fall into two folds. One is feature-
based [18], as shown in Fig. 2a, where the pooled support
feature is concatenated onto the query feature, followed
by a regress head to recognize whether the two features
are close enough. However, the spatial information of the
support image is omitted by pooling, leaving the feature
comparison unreliable. The other is similarity-based [21,40],

6315



(a)
Query Feature

Pool

Cat

Regress
Head Query Feature

Support 
Feature

Similarity

Query Feature

Support 
Feature

Similarity
SCM FEM

Enhanced 
Feature

Regress
Head

Regress
Head

(b) (c)

Support 
Feature Compare

Learnable Module Fixed Module 

Figure 2. Concept comparison between our method and existing alternatives. (a) Feature-based approach [18], where the query feature is
concatenated with the pooled support feature for regression. (b) Similarity-based approach [21, 40], where a similarity map is developed
from raw features for regression. (c) Our proposed similarity-aware feature enhancement block, consisting of a similarity comparison
module (SCM) and a feature enhancement module (FEM). Concretely, the reliable feature similarity developed by SCM is exploited as the
guidance of FEM to enhance the query feature with the support feature. The details of SCM and FEM can be found in Sec. 3.2 and Fig. 3.

as shown in Fig. 2b, where a similarity map is developed
from raw features as the regression object. Nevertheless, the
similarity is far less informative than feature, making it hard
to identify clear boundaries between objects (see Fig. 5).
Accordingly, the counting performance heavily deteriorates
when the target objects are densely packed in the query
image, like the shoal of fish in Fig. 1.

In this work, we propose a Similarity-Aware Feature
Enhancement block for object Counting (SAFECount). As
discussed above, feature is more informative while similarity
better captures the support-query relationship. Our novel
block adequately integrates both of the advantages by
exploiting similarity as a guidance to enhance the features
for regression. Intuitively, the enhanced feature not only
carries the rich semantics extracted from the image, but also
gets aware of which regions within the query image are
similar to the exemplar object. Specifically, we come up
with a similarity comparison module (SCM) and a feature
enhancement module (FEM), as illustrated in Fig. 2c. On
one hand, different from the naive feature comparison in
Fig. 2b, our SCM learns a feature projection, then performs
a comparison on the projected features to derive a score map.
This design helps select from features the information that is
most appropriate for object counting. After the comparison,
we derive a reliable similarity map by collecting the score
maps with respect to all support images (i.e., few-shot) and
normalizing them along both the exemplar dimension and
the spatial dimensions. On the other hand, the FEM takes
the point-wise similarities as the weighting coefficients, and
fuses the support features into the query feature. Such a
fusion is able to make the enhanced query feature focus
more on the regions akin to the exemplar object defined by
support images, facilitating more precise counting.

Experimental results on a very recent large-scale
FSC dataset, FSC-147 [21], and a car counting dataset,
CARPK [10], demonstrate our substantial improvement
over state-of-the-art methods. Through visualizing the
intermediate similarity map and the final predicted density

map, we find that our SAFECount substantially benefits
from the clear boundaries learned between objects, even
when they are densely packed in the query image.

2. Related Work

Class-specific object counting counts objects of a specific
class, such as people [17, 26, 44, 45], animals [1], cars [10],
among which crowd counting has been widely explored.
For this purpose, traditional methods [14, 28, 33] count the
number of people occurring in an image through person
detection. However, object detection is not particularly
designed for the counting task and hence shows unsatisfying
performance when the crowd is thick. To address this issue,
recent work [32] employs a deep model to predict the density
map from the crowd image, where the sum over the density
map gives the counting result [15]. Based on this thought,
many attempts have been made to handle more complicated
cases [2, 16, 20, 23–25, 36, 38, 41, 42, 45]. Some recent
studies [26, 31] propose effective loss functions that help
predict the position of each person precisely. However, all of
these methods can only count objects regarding a particular
class (e.g., person), making them hard to generalize. There
are also some approaches targeting counting objects of
multiple classes [13, 19, 27, 37]. In particular, Stahl et
al. [27] propose to divide the query image into regions and
regress the counting results with the inclusion-exclusion
principle. Laradji et al. [13] formulate counting as a
segmentation problem for better localization. Michel et
al. [19] detect target objects and regress multi-class density
maps simultaneously. Xu et al. [37] mitigate the mutual
interference across various classes by proposing category-
attention module. Nevertheless, they still can not handle the
object classes beyond the training data.

