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Abstract

Most CNN models exhibit two major flaws in hyper-
spectral image (HSI) restoration tasks. First, limited high-
dimensional HSI training examples exacerbate the difficulty
of deep learning methods in learning effective spatial and
spectral representations. Second, the existing CNN-based
methods model local relations and present limitations in
capturing long-range dependencies. In this paper, we cus-
tomize a novel dual-stream Transformer (DSTrans) for HSI
restoration, which mainly consists of the dual-stream at-
tention and the dual-stream feed-forward network. Specif-
ically, we develop the dual-stream attention consisting of
Multi-Dconv-head spectral attention (MDSA) and Multi-
head Spatial self-attention (MSSA). MDSA and MSSA re-
spectively calculate self-attention along the spectral and
spatial dimensions in local windows to capture long-range
spectrum dependencies and model global spatial interac-
tions. Meanwhile, the dual-stream feed-forward network
is developed to extract global signals and local details in
parallel branches. In addition, we exploit a multi-tasking
network to train the auxiliary RGB image (RGBI) task
and HSI task jointly so that both numerous RGBI sam-
ples and limited HSI samples are exploited to learn pa-
rameter distribution for DSTrans. Extensive experimen-
tal results demonstrate that our method achieves state-
of-the-art results on HSI restoration tasks, including HSI
super-resolution and denoising. The source code can be
obtained at: https://github.com/yudadabing/Dual-Stream-
Transformer-for-Hyperspectral-Image-Restoration.

1. Introduction
Hyperspectral image (HSI) collects rich and detailed

spectral information, effectively reflecting the subtle spec-

tral difference of different objects. Relying on this contri-

bution, the hyperspectral image has been widely promoted

in a variety of tasks, e.g., land-cover classification [21], tar-

get detection [70], mineral exploration [44], environmental

monitoring [41] and medical diagnosis [25].

Nevertheless, mainly due to the physical limitations of

spectral sensors, it is inevitable to gather degraded hyper-

spectral images. First, the generated hyperspectral image

has a low spatial resolution, which is a trade-off result be-

tween spatial resolution and spectral resolution. The hy-

perspectral image sensor has to sacrifice spatial resolution

to obtain a high spectral resolution with abundant spectral

information [64], [14]. Second, the hyperspectral imaging

systems scan the object scenes along the spatial or spec-

tral dimension for a long time, inevitably introducing nu-

merous noises [9]. These degradations bring the negative

influence on the subsequent hyperspectral image interpreta-

tion [46]. Hyperspectral image restoration is a postprocess-

ing technique, such as HSI super-resolution (SR) and HSI

denoising, which aims to model the ill-posed problem and

generate a high-quality HSI from its degraded counterpart

without hardware sensors modification.

As a learning-based approach, Transformer has con-

firmed its superior performance on natural language tasks

[12, 45] and computer vision tasks [8, 52, 15]. Trans-

former relies on a self-attention (SA) mechanism to model

the global contextual information and has the potential to

relieve the aforementioned limitations of CNN-based meth-

ods in HSI restoration. Recently, Transformer has been used

for image restoration tasks [32, 68, 56]. However, these

Transformers are just tailored for RGB image, while there

is less attention on hyperspectral images. The main rea-

sons are twofold. Firstly, there is a lack of large-scale HSI

datasets with high-resolution (HR) and high-quality HSI

samples. Generally speaking, Transformer exploits enor-

mous amounts of training data to learn the data distribu-

tion and feature presentation. A limited amount of train-

ing examples exacerbate the undesirable behaviors, such as

memorization and sensitivity to out-of-distribution samples.

Secondly, traditional Transformers have an advantage in

capturing the long-range dependencies in global spatial lo-

cations. In this case, directly applying the Transformer can

capture spatial interactions but not model the inter-spectra

similarity and correlations. However, global spectral infor-

mation and global spatial information are equally important

for HSI restoration.

