
No Shifted Augmentations (NSA): compact distributions for robust
self-supervised Anomaly Detection

Mohamed Yousef1, Marcel Ackermann1, Unmesh Kurup1*; Tom Bishop2*

1Intuition Machines, Inc.
2Glass Imaging, Inc. ‡

{myb,marcel,unmk}@imachines.com, tom@glass-imaging.com

Abstract

Unsupervised Anomaly detection (AD) requires build-
ing a notion of normalcy, distinguishing in-distribution (ID)
and out-of-distribution (OOD) data, using only available
ID samples. Recently, large gains were made on this task
for the domain of natural images using self-supervised
contrastive feature learning as a first step followed by
kNN or traditional one-class classifiers for feature scoring.
Learned representations that are non-uniformly distributed
on the unit hypersphere have been shown to be beneficial for
this task. We go a step further and investigate how the ge-
ometrical compactness of the ID feature distribution makes
isolating and detecting outliers easier, especially in the re-
alistic situation when ID training data is polluted (i.e. ID
data contains some OOD data that is used for learning the
feature extractor parameters). We propose novel architec-
tural modifications to the self-supervised feature learning
step, that enable such compact distributions for ID data to
be learned. We show that the proposed modifications can
be effectively applied to most existing self-supervised ob-
jectives, with large gains in performance. Furthermore, this
improved OOD performance is obtained without resorting
to tricks such as using strongly augmented ID images (e.g.
by 90 degree rotations) as proxies for the unseen OOD data,
as these impose overly prescriptive assumptions about ID
data and its invariances. We perform extensive studies on
benchmark datasets for one-class OOD detection and show
state-of-the-art performance in the presence of pollution in
the ID data, and comparable performance otherwise. We
also propose and extensively evaluate a novel feature scor-
ing technique based on the angular Mahalanobis distance,
and propose a simple and novel technique for feature en-
sembling during evaluation that enables a big boost in per-
formance at nearly zero run-time cost compared to the stan-
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dard use of model ensembling or test time augmentations.
Source code is available Here

1. Introduction
Anomaly detection (AD) or out-of-distribution (OOD)

detection requires using only available in-distribution (ID)
samples for training a classifier to decide upon the rela-
tive normalcy of samples at test time, without knowledge
of the nature of the OOD data. OOD detection is an impor-
tant problem with practical applications in, for example, in-
dustrial defect detection, fraud detection, autonomous driv-
ing, biometrics, spoofing detection and many other domains
[38].

1.1. Background

For natural images (which according to the manifold hy-
pothesis lie in a compact set in a suitable space), OOD de-
tection translates to finding as tight a decision boundary
as possible around the normal set, while excluding unseen
samples from other classes or distributions. This detection
was traditionally done with either generative [49] or dis-
criminative models [34] on top of shallow features. Deep
representations subsequently provided a large boost in per-
formance. However, the density of deep generative image
models have often proved to be ineffective [17], with poorly
calibrated likelihoods away from observed data. There have
instead been two recent directions to learn suitable deep fea-
tures used for OOD evaluation: a) supervised pre-training
on an external dataset. b) Self-supervised learning (SSL)
pre-training on either the normal set only or also on an ex-
ternal dataset. A variety of learned metrics, scoring func-
tions, or one-class classifiers have then been employed on
top of these learned features and this general paradigm has
shown to be highly effective in many cases [36].

The best recent results with SSL-based training for OOD
has been with contrastive learning [38, 36, 35, 43]. Con-
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trastive learning has been shown to distribute ID data uni-
formly on the hypersphere [42]. While this helps gen-
eral multi-class SSL training, it hurts OOD detection, as
it makes isolating outliers from the single class harder [36].
This uniformity also makes OOD detection much more sen-
sitive to pollution in the inlier training data [13, 36]. See
Appendix H (supplementary material) for more background
on related methods.

If some labeled OOD data are available as negatives,
semi-supervised learning maybe be used [31, 13]. If no such
labeled negatives are available, one way to soften the effect
of a contrastively learned uniform representation is to in-
troduce artificial negative samples as proxies for these out-
liers. Using hard augmentations (e.g. 90 degree rotations)
has been termed Distributional Shifting [38, 36, 24, 39].
Such augmentations are intended to make the in-distribution
data less uniform, and thus easier to isolate from OOD data.
However, they also make the significant assumption that the
data is not (fully or partially) invariant to those augmenta-
tion(s), and that the augmentations are a good proxy for the
true negative distribution.