Few-shot object counting (FSC) has recently been pro-
posed [18, 21, 40] and presents a much stronger generaliza-
tion ability. Instead of pre-knowing the type of object to
count, FSC allows users to describe the exemplar object
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of their own interests with one or several support images.
This setting makes the model highly flexible in that it does
not require the test object to be covered by the training
samples. In other words, a well-learned model could easily
make inferences on novel classes (i.e., unseen in the training
phase) as long as the support images are provided. To
help the model dynamically get adapted to an arbitrary
class, a great choice is to compare the object and the query
image in feature space [18, 21, 40]. GMN [18] pools the
support feature, and concatenates the pooling result onto
the query feature, then learns a regression head for point-
wise feature comparison. However, the comparison built on
concatenation is not as reliable as the similarity [40]. Instead,
CFOCNet [40] first performs feature comparison with dot
production, and then regresses the density map from the
similarity map derived before. FamNet [21] further improves
the reliability of the similarity map through multi-scale
augmentation and test-time adaptation. But similarities are
far less informative than features, hence regressing from the
similarity map fails to identify clear boundaries between the
densely packed objects. In this work, we propose a similarity-
aware feature enhancement block, which integrates the
advantages of both features and similarities.
Few-shot learning has received popular attention in the past
few years thanks to its high data efficiency [6,7,34,35,39,43].
The rationale behind this is to adapt a well-trained model
to novel test data (i.e., having a domain gap to the training
data) with a few support samples. In the field of image
classification [7, 34], MAML [7] proposes to fit parameters
to novel classes at the test stage using a few steps of gradient
descent. FRN [34] formulates few-shot classification as
a reconstruction problem. As for object detection [6, 35],
Fan et al. [6] exploit the similarity between the input image
and the support images to detect novel objects. Wu et al. [35]
create multi-scale positive samples as the object pyramid for
prediction refinement. When the case comes to semantic
segmentation [39, 43], CANet [43] iteratively refines the
segmentation results by comparing the query feature and the
support feature. Yang et al. [39] aim to alleviate the problem
of feature undermining and enhance the embedding of novel
classes. In this work, we explore the usage of few-shot
learning on the object counting task.

3. Method

3.1. Preliminaries

Few-shot object counting (FSC) [21] aims to count the
number of exemplar objects occurring in a query image with
only a few support images describing the exemplar object.
In FSC, object classes are divided into base classes Cb and
novel classes Cn, where Cb and Cn have no intersection. For
each query image from Cb, both a few support images and
the ground-truth density map are provided. While, for query

images from Cn, only a few support images are available.
FSC aims to count exemplar objects from Cn using only a few
support images by leveraging the generalization knowledge
from Cb. If we denote the number of support images for one
query image as K, the task is called K-shot FSC.

3.2. Similarity-Aware Feature Enhancement

Overview. Fig. 3 illustrates the core block in our framework,
termed as the similarity-aware feature enhancement block.
We respectively denote the support feature and the query
feature as fS ∈ RK×C×HS×WS and fQ ∈ RC×HQ×WQ ,
where K is the number of support images. The similarity
comparison module (SCM) first projects fS and fQ to a
comparison space, then compares these projected features
at every spatial position, deriving a score map, R0. Then,
R0 is normalized along both the exemplar dimension and
the spatial dimensions, resulting in a reliable similarity map,
R. The following feature enhancement module (FEM) first
obtains the similarity-weighted feature, fR, by weighting fS

with R, and then manages to fuse fR into fQ, producing the
enhanced feature, f ′

Q. By doing so, the features regarding
the regions similar to the support images are “highlighted”,
which could help the model get distinguishable borders
between densely packed objects. Finally, the density map is
regressed from f ′

Q.
Similarity Comparison Module (SCM). As discussed
above, similarity can better characterize how a particular
image region is alike the exemplar object. However, we
find that the conventional feature comparison approach (i.e.,
using the vanilla dot production) used in prior arts [21,40] is
not adapted to fit the FSC task. By contrast, our proposed
SCM develops a reliable similarity map from the input
features with the following three steps.