To cope with the aforementioned challenges, we propose
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Figure 1. Qualitative results for ×4 image SR on real and fake peppers ms from CAVE dataset [65]. From top to down are visual results,

error maps and frequency visualization results.

dual-stream Transformer (DSTrans) for hyperspectral im-

age restoration. Firstly, restricted to the craftsmanship of

hardware, the limited HSI training samples will not be ad-

dressed in the foreseeable future. Inspired by [28], in our

work, we choose a distinct route to increase training data,

which selects the numerous training samples from hetero-

geneous datasets to auxiliarily train the Transformer model.

The HSIs restoration and RGBIs restoration learning net-

works share the same goal of integrating information from

neighboring spatial regions and spectral bands. We formu-

late both tasks into the same Transformer such that abun-

dant training samples can effectively regularize parameters

and achieve excellent performance. Secondly, we propose

dual-stream attention that is capable of modeling global pix-

els connectivity and global spectra correlation. Specifically,

dual-stream attention is consist of multi-Dconv-head spec-

tral attention (MDSA) and multi-head spatial self-attention

(MSSA) lying on shifted windows. The spatially global

context is learned by MSSA. Importantly, MDSA ensures

that the contextualized global relationships between spec-

tra are modeled while computing covariance-based channel

maps.

We visualize the visual results, error maps, and fre-

quency maps of reconstructed HSIs in Fig. 1. It can be seen

that our DSTrans keeps the most significant visual result

and error map and relieves the frequency domain discrep-

ancy between reconstructed result and ground truth. Our

contributions are summarized as follows:

1. We propose a novel DSTrans, which is a tailored

Transformer for HSI restoration. To the best of our

knowledge, it is the first attempt to explore the poten-

tial of Transformer in HSI restoration. Besides HSI

samples, DSTrans exploits the numerous samples from

heterogeneous datasets to learn the parameters distri-

bution of DSTrans.

2. We present a novel attention mechanism, dual-stream

attention, to capture global pixels and inter-spectra

similarity and dependencies of HSIs in two parallel

branches. Besides, we propose the dual-stream feed-

forward network to extract the global signals and local

details simultaneously.

3. Extensive experiments verify that our DSTrans greatly

outperforms SOTA methods in terms of HSI denoise

and HSI SR tasks on multiple HSI datasets.

2. Related Work
Hyperspectral Image Super-Resolution. The hyperspec-

tral image super-resolution methods can be roughly divided

into fusion-based super-resolution [20, 61, 35, 73, 13, 63,

71, 58, 11] and single super-resolution [75, 27, 24, 19, 28,

53]. Fusformer [20] is first time using the transformer to

solve the hyperspectral image fusion-based super-resolution

problem. The drawback of fusion-based super-resolution

is the need for an well-co-registered auxiliary image with

higher resolution. Therefore, single super-resolution is

more popular in real scenes.

Benefit from the superior performance in many computer

vision fields, deep learning method has been introduced

into single HSI super-resolution task. Deep neural network

learns to directly map an input low resolution HSI to a high

resolution HSI, which can reduce the spectral distortion and

ultimately improve the resolution performance [31, 62]. Jia

et al. [23] proposed spectral–spatial network that joint spec-

tral and spatial properties to effectively increase spatial res-
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Figure 2. Network architecture of our DSTrans. DSTrans adopts the structure of the double tasks on heterogeneous datasets. Our DSTrans

mainly consists of residual in residual design incorporating dual-stream Transformer blocks.

olution and keep spectral information. Nevertheless, 2-D

convolution only focuses on the spatial information of HSIs.

Recently, 3D recurrent neural network [51, 16] and mixed

2D/3D convolutional networks [29], [30] are designed to

extract spatial–spectral features simultaneously. However,

these methods focus on exploring local spatial–spectral in-

formation and neglect the global features of HSIs.

Hyperspectral Image Denoising. Hyperspectral image de-

noising task was addressed early as band-wise image de-

noising problem, e.g. BM3D [10], WNNM [17]. Due

to the ignoration of the spectral continuous features, these

methods generate denoised results with distortions and ar-

tifacts in the spectral domain. Recently, neural network-

based methods has introduced to hyperspectral image de-

noising task [66, 39, 69, 42, 48]. Wei et al. [57] pro-

posed an alternating directional 3D quasi-recurrent neural

network to embed the structural spatial-spectral correlation

and global correlation along spectrum. In the work of [47],

the dual-attention denoising network is proposed to con-

sider the global dependence between spatial and spectral

information. Cao et al. [4] considered both the local and

global information for HSI noise removal.