The other direction is using features from a model pre-
trained on a large external dataset, with the hope of produc-
ing universal features that can work in any OOD detection
scenario. This can be done in either supervised [29] or self-
supervised manner [46]. However, the assumption that such
representative labeled samples will be available in the latter
case, or that learned image features from general datasets
such as ImageNet will transfer well may be restrictive at
best.

1.2. Contribution

In this work, we first investigate the training dynamics of
contrastive SSL methods, and show that their performance
decays significantly over long term training. We find that
uniformity or non-compactness of the learned ID represen-
tation is the main reason for this decay. We study this effect
on positive-pairs-only SSL using SimSiam [6], and show
that in such cases, the decay does not happen.

We propose an architectural modification that can be ap-
plied generally across such networks, and show extensive
analysis that this modification improves performance and
always encourages learning a more compact ID representa-
tions. In doing so we are able to learn high quality One-
class classifiers without resorting to distributionally shifted
augmented samples as negatives, hence we term the re-
sulting methodology No Shifted Augmentations (NSA). We
summarize our contributions as follows:

• We investigate and empirically verify and quantify that
the the non-uniformity and compactness of learned ID
is a main factor of the final OOD detection perfor-
mance, independent from the quality of the learned
features.

• We propose an assumption-free, simple and novel ar-
chitectural modification for inducing a non-uniform
learned ID representation, and show that this works
very well with both SimSiam and SimCLR and pro-
duces solid performance improvements.

• We identify, investigate, and solve a gradient problem
in SimSiam (and also BYOL) that greatly affects the
proper propagation of the norms inside the network;
we solve it and notice much higher stability, especially
in the low batch size training regime.

• We consider improved feature scoring methods for
OOD detection, including in our proposed solution a
Mahalanobis Cosine score on nearest neighbors, re-
lated to methods in open-set metric learning. We then
present a computationally efficient method of feature
ensembling that also boosts performance.

• We show unexpected case(s) (e.g. SVHN) where the
usual ImageNet-Pretrained ResNet methods fail catas-
trophically on One-Class Classification Anomaly De-
tection tasks, even with feature adaptation. We show
that training from scratch without using shifted aug-
mentations avoids this.

• We extensively evaluate and ablate the proposed mod-
els with a wide variety of different datasets and sce-
narios, separating the contributions of representation
learning, scoring, data augmentation, and additional
variations like ensembling. We show our solutions
have comparable performance against more complex
methods. More importantly they show state-of-the-art
performance, by a wide margin, achieving robustness
for small batch sizes and in the presence of polluted
data.

2. Is representation quality the only important
factor for OOD detection ?

Recent work on OOD detection using pretrained net-
works has suggested that OOD detection performance is de-
pendent on stronger representations for ID data [8, 41, 18].
We here conduct an experiment to examine the interaction
between quality of representation on ID data and OOD per-
formance.

2.1. Experiment

We train SimCLR on one class of CIFAR10 and evaluate
both the quality of learned representation and OOD detec-
tion against all other classes throughout training; this is the
standard one-class protocol used in e.g. [35, 38, 29]. How-
ever, in order to examine all modes of the model during
training, we train for much longer than usual. We repeat
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Figure 1: An illustration of modified SimSiam with the yellow boxes showing our proposed changes described in Sec. 3.2,
3.3. In the original version the gradients of ẑi = zi/||zi||2 are prevented from flowing backwards in all possible paths by
the stop-grad operation. In our modified version, thanks to the added operations, we can mimic the flow of the gradients of
ẑi = zi/||zi||2 that were blocked.

this experiment for 4 different classes and report the aver-
age. Figure 2a (blue curve, baseline) shows OOD detection
performance, and it is evident that performance reaches a
peak very fast (within few hundred epochs) then deterio-
rates significantly as training progresses. Appendix A (sup-
plementary material) shows the exact same phenomena us-
ing two other OOD evaluation metrics, with detailed graphs
for each class.