Step-1: Learnable Feature Projection. Before performing
feature comparison, fS and fQ are first projected to a
comparison space via a 1 × 1 convolutional layer. This
projection asks the model to automatically select suitable
information from the features. We also add a shared layer
normalization after the projection to make these two features
subject to the same distribution as much as possible.

Step-2: Feature Comparison. The point-wise feature
comparison is realized with convolution. In particular, we
convolve the projected fQ with the projected fS as kernels,
which gives us the score map, R0 ∈ RK×1×HQ×WQ , as

R0 = conv(g(fQ), kernel = g(fS)), (1)

where g(·) denotes the feature projection described in Step-1,
i.e., a 1×1 convolutional layer followed layer normalization.

Step-3: Score Normalization. The values of the score
map, R0, are normalized to a proper range to avoid some
unusual (e.g., too large) entries from dominating the learning.
Here, we propose Exemplar Normalization (ENorm) and
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Figure 3. Illustration of the similarity-aware feature enhancement block under the 3-shot case. Given features, fS , fQ, that are
extracted from the support images and the query image respectively, the similarity comparison module (SCM) first develops a score map,
R0, by comparing the projected features, and then produces a similarity map, R, via normalizing R0 along both the exemplar dimension
and the spatial dimensions. Here, feature projection is implemented with a 1× 1 convolution. The following feature enhancement module
(FEM) weights fS with R to derive a similarity-weighted feature, fR, and manages to fuse fR into fQ as a feature enhancement. Such a
block can be stacked for multiple times in the training framework.

Spatial Normalization (SNorm). On the one hand, ENorm
normalizes R0 along the exemplar dimension as

REN = softmaxdim=0(
R0√

HSWSC
), (2)

where softmaxdim(·) is the softmax layer operated along
a specific dimension. On the other hand, R0 is also
normalized along the spatial dimensions (i.e., the height
and width) with SNorm, as

RSN =
exp(R0/

√
HSWSC)

maxdim=(2,3)(exp(R0/
√
HSWSC))

, (3)

where maxdim(·) finds the maximum value from the given
dimensions. After SNorm, the score value of the most
support-relevant position would be 1, and others would be
among [0, 1]. Finally, the similarity map, R, is obtained
from REN and RSN with

R = REN ⊗RSN ∈ RK×1×HQ×WQ , (4)

where ⊗ is the element-wise multiplication. The studies of
the effect of ENorm and SNorm can be found in Sec. 4.4.
Feature Enhancement Module (FEM). Recall that, com-
pared to similarity, feature is more informative in represent-
ing the image yet less accurate in capturing the support-
query relationship. To take sufficient advantages of both,
we propose to use the similarity developed by SCM as the
guidance for feature enhancement. Specifically, our FEM
integrates the support feature, fS , into the query feature, fQ,
with similarity values in R as the weighting coefficients. In
this way, the model can inspect the query image by paying
more attention to the regions that are akin to the support
images. This module consists of the following two steps.

Step-1: Weighted Feature Aggregation. In this step,
we aggregate the support feature, fS , by taking the point-
wise similarity, R, into account. Namely, the feature point
corresponding to a higher similarity score should have
larger voice to the final enhancement. Such a weighted
aggregation is implemented with convolution, which outputs
the similarity-weighted feature,

f ′
R = conv(R, kernel = flip(fS)) ∈ RK×C×HQ×WQ ,

(5)

fR = sumdim=0(f
′
R) ∈ RC×HQ×WQ , (6)

where sumdim(·) accumulates the input tensor along specific
dimensions, flip(·) denotes the flipping operation, which
flips the input tensor both horizontally and vertically.
Flipping helps f ′

R preserve the spatial structure of fS . The
intuitive illustration and the performance improvement of
flipping can be found in Supplementary Material.