Vision Transformer. Transformer was first proposed by

Vaswani et al. [49] for natural language processing (NLP).

Transformer has achieved significant breakthroughs with

their strong representation capacity. Recent years, Trans-

former has been expanded to numerous computer vision

tasks and has been an effective alternative to CNN in the

vision applications, e.g. image recognition [15], segmenta-

tion [52], object detection [5]. Transformer also has been

developed to address the low-level vision tasks, such as im-

age restoration [56, 33, 22, 8, 38]. Liang et al. [32] pro-

posed the SwinIR model for image restoration based on the

Swin Transformer to apply self-attention within local im-

age regions. Restormer [68] built multi-head attention and

feed-forward network to capture long-range pixel interac-

tions and achieve excellent results.

3. Proposed Method
3.1. Overall Pipeline

Data Alignment. As shown in Fig. 2, our DSTrans

learns two same restoration tasks on heterogeneous datasets

together. Particularly, in this paper, we select the

RGBI dataset as the auxiliary dataset. Given a HSI

dataset ΩHSI =
{
xi
HSI , X

i
HSI

}NHSI

i=1
and RGBI dataset

ΩRGBI =
{
xi
RGBI , X

i
RGBI

}NRGBI

i=1
, where xHSI ∈

R
h×w×D presents the degraded HSI, XHSI ∈ R

H×W×D

presents the high-quality HSI counterpart. Resembleily,

xRGBI ∈ R
h×w×3 is the degraded RGB image and

XRGBI ∈ R
H×W×3 is the high-quality counterpart.

h,w,H and W stand for the width and height of the de-

graded image and desired image, D is the number of bands

of HSI. For HSI SR, we have H = λh, W = λw, and λ
is the scaling factor. For HSI denoise, λ is set to 1. NHSI

and NRGBI are the number of HSI and RGBI samples. We

attempt to exploit the knowledge from RGBI dataset, which

means RGBI dataset provides numerous high-quality sam-

ples. Thus, we have NRGBI = vNHSI , and v ≥ 1 .

Inspired by [24], we divide each HSI input into sam-

ples with overlapping groups of bands. More specifically,

we divide the D bands of HSI into groups of S bands.

For RGBI samples, we increase the channels to S via the

spectral band interpolation strategy [28]. So the generated

RGBI dataset Ω̄RGBI =
{
x̄i
RGBI , X̄

i
RGBI

}NRGBI

i=1
and HSI

dataset Ω̄HSI =
{
x̄i
HSI , X̄

i
HSI

}NHSI

i=1
have similar for-

mat, where x̄RGBI ∈ R
h×w×S , X̄RGBI ∈ R

H×W×S and

x̄HSI ∈ R
h×w×S , X̄HSI ∈ R

H×W×S .

Feature Extraction. Give the degraded HSI input x̄HSI
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and RGBI input x̄RGBI , our DSTrans first applied a con-

volutional layer to extract shallow feature maps FHSI
SF ∈

R
h×w×L and FRGBI

SF ∈ R
h×w×L,

(
FHSI
SF , FRGBI

SF

)
= HSF (x̄HSI , x̄RGBI) (1)

where L is the number of channels of the shallow feature.

HSF (·) is the 3 × 3 convolutional layer that maps the in-

put image to a high-dimensional feature space. Then the

shallow features are transport to the shared encoder ΦEN

to extract deep features FHSI
DF ∈ R

h×w×L and FRGBI
DF ∈

R
h×w×L

(
FHSI
DF , FRGBI

DF

)
= ΦEN

(
FHSI
SF , FRGBI

SF

)
(2)

where ΦEN (·) is consists of residual in residual design in-

corporating dual-stream Transformer blocks.

Image Reconstruction. Then the aggregating deep fea-

ture, shallow feature and degraded image are mapping to de-

sired high-quality output. Naturally, there are two branches

matching the HSI restoration task and the RGBI restoration

task.