If the representation quality hypothesis was correct, then
we should see a proportional drop in feature quality. In fig-
ure 2c we use linear evaluation [50] to evaluate the quality
of learned representation. We can see that the quality of the
representation is maintained throughout training, i.e. there
is only the expected small decrease after the peak and then
just small fluctuations. Weighted k-NN [44] results support-
ing the same fact are in Appendix A. Putting all these data
together, both OOD performance and feature quality reach
a peak together in a few hundred epochs, then for the rest
of training, feature quality is maintained, but OOD perfor-
mance deteriorates significantly. This is validated using 5
different metrics in 4 different classes, all show the same
trend.

2.2. Analysis using von Mises-Fisher distribution

To study what is happening, we use the von Mises-Fisher
(vMF) distribution which is a fundamental probability dis-
tribution on the (n− 1)-dimensional hyper-sphere Sd−1 ⊂
Rd. Its probability density function is fn(z, µ, κ) =

Cn(κ)e
κµT z , where µ is the mean direction, and κ is the

concentration parameter. The vMF shape depends on κ:
for high values, the distribution has a mode at the mean
direction µ; for κ = 0 it is uniform on the hyper-sphere
Sd−1. vMF has been successfully used in both analyzing
[42, 21, 23] and learning [14, 7, 20] deep neural networks.

We fit a vMF [1, 37] to the learned normalized embed-
dings of SimCLR, and study how κ changes during train-

ing. Figure 2b shows how SimCLR starts with a relatively
large κ (high concentration) then reduces monotonically
(low concentration, more uniform) as training progresses –
this is true for both ID and OOD.

In Appendix A, Figure 2b we notice the same be-
haviour using another tool: the Maximum Mean Discrep-
ancy (MMD) [11] between the learned representation and
samples from a uniform distribution on a unit hypersphere,
as suggested in [36]. MMD measures the distance be-
tween two probability distributions, so a high MMD means
a less uniform and more concentrated distribution, and a low
MMD the opposite. We note that this perfectly aligns with
findings in [42], that SimCLR (and generally contrastive)
features converge to a uniform distribution.

This gives an explanation of the decaying performance
seen in Figure 2a (blue curve). While the quality of the
features is maintained, their distribution changes dramati-
cally. As the ID features’ distribution gets more uniform,
the probability p to find an inlier sample x ∈ ID arbitrar-
ily close to an outlier query sample x′ ∈ OOD increases,
i.e. ID and OOD get more and more indistinguishable. This
is exactly the intuition behind many methods for AD, for
example [31, 10, 32]

Given this analysis, we take the natural step and per-
form the same analysis on SimSiam, a non-contrastive SSL
method. Results are shown in Figure 2c, 2d, where we can
see a big difference compared to SimCLR. OOD perfor-
mance stays nearly constant after reaching the peak. In Fig-
ure 2e, 2f although the representation is also becoming more
uniform, it is changing at a much slower rate, and is able to
maintain high density (high κ and MMD values) even after
thousands of epochs of training.

Figures also show that the number of training epochs is
an important hyperparameter for contrastive methods used
for OOD. However, non-contrastive methods are much less
sensitive to the number of epochs. Other works that noticed
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importance of early stopping in this context include [29, 13,
30]

3. Methodology
3.1. Self-supervised Learning (SSL) setup

A general SSL setup resembling SimSiam [6] is depicted
in Figure 1. SimCLR is a very similar architecture that
omits a prediction network, so we use SimSiam for this
illustration. The figure shows both the forward pass and
backward pass of two random augmentations x1 and x2

of an input image x. Both are encoded by the shared en-
coder (the convolutional backbone network) f into y1 and
y2. Both augmentations are projected into z1 and z2 by a
projection network g. A prediction network h transforms
zi into pi = h(zi) and the whole network learns to match
the output of the prediction network fed with the projection
of one view pi = h(zi) to the projection of the other view
zj = g(yj) and vice versa, by minimizing their negative
cosine similarity:

D(pi, zj) = − pi
∥pi∥2

· zj
∥zj∥2

. (1)

Most current SSL algorithms use a projection head g on
top of a convolutional feature extractor, as this was empiri-
cally found to help learn a much better final representation
[4, 5, 12, 6]. However, it was also found that the learned
projection is much worse in downstream tasks [4] includ-
ing for OOD [36]. Therefore, the output of the encoder
backbone f used during feature evaluation in most OOD
methods is based on SSL, as it learns a much better repre-
sentation. We call the outputs of f the learned embedding.