Step-2: Learnable Feature Fusion. The similarity-
weighted feature, fR, is fused into the query feature, fQ,
via an efficient network. It contains a convolutional block
and a layer normalization, as shown in Fig. 3. Finally, we
obtain the enhanced feature, f ′

Q, with

f ′
Q = layer_norm(fQ + h(fR)) ∈ RC×HQ×WQ , (7)

where h(·) is implemented with two convolutional layers.
Comparison with Attention. A classical attention mod-
ule [30] involved with query, key, and value (denoted as
q, k, v) is represented as similarity(q, k)v. The key
idea is employing the similarity values between q and k
as weighting coefficients to aggregate v as an information
aggregation. Our SAFECount is similar with the similarity-
guided aggregation of existing attention modules. However,
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existing attention modules omit the spatial information as
they need to flatten a feature map (C×H×W ) to a collection
of feature vectors (C×HW ). Instead, in all processes of our
SCM and FEM, the feature maps are designed to maintain
their spatial structure (C×H×W ), which plays a vital role
in learning clear boundaries between objects. The ablation
study in Sec. 4.4 confirms our significant advantage over the
classical attention module.

3.3. Training Framework

Sec. 3.2 describes the core block of our approach,
SAFECount. In practice, such a block should work together
with a feature extractor, which feeds input features into the
block, and a regression head, which receives the enhanced
feature for object counting. Moreover, it is worth mentioning
that our SAFECount allows stacking itself for continuous
performance improvement. In this part, we will introduce
these assistant modules, whose detailed structures are
included in Supplementary Material.
Feature Extractor. When introducing our SAFECount
block, we start with the support feature, fS , and the
query feature, fQ, which are assumed to be well prepared.
Specifically, we use a fixed ResNet-18 [9] pre-trained on
ImageNet [5] as the feature extractor. In particular, given a
query image, we resize the outputs of the first three stages of
ResNet-18 to the same size, HQ×WQ, and concatenate them
along the channel dimension as the query feature. Besides,
given a support image, which is usually cropped from a large
image so as to contain the exemplar object only, the support
feature is obtained by applying ROI pooling [22] on the
feature extracted from its parent before cropping. Here, the
ROI pooling size is the size of fS , i.e., HS ×WS .
Regression Head. After getting the enhanced feature, f ′

Q,
we convert it to a density map, D ∈ RH×W , with a
regression head. Following existing methods [18, 21, 40],
the regression head is implemented with a sequence of
convolutional layers, followed by Leaky ReLU activation
and bi-linear upsampling.
Multi-block Architecture. Recall that our proposed
SAFECount block enhances the input query feature, fQ,
with the support features, fS . The enhanced feature, f ′

Q, is
with exactly the same shape as fQ. As a result, it can be
iteratively enhanced simply by stacking more blocks. The
ablation study on the number of blocks can be found in
Sec. 4.4, where we verify that adding one block is already
enough to boost the performance substantially.
Objective Function. Most counting datasets are annotated
with the coordinates of the target objects within the query
image [3,4,45]. However, directly regressing the coordinates
is hard [15, 45]. Following prior work [21], we generate
the ground-truth density map, DGT ∈ RH×W , from the
labeled coordinates, using Gaussian smoothing with adaptive

Table 1. Statistics of the four fold splits from FSC-147 [21].
Fold Class Indices #Classes #Images

0 0-35 36 2033
1 36-72 37 1761
2 73-109 37 1239
3 110-146 37 1113

window size. Our model is trained with the MSE loss as

L =
1

H ×W
||D −DGT ||22. (8)

4. Experiments
4.1. Metrics and Datasets

Metrics. We choose Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) to measure the performance
of counting methods following [8, 21]:

MAE =
1

NQ

NQ∑
i=1

|Ci − Ci
GT |,

RMSE =

√√√√ 1

NQ

NQ∑
i=1

(Ci − Ci
GT )

2,

(9)

where NQ is the number of query images, Ci and Ci
GT are

the predicted and ground-truth count of the ith query image,
respectively.
FSC-147. FSC-147 [21] is a multi-class, 3-shot FSC dataset
with 147 classes and 6135 images. Each image has 3 support
images to describe the target objects. Note that the training
classes share no intersection with the validation classes and
test classes. The training set contains 89 classes, while
validation set and test set both contain another disjoint 29
classes. The number of objects per image varies extremely
from 7 to 3701 with an average of 56.
Cross-validation of FSC-147. In original FSC-147 [21], the
dataset split and the shot number are both fixed, while other
few-shot tasks including classification [34], detection [6],
and segmentation [39] all contain multiple dataset splits
and shot numbers. Therefore, we propose to evaluate FSC
methods with multiple dataset splits and shot numbers by
incorporating FSC-147 and cross-validation. Specifically,
we split all images in FSC-147 to 4 folds, whose class
indices, class number, and image number are shown in Tab. 1.
The class indices ranging from 0 to 146 are obtained by
sorting the class names of all 147 classes. Note that these 4
folds share no common classes. When fold-i (i = 0, 1, 2, 3)
serves as the test set, the remaining 3 folds form the training
set. Also, we evaluate FSC methods in both 1-shot and 3-
shot cases. For 3-shot case, the original three support images
in FSC-147 are used. For 1-shot case, we randomly sample
one from the original three support images.
CARPK. A car counting dataset, CARPK [10], is used to
test our model’s ability of cross-dataset generality. CARPK
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Table 2. Quantitative results on FSC-147 dataset [21], where we
surpass other competitors by a sufficiently large margin.

Method Val Set Test Set

MAE RMSE MAE RMSE

GMN [18] 29.66 89.81 26.52 124.57
MAML [7] 25.54 79.44 24.90 112.68
FamNet [21] 24.32 70.94 22.56 101.54
FamNet+ [21] 23.75 69.07 22.08 99.54
CFOCNet [40] 21.19 61.41 22.10 112.71

SAFECount (ours) 15.28 47.20 14.32 85.54

contains 1448 images and nearly 90, 000 cars from a drone
perspective. These images are collected in various scenes of
4 different parking lots. The training set contains 3 scenes,
while another scene is used for test.

4.2. Class-agnostic Few-shot Object Counting

Our method is evaluated on the FSC dataset FSC-147 [21]
under the original setting and the cross-validation setting.
Setup. The sizes of the query image, the query feature
map, and the support feature map, H ×W , HQ ×WQ, and
HS ×WS , are selected as 512× 512, 128× 128, and 3× 3,
respectively. The dimension of the projected features are
set as 256. The multi-block number is set as 4. The model
is trained with Adam optimizer [12] for 200 epochs with
batch size 8. The learning rate is set as 2e-5 initially, and it
is dropped by 0.25 every 80 epochs.
FSC-147. Quantitative results on FSC-147 are given in
Tab. 2. Our method is compared with GMN [18], MAML [7],
FamNet [21], and CFOCNet [40]. Our approach outperforms
all counterparts with a quite large margin. For example,
we surpass FamNet+ by 8.47 MAE and 21.87 RMSE on
validation set, 7.76 MAE and 14.00 RMSE on test set. Note
that FamNet+ needs test-time adaptation for novel classes,
while our SAFECount needs no test-time adaptation. These
significant advantages demonstrate the effectiveness of our
method. In Fig. 4, we show some qualitative results of
SAFECount. Compared with Famnet+ [21], our SAFECount
has much stronger ability to separate each independent object
within densely packed objects, thus helps obtain an accurate
count. Especially, for densely packed green peas (Fig. 4b),
we not only exactly predict the object count, but also localize
target objects with such a high precision that every single
object could be clearly distinguished.
Cross-validation of FSC-147. The dataset split and shot
number are both fixed in FSC-147 benchmark, which
could not provide a comprehensive evaluation. Therefore,
we incorporate FSC-147 with cross-validation to evaluate
FSC methods with 4 dataset splits and 2 shot numbers.
Our approach is compared with FSC baselines including
GMN [18] and FamNet [21]. These baselines are trained
and evaluated by ourselves with the official code. The
cross-validation results are shown in Tab. 3, where fold-
i (i = 0, 1, 2, 3) indicates the test set. Under all dataset splits