We take the HSI SR task as an example to describe the

process. Before passing to the residual enhancing module,

we exploit the concatenation operation Cat(·) to concate-

nate the extracted features of all the groups of x̄HSI based

on their original spectral band position,

IHSI
ER = ΦHSI

REM

(
Cat

(
H↑

(
FHSI
DF + FHSI

SF

)))
, (3)

IRGBI
ER = ΦRGBI

REM

(
H↑

(
FRGBI
DF + FRGBI

SF

))
, (4)

where ΦHSI
REM (·) and ΦRGBI

REM (·) are the residual enhancing

modules for HSI and RGBI tasks and keep the consistent

structure. H↑ (·) denotes an upscale module, in this paper,

we upsample the aggregated features exploiting the opera-

tion of sub-pixel convolution [24]. The residual enhancing

module contains three 3 × 3 convolutional layers and the

residual connection.

Loss Function. We combine the L1 loss and the spatial-

spectral total variation (SSTV) loss [24] to optimize the pa-

rameters of DSTrans. More details are presented in the
supplementary material.

3.2. Dual-Stream Attention

Locally finding similar external patches is exploited in

HSI restoration by CNN-based methods, but they have ig-

nored the long-range feature-wise similarities in HSIs. Re-

cently, Transformer has achieved impressive performance

benefiting from the capability to capture long-range de-

pendencies. Unlike natural images, HSIs have numerous

narrow bands. Capturing long-range spectrum dependen-

cies and modeling global spatial interactions are equally es-

sential. Hence, we propose dual-stream attention, which

consists of Multi-head Spatial Self-Attention (MSSA) and

Multi-Dconv-head Spectral Attention (MDSA), to model

long-range dependencies in spatial and spectral dimensions,

respectively.

As shown in Fig. 3, we follow [36] and apply dual-

stream attention to the shifted window to reduce the

computing burden. Given an input Xin ∈ R
h×w×C .

Dual-Stream Transformer partitions the input into non-

overlapping local windows Xt ∈ R
M×M×C , t ∈ [

1, hw
M2

]
.

Then, it computes the dual-stream attention separately for

each window.

Multi-Dconv-head Spectral Attention. Multi-Dconv-

head spectral attention is intent on applying self-attention

across spectral channels. As shown in Fig. 3(b) , MDSA

computes cross-covariance across channels to generate an

attention map encoding the global spectral signal. Xt is

first projected and reshaped into query Qspe ∈ R
C×M2

,

key Kspe ∈ R
C×M2

and value Vspe ∈ R
C×M2

by apply-

ing 1 × 1 point-wise convolutions WP followed by 3 × 3
depth-wise convolutions WD to encode spectral-wise spa-

tial context,

Qspe = WQ
P WQ

DXt,Kspe = WK
P WK

D Xt,

Vspe = WV
P WV

DXt.
(5)

Next, the spectral attention map is computed by the self-

attention mechanism in a local window. We apply dot-

product interaction on Qspe and Kspe to generate the spec-

tral attention map Aspe ∈ R
C×C ,

Aspe = Softmax

(
Qspe ·Kspe

ε
+B

)
, (6)

Attention (Qspe,Kspe, Vspe) = WP · Vspe ·Aspe, (7)

where ε is a learnable parameter to reweight the dot product

of Qspe and Kspe before applying the softmax function. B
is the learnable relative positional encoding.

Multi-head Spatial Self-Attention. MSSA aims to apply

self-attention across global spatial location and generates an

attention map modeling the long-range dependencies and

spatial interactions. As illustrated in Fig. 3(c), in MSSA

branch, Xt is first linearly projected into query Qspa ∈
R

M2×C , key Kspa ∈ R
M2×C and value Vspa ∈ R

M2×C ,

Qspa = WQXt,Kspa = WKXt, Vspa = WV Xt, (8)

where WQ, WK and WV ∈ R
C×C are learnable projec-

tion matrices that shared across local windows. The atten-
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Figure 3. Illustration of the dual-stream Transformer blocks (DSTB). The core modules of (a) DSTB are Dual-Stream attention (DSA)

and (d) Stream Feed-Forward Network (DSFN). DSA consisting of (b) Multi-Dconv-head Spectral Attention (MDSA) and (c) Multi-head