3.2. Learning a dense representation

[33] show that the sample complexity of robust learning
can be significantly larger than that of standard learning.
While some works tried to address this difference with extra
positive or negative data, [27] propose the interesting idea
of manipulating the local sample distribution of the train-
ing data via appropriate training objectives such that by in-
ducing high-density feature regions, there would be locally
sufficient samples to train robust classifiers and return reli-
able predictions. We propose pursuing the same direction
with the OOD detection problem, and propose an architec-
tural modification that can help induce high density feature
space.

We propose adding a differentiable l2-normalization op-
eration after the encoder f and before the projection head
g. As such, the output yi = f(xi) is transformed into
ŷi = yi/||yi||2 (as in Figure 1). The intuition is that adding
the normalization step would deprive the model of any gra-
dients when the norm of the embedding is changed, thus
enforcing the model to learn directional transformations as

those would be the only way to actually decrease the loss
function. Regularizing the model this way should give a
finer directional control on the learned embedding (the co-
sine distance makes more sense), and yield a more efficient
use of volume and thus a denser representation.

We perform a series of experiments to empirically ver-
ify our intuition. Figure 2a (red curve) shows evaluation
logs for SimCLR after adding normalization. It is evident
the training is much more regularized now, the decrease in
OOD performance after the peak is much smaller and per-
formance is maintained for thousands of epochs. Figure
2b (red curve) shows a denser learned representation when
compared to original SimCLR. We can see the same be-
haviour for SimSiam in Figure 2d, 2e.

One thing to note here that greatly strengthens the anal-
ysis made in the previous section, is the linear probe accu-
racy with and w/o norm (Figure 2c), they are essentially the
same, even after 5000 epochs, on the other hand there is big
deference between their OOD performance at that point (see
Figure 2a). Further showing that it is a problem of feature
distribution not feature quality.

Lastly, we would like to emphasize that while having a
dense ID representation can be important for OOD detec-
tion with clean ID data, it is much more important in the
presence of pollution in the ID data. In this polluted setup,
some OOD data are mixed in during training and considered
ID by the loss. In this case, a compact ID data distribution
decreases chance of other OOD data to be considered as ID
as much as possible. This is empirically verified in the ex-
perimental section.

3.3. SimSiam and BYOL gradient flow problem

To avoid the degenerate solution of a collapsed represen-
tation, the authors of SimSiam [6] found it crucial to have a
gradient blocking operation (stop-grad) that blocks gra-
dients starting from ẑi from flowing back to other parts of
the network. This lack of gradients acts as a regularizer
and makes it hard for the optimizer to reach the trivial so-
lution of a collapsed representation. Note that the same
analysis presented here equally applies to BYOL [12]: the
existence of the momentum encoder enforces an implicit
stop-grad.

However both [6, 12] do not study the effect
stop-grad may have on proper gradient flow in the net-
work. Studying Figure 1, we can see that the l2-norm of
the output of the prediction network p̂i = pi/||pi||2 gives
proper gradients that flows back to other parts of the net-
work. The exact opposite happens for the l2-norm of the
encoder network’s output: all gradients of that operation
gets blocked by the stop-grad, though it is an integral
part of the loss function.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Analysis of training and evaluation of SimCLR and SimSiam on CIFAR10 for OOD with and without the proposed
normalization. Every point on these plots represents the average from 4 independent classes. First row, SimCLR evaluated
with (a) c-Cos (b) κ from fitting a vMF (c) linear probe accuracy. Second row, SimSiam evaluated with (d) c-Cos (e) κ from
fitting a vMF (f) Maximum Mean Discrepancy (MMD) with a uniform distribution.

Proposed solution Simply removing the stop-grad
operation converges quickly to a collapsed representation
[6]. Another apparent straightforward solution is to mini-
mize the norm of the output representation of the encoder
f , but this limits the representation ability of the encoder
and also rapidly collapses. One last trial would be removing
normalization altogether in D, however this converges to a
sub-optimal representation with an unbounded norm [12].

Our proposed solution is instead based on a simple ob-
servation. The missing gradient from ẑi carries two pieces
of information: (a) moving the output of the encoder zi to be
closer to the output of the predictor pi (which is the informa-
tion we want to hide from the optimizer). (b) encouraging
the projector g to learn a l2-norm invariant representation;
this facilitates training the predictor network and thus also
the encoder, and is what we want to maintain.