and shot numbers, our method significantly outperforms
baseline methods with both MAE and RMSE. Averagely,
we outperform FamNet by 8.82 MAE and 20.18 RMSE in
1-shot case, 9.67 MAE and 21.74 RMSE in 3-shot case.
Moreover, from 1-shot case to 3-shot case, our approach
gains more performance improvement than two baseline
methods, reflecting the superior ability of our SAFECount
to utilize multiple support images.

4.3. Cross-dataset Generalization

Following FamNet [21], we test our model’s general-
ization ability on the car counting dataset, CARPK [10].
The models are first pre-trained on FSC-147 [21] (the “car”
category is excluded), then fine-tuned on CARPK. The
results are shown in Tab. 4. For the models pre-trained
on FSC-147, we significantly surpass FamNet by 42.23%
in MAE and 45.85% in RMSE. When it comes to the fine-
tuning scenario, our method still consistently outperforms
all baselines. For instance, we surpass GMN [18] by 28.74%
in MAE and 28.89% in RMSE. Therefore, our SAFECount
has much better ability in cross-dataset generalization.

4.4. Ablation Study

To verify the effectiveness of the proposed modules and
the selection of hyper-parameters, we implement extensive
ablation studies on FSC-147 [21].
SCM and FEM. To demonstrate the effectiveness of the
proposed SCM and FEM modules, we conduct diagnostic
experiments. The substitute of FEM is to concatenate the
similarity map and query feature together, then recover
the feature dimension through a 1 × 1 convolutional layer.
To invalidate SCM, we replace the score normalization to
a naive maximum normalization (dividing the maximum
value). The results are shown in Tab. 5a. Both SCM and
FEM are necessary for our SAFECount. Specifically, when
we replace FEM, the performance drops remarkably by
9.05 MAE in test set. This reflects that FEM is of vital
significance in our SAFECount, since the core of our insight,
i.e. feature enhancement, is completed in FEM. Besides,
when we remove SCM, the performance also drops by 1.81
MAE in test set. This indicates that SCM derives a similarity
map with a proper value range, promoting the performance.
Score Normalization. We conduct ablation experiments
regarding ENorm and SNorm in Tab. 5b. A naive maximum
normalization (dividing the maximum value) serves as the
baseline when both normalization methods are removed.
Even if without score normalization, we still stably outper-
form all baselines in Tab. 2. Adding either ENorm or SNorm
improves the performance greatly (≥ 4 MAE in test set),
indicating the significance of score normalization. ENorm
together with SNorm brings the best performance, reflecting
that the two normalization methods could cooperate together
for further performance improvement.
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Table 3. Counting performance with cross-validation setting on FSC-147 dataset [21]. Fold-i (i = 0, 1, 2, 3) indicates the test set. ∆
stands for the averaged improvement of the 3-shot case over the 1-shot case.

Metric Method 1-shot 3-shot
∆Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

MAE
GMN [18] 37.44 21.89 31.52 32.73 30.90 36.53 21.43 31.23 31.51 30.18 -0.72
FamNet [21] 27.98 15.75 21.32 22.33 21.85 26.32 15.51 21.28 21.96 21.27 -0.58

SAFECount (ours) 17.64 6.97 12.96 14.55 13.03 13.21 6.58 12.43 14.16 11.60 -1.43

RMSE
GMN [18] 111.68 45.75 127.94 75.45 90.21 109.31 44.44 128.77 73.76 89.07 -1.14
FamNet [21] 86.04 34.61 101.68 53.47 68.95 76.03 33.41 107.45 50.25 66.79 -2.16