Spatial Self-Attention (MSSA) tends to capture long-range spectrum dependencies and spatial interactions in parallel branches. DSFN

performs controlled feature flow, i.e., the detailed signal is activated and flows in the desired direction.

tion matrix is thus computed by the self-attention mech-

anism in a local window. We apply dot-product interac-

tion on Qspa and Kspa to generate the spatial attention map

Aspa ∈ R
M2×M2

,

Aspa = Softmax

(
Qspa ·Kspa√

C
+B

)
, (9)

Attention (Qspa,Kspa, Vspa) = Wout ·Vspa ·Aspa, (10)

where Wout ∈ R
C×C is also learnable projection matrices.

Following multi-head SA [49], MDSA and MSSA divide

the number of channels into ‘heads’, then perform the at-

tention function for ‘heads’ times in parallel and concate-

nate the results for Multi-head results.

3.3. Dual-Stream Feed-Forward Network

In the traditional feed-forward network, the two fully

connected layers are applied to expand the input feature

channels and map the output channels back to the original

input dimension. The fully connected layer operates token

information identically point-wise; thus, it neglects the lo-

cal information. In our work, we propose the dual-stream

feed-forward network, which aims at complementing local

information by encoding information from spatially neigh-

boring pixel positions. As shown in Fig. 3(d), we extract

the global signals and local details in two parallel paths.

We exploit the fully connected layer to model the global

feature information in the regular branch. The depth-wise

convolution is added to complement the local details in the

additional branch, followed by the GELU non-linearity to

activate the local signal. Then, the gating mechanism is

formulated as the element-wise product of outputs in two

parallel paths. Given an input feature x̂ ∈ R
h×w×O, DSFN

is formulated as:

x
′
= W 1 (LN (x̂))�HGelu (WPWDLN (x̂)) ,

x
′′
= x̂+W 2x

′
,

(11)

where � denotes element-wise multiplication, HGelu repre-

sents the Gelu non-linearity, W 1 and W 2 denotes the fully

connected layers. Overall, the DSFN controls the informa-

tion flow through the activated local signal in our pipeline,

thereby allowing each level to focus on the fine details.

4. Experiments and Analysis
4.1. Experimental Settings

Datasets. We evaluate our DSTrans on benchmark datasets

and experimental settings for two HSI restoration tasks:

HSI super-resolution and HSI denoising. The datasets

considered are four nature HSI datasets: CAVE dataset

[65], Harvard dataset [6], ICVL dataset [3] and HSIDwRD

dataset [72]. HSI super-resolution experiments are con-

duct on CAVE and Harvard datasets and HSI denoising ex-

periments are perform on ICVL (Gaussian denoising) and

HSIDwRD datasets (Real-world denoising).

For SR task, we crop images to patches as 64×64 pixels

with 32 pixels overlapping and patches as 128 × 128 pix-

els with 64 pixels overlapping for upsampling factors ×4
and ×8. The corresponding LR images are generated by

Bicubic downsampling. For the auxiliary RGBI SR task,

we adopt the DIV2K Dataset [1]. The training samples of

DIV2K are about 30, and 12 times larger than CAVE [65]

and Harvard [6], respectively. Especially, we extract image

patches as 64× 64 pixels with 32 pixels overlapping for de-

noise task. For Gaussian denoising, the RGBI denoise task
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(b) Bicubic (c) EDSR (d) RCAN (e) HAN (f) GDRRN (g) MCNet (h) ERCSR (i) SSPSR (j) HSISR (k) Ours(a) GT

Figure 4. Visual comparison for HSI SR on the representative test image watercolors ms from CAVE dataset with spectral bands 23-15-7

as R-G-B with the scale factor 4.

CAVE [65] Harvard [6]
Scale Method SAM ↓ CC ↑ ERGAS ↓ RMSE ↓ MPSNR ↑ MSSIM ↑ SAM ↓ CC