In order to maintain (b) while discarding (a), we pro-

pose a small modification (see Figure 1): we apply a dif-
ferentiable l2-normalization to the projection zi, such that
the new projection is ẑi = zi/||zi||2. This gives the net-
work proper gradients for learning an l2-normalized repre-
sentation satisfying the loss function D while still having
the stop-grad operation and avoiding related collapse.

3.4. Feature evaluation for out-of-distribution de-
tection

Many recent works on OOD detection are based on scor-
ing a given test sample using its distance to the nearest train-
ing sample [38, 35, 22]. This provides a simple evaluation
baseline with strong results. Many metrics have been used
for this, the most commonly used are the Mahalanobis dis-
tance [22, 35] and the Cosine distance [38] evaluated at the
output of the network after the last convolutional block.

To take the advantages of both of these distances, we go
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a step further and score features with the arccosine of the
Mahalanobis Cosine similarity (i.e. angular Mahalanobis
distance) [3], which have been proposed and studied well
previously in the field of face recognition [3, 40]. Maha-
lanobis Cosine is the Cosine similarity between vectors af-
ter projection into the Mahalanobis space, where the famous
Mahalanobis distance is the Euclidean distance computed
between vectors after also projection into the Mahalanobis
space.

If xm, y are a training and test sample respectively, and
the projection of their features f(xm), f(y) into the Ma-
halanobis space is u, v using the sample covariance matrix
Σm and mean µm of the training data {xm}Mm=1, then the
Mahalanobis Cosine distance DMC and our scoring Sk-Cos

are
u =Σ−1/2

m (xm − µm),

DMC(xm, y) =
u

∥u∥2
· v

∥v∥2
,

Sk-Cos(y) =arccos(max
m

DMC(xm, y))

(2)

Sk-Cos considers only the distance to the nearest training
sample and is used for most of our experiments. In Appen-
dices C and G (supplementary material) we study a vari-
ant Sc-Cos, that is especially robust to pollution; it computes
distance to µm, the mean vector of the training data {xm}.
Sc-Cos(y) = arccos(DMC(µm, y)).

Feature ensembling We also propose another evaluation
scheme where all the intermediate feature maps of the net-
work are scored independently, then their scores are all
summed together. The idea is to get both high level (from
final layers) and low level (from initial layers) OOD scores
using different feature maps. Note that this is different from
[22] that learn a weighted sum of all the feature scores,
where the weights are learned on a validation set; our pro-
posed method is a simple sum and doesn’t need a validation
set. It also attains a huge runtime saving when compared
to test-time augmentation (TTA) used in [38] or model en-
sembling used in [36], as it requires a single model forward
pass on a single instance. It consists of three steps:

1. Computing a score for each feature map, using either
Sk-Cos or Sc-Cos or both.

2. Normalizing the range of the scores to be between 0
and 1, using the range of training data scores.

3. Summing the normalized scores.

Due to space limitations we show detailed feature eval-
uation results in Appendix C, along with comparing differ-
ent evaluation metrics. We then show extensive ablations in
Appendix G. In Section 4.2, we firstly consider experimen-
tal results without ensembling, before comparing to meth-
ods that use ensembling in Section 4.2.4. Any result that

includes ensembling strictly has the E suffix, which indi-
cates using the Ens. combination whose components are
precisely described in Appendix C.

4. Empirical evaluation

4.1. Experimental setup

We perform a thorough evaluation of our proposed nor-
malization modifications on SimSiam, BYOL, and SimCLR
(with and without negative / shifted augmentations). The
problem discussed in Section 3.3 doesn’t apply to SimCLR
(there is no stop-grad), so while both modifications are ap-
plied to SimSiam, our normalized variant of SimCLR only
includes the change proposed in Section 3.2 for ŷ.

We evaluate in the one-vs-all OOD detection setting for
CIFAR-10, CIFAR-100 super-classes [19], Fashion-MNIST
[45], and SVHN [26]. In this setting one class is treated as
the normal class and the rest are treated as outliers.