SAFECount (ours) 53.99 16.13 85.28 39.66 48.77 38.94 14.25 88.72 38.30 45.05 -3.72

GT: 131 Pred: 197 Pred: 131 GT: 103 Pred: 127 Pred: 103

GT: 119 Pred: 80 Pred: 120 GT: 58 Pred: 100 Pred: 58

GT: 191 Pred: 160 Pred: 190 GT: 82 Pred: 51 Pred: 82

GT: 107 Pred: 29 Pred: 109 GT: 323 Pred: 278 Pred: 323

Query & GT FamNet+ Ours Query & GT FamNet+ OursSupport Support

(a) (b)

(c) (d)

(e)

(g) (h)

(f)

Figure 4. Qualitative results on the FSC-147 dataset [21] under the 3-shot case. From left to right: support images, query image overlaid
by the ground-truth density map, predicted density map by FamNet+ [21], and our prediction. The numbers bellow are the counting results.

Table 4. Cross-dataset generalization on the car counting dataset
CARPK [10]. The models are first pre-trained on FSC-147 [21]
(the “car” category is excluded), then fine-tuned on CARPK.

Method MAE RMSE

Pre-trained on
FSC-147 [21]

GMN [18] 32.92 39.88
FamNet [21] 28.84 44.47

SAFECount (ours) 16.66 24.08

Fine-tuned on
CARPK [10]

GMN [18] 7.48 9.90
FamNet [21] 18.19 33.66

SAFECount (ours) 5.33 7.04

Block Number. It is described in Sec. 3.3 that our SAFE-
Count could be formulated to a multi-block architecture.
Here we explore the influence of the block number. As
shown in Tab. 5c, only 1-block SAFECount has achieved
state-of-the-art performance by a large margin, which
illustrates the effectiveness of our designed SAFECount
architecture. Furthermore, the performance gets improved
gradually when the block number increases from 1 to 4, and
decreased slightly when the block number is added to 5. As
proven in [9], too many blocks could hinder the training
process, decreasing the performance. Finally, we set the
block number as 4 for FSC-147.
Regressing from Similarity Map v.s. Enhanced Feature.

The density map can be regressed from either the enhanced
feature or the similarity map. We compare these two choices
in Tab. 5d. Raw Similarity is similar to FamNet [21] (without
test-time adaptation), predicting the density map directly
from the raw similarity. The rest 3 methods follow our
design, where i-block Similarity and i-block Feature mean
that the density map is regressed from the similarity map and
enhanced feature of the ith block, respectively. Obviously, 1-
block Feature and 4-block Feature significantly outperform
Raw Similarity and 4-block Similarity, respectively. The
reason may be that the enhanced feature contains rich
semantics and can filter out some erroneous high similarity
values, i.e. the high similarity values that do not correspond
to target objects, as proven in [29].
Comparison with Attention. In Tab. 5e, when the similarity
derivation in SCM and the feature aggregation in FEM are
replaced by an vanilla attention [30], the performance drops
dramatically. As stated in Sec. 3.2, our method could better
utilize the spatial structure of features than vanilla attention,
which helps find more accurate boundaries between objects
and brings substantial improvement.
Kernel Flipping in FEM. The kernel flipping in FEM could
help the similarity-weighted feature, fR, inherit the spatial
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Table 5. Ablation studies on (a) the effect of the similarity comparison module (SCM) and feature enhancement module (FEM), (b) the
score normalization in SCM, (c) the stacked number of our SAFECount block, and (d) the place to regress density map, (e) comparison with
attention, (f) kernel flipping, (g) training or freezing backbone.

(a) SCM & FEM

SCM FEM Val Set Test Set

MAE RMSE MAE RMSE

✗ ✗ 21.35 62.13 22.10 99.89
✓ ✗ 21.45 59.15 23.37 98.01
✗ ✓ 17.55 58.66 16.13 96.90
✓ ✓ 15.28 47.20 14.32 85.54

(b) Score Normalization

ENorm SNorm Val Set Test Set

MAE RMSE MAE RMSE

✗ ✗ 17.55 58.66 16.13 96.90
✓ ✗ 16.55 51.87 15.14 85.65
✗ ✓ 16.58 51.26 16.40 93.97
✓ ✓ 15.28 47.20 14.32 85.54

(c) Number of Block

# Block Val Set Test Set

MAE RMSE MAE RMSE

1 16.23 55.34 16.46 92.62
2 16.04 54.53 15.36 87.35
3 15.78 53.39 14.74 88.22
4 15.28 47.20 14.32 85.54
5 15.67 50.73 15.54 96.10

(d) Similarity Map v.s. Enhanced Feature

Val Set Test Set

MAE RMSE MAE RMSE

Raw Simi. 24.36 74.61 23.65 108.77
1-block Feat. 16.23 55.34 16.46 92.62
4-block Simi. 19.74 64.30 18.70 99.34
4-block Feat. 15.28 47.20 14.32 85.54

(e) Vanilla Attention [30] v.s. SAFECount

Val Set Test Set

MAE RMSE MAE RMSE

Vanilla Attention [30] 20.45 55.22 20.21 93.47
SAFECount 15.28 47.20 14.32 85.54

(f) Kernel Flipping in FEM

Kernel Flipping Val Set Test Set

MAE RMSE MAE RMSE

✗ 16.78 57.47 15.35 93.59
✓ 15.28 47.20 14.32 85.54

(g) Training v.s. Freezing Backbone

Freezing Backbone Val Set Test Set

MAE RMSE MAE RMSE

✗ 25.24 65.23 26.00 103.83
✓ 15.28 47.20 14.32 85.54

Query FamNet+ OursSupport Query FamNet+ OursSupport

Figure 5. Visualization of the similarity maps developed by FamNet+ [21] and our SAFECount. Benefiting from the proposed SAFECount
block, our approach recognizes much clearer boundaries between densely packed objects.

structure from the support feature, fS (see Supplementary
Material for details). The effectiveness of adding the flipping
is proven by Tab. 5f. Adding the flipping could improve the
performance stably (≥ 1 MAE), reflecting that preserving the
spatial structure of fR benefits the counting performance.
Training v.s. Freezing Backbone. The comparison results
are provided in Tab. 5g. The frozen backbone significantly
surpasses the trainable backbone. Considering that the
testing classes are different from training classes in FSC-
147 [21], training backbone will lead the backbone to extract
more relevant features to training classes, which decreases
the performance in the validation and test sets.

4.5. Visualization

We visualize and compare the intermediate similarity map
in FamNet [21] and SAFECount in Fig. 5, which intuitively
explains why SAFECount surpasses FamNet substantially.
Here the similarity map in SAFECount means the one in
the last block. In FamNet, the similarity map is derived by
direct comparison between the raw features of the query
image and support images. However, the similarity map is
far less informative than features, making it hard to identify
clear boundaries within densely packed objects. In contrast,
we weigh the support feature based on the similarity values,
then integrate the similarity-weighted feature into the query
feature. This design encodes the support-query relationship

into features, while keeping the rich semantics extracted
from the image. Also, our similarity comparison module is
learnable. Benefiting from these, our SAFECount gets clear
boundaries between densely packed objects in the similarity
map, which is beneficial to regress an accurate count.

5. Conclusion
In this work, to tackle the challenging few-shot object

counting task, we propose the similarity-aware feature
enhancement block, composed of a similarity comparison
module (SCM) and a feature enhancement module (FEM).
Our SCM compares the support feature and the query feature
to derive a score map. Then the score map is normalized
across both the exemplar and spatial dimensions, producing
a reliable similarity map. The FEM views these similarity
values as weighting coefficients to integrate the support
features into the query feature. By doing so, the model will
pay more attention to the regions similar to support images,
bringing distinguishable borders within densely packed
objects. Extensive experiments on various benchmarks and
training settings demonstrate that we achieve state-of-the-art
performance by a considerably large margin.
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tional Key Research and Development Program of China
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