For all results presented we use a ResNet-18, trained
with Adam [16] with a learning rate of 0.0001 and a cosine
learning rate decay [25]. For SimCLR we used 2-layer MLP
as a projection head with an architecure similar to [36]. For
SimSiam we used a 3-layer MLP for both the projector and
the predictor. SimCLR is trained for 500 epochs, and Sim-
Siam and BYOL for 4000 epochs. All models are trained
on Nvidia V100 16GB GPUs and written in Pytorch [28].
All our reported results are without test-time augmentation.

For brevity, we often refer to SimSiam as SS and
SimCLR as SC. Also SS(n), SC(n) and BYOL(n) indi-
cate inclusion of the proposed normalization, and SC(-)
is with negative augmentations. Unless otherwise stated,
our ensemble-free results use k-Cos Scoring. More details
of the datasets, and additional comparisons/descriptions of
competing methods can be found in Appendices B and F
(supplementary material). An extensive ablation study in-
cluding training 640 different models is provided in Ap-
pendix G.

4.2. Results

4.2.1 One-Class Classification

Table 1 compares ensemble-free versions of our baselines
BYOL, SimSiam, and SimCLR with and without normal-
ization against current state of the art (without ensembling)
DROC [36], RotNet [9], and GOAD [2]. Extended compar-
ison of our results (without ensembling) with many other
published methods can be found in Appendix F.

We see that adding normalization is consistently effec-
tive across BYOL, SS, and SC in all scenarios. Also, SS(n)
and BYOL(n) always achieve very competitive results com-
pared to methods that use negative augmentations (SC(-)
and DROC) while making much less assumptions about the
underlying training data.
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Data p BYOL BYOL(n) SS SS(n) SC SC(n) SC(-) SC(n-) RotNet DROC GOAD

C10 0 88.5 90.5 89.5 91.7 86.3 88.9 90.7 92.9 89.3 92.5 88.2
0.1 82.9 85.3 83.2 86.3 65.6 79.8 79.6 83.9 78.5 80.5 83.0

C100 0 79.6 80.2 81.4 84.3 80.5 84.0 84.7 87.0 81.9 86.5 74.5
0.1 76.2 77.8 78.9 80.3 75.9 80.0 80.5 82.8 - - -

fMNIST 0 95.3 95.1 95.9 95.0 94.6 94.9 94.7 95.7 94.6 94.5 94.1
0.1 61.3 73.2 63.0 75.3 46.5 53.1 78.7 80.9 - 76.6 -

Table 1: Results of baselines and proposed variants compared to state of the art, without ensembling. p is the ratio of outlier
pollution data inside the training set. SS is SimSiam, SC is SimCLR.

BYOL(n)E SS(n)E SC(n)E SC(n-)E CSI STOC

# Inference steps / example 1 1 1 1 160 1
# Trained models / class 1 1 1 1 1 60

Requires a good approximation of p ✗ ✗ ✗ ✗ ✗ ✓

Assumes rotation-variant data ✗ ✗ ✗ ✓ ✓ ✓

Data p

CIFAR10 0.0 91.9 92.5 90.3 93.0 94.3 92.1
0.1 88.3 88.5 86.7 87.8 84.5 89.9

fMNIST 0.0 96.2 96.1 96.3 95.9 - 95.5
0.1 87.9 87.8 87.5 90.9 - 85.7

CIFAR100 0.0 83.4 86.6 89.4 89.6 -
0.1 80.7 82.5 83.0 85.7 - -

Table 2: Performance compared to state of the art under different ensembling setups. p is the ratio of outliers inside the
training data.

4.2.2 Performance under pollution

Table 1 also shows a comparison of the performance un-
der the very realistic scenario that some p% of the training
data are polluted with OOD data. It can be seen that adding
the proposed normalization drastically reduces the effect of
polluted data, and achieves state-of-the-art results (without
ensembling).

One important take-away from the table is that, as pre-
dicted by our analysis in Section 3.2, positive only SSL (e.g.
SS or BYOL) is much more suited to real world OOD de-
tection which can possibly contain a small subset of pol-
luted data compared to contrastive SSL (without negative
augmentations) which suffers big performance drops in this
scenario. In the case where negative augmentations are a
suitable assumption, proposed SC(n-) gets even better re-
sults.

4.2.3 Effect of normalization

Table 3 examines the effect of the two proposed normaliza-
tions on SS on different batch size to asses the stability of

CIFAR10 CIFAR100
batch size 32 512 32 512

without norm 77.97 89.56 74.46 81.38
only normalize f 85.76 91.63 78.7 82.27
only normalize g 81.73 89.22 73.1 81.15
normalzie both 92.9 91.7 81.73 84.31

Table 3: An ablation of SimSiam showing the importance
of both the normalization schemes proposed in Section 3.2
and 3.3, especially for in low batch-size training.

training. As we can see for both batch-sizes both proposed
normalizations do help the performance, and their combina-
tions (proposed) is the best. We can also see for low batch
sizes SS without norm suffers a big performance loss, which
the proposed normalization fixes; this is a very important
property as large batch training is not always an option.
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Trained from scratch Pre-trained (1M images) Pre-trained (1B images) Pre-trained and adaptedSupervised Self-supervised

SS(n) SC(n) PT R18 PT R50 PT R152 PT R50 (SC) PT R50 PT R50

94.9 93.8 61 66 64 65 70 68

Table 4: OOD detection performance of various pre-trained backbones on SVHN vs. training from scratch

4.2.4 Effect of feature ensembling

Table 2 shows results of the feature ensembling proposed
in Section 3.4, compared to state-of-the-art techniques that
also utilize ensembling: CSI [38] and STOC [48]. For fair
comparison, we also state the relative computational budget
(training or inference) for each. The proposed feature en-
sembles offer big computational savings compared to CSI
and STOC at roughly the same scores. Lastly, improve-
ments by ensembling are more significant when there are
outliers in the training data.

4.2.5 Pretrained backbones on SVHN

Some recent works [30, 8] claim that ImageNet pre-trained
models can act as a universal OOD detector and can work
well on nearly any in-domain distribution. [15] showed that
for classes not present in the pre-training data, pre-trained
models perform poorly at OOD detection.

We confirm this here, and show that even for very simple
datasets (e.g. SVHN) that require different kinds of dis-
criminative features than those required for natural images,
pre-trained models perform very poorly. Table 4 shows that
regardless of the model size (ResNet 18 to 152) or size of
pre-training dataset (from 1M images to 1B images [47]),
or using fully-supervised or SSL pre-training, or even with
state-of-the-art feature adaptation after pre-training [30], all
catastrophically fail at SVHN compared to training from
scratch, which can get a nearly perfect score.

5. Conclusion
We have considered a general framework to detection of

Anomalies in images: using various SSL methods as deep
feature extractors; followed by metric learning for outlier
scoring. For each stage we have studied what does and
doesn’t work in a variety of scenarios, and proposed reme-
dies and improvements that are also robust in the case of
polluted training data and small batch sizes.

We have investigated and studied compactness of ID rep-
resentation distributions as an important and very sensitive
factor to the final OOD detection performance. Our experi-
ments demonstrated that regardless of the quality of learned
features, the ID representation compactness is critical. As
its distribution gets closer to uniform, the OOD detection
performance deteriorates significantly.

We have motivated, proposed, and studied an
assumption-free, novel architectural modification for
inducing this non-uniformity, and use it to solidly improve
performance across contrastive and non-contrastive SSL-
based OOD detection. We also studied several variants
of feature scoring that work well across these different
methods. More importantly, under the real world setting
of totally unsupervised AD, where the ID training data
can be polluted by some OOD outliers, our proposed
modifications provide state-of-the-art performance among
all competing methods.

Previous state-of-the-art literature for OOD detec-
tion was based on contrastive-based SSL with negative
“distributionally-shifted” augmentations (e.g. 90 degree ro-
tations). A big hurdle with the applicability of these meth-
ods is that the assumptions they make about the training data
can be partially or fully invalid in real-world scenarios. Us-
ing our proposed “No Shifted Augmentations” (NSA) mod-
ifications, both contrastive and non-contrastive methods get
a boost in their baseline performance, making them compa-
rable to negative augmentation based techniques, but much
more applicable to open world scenarios where little is con-
trolled about ID data.

While model ensembling or Test-Time Augmentation is
known in literature to be very effective for OOD, increased
training/inference computational requirements can be often
prohibitive. We went further and studied using light-weight
multi-level feature ensembling for OOD. This enabled us
to show state-of-the-art performance in terms of AUCROC,
with huge savings in computational budget.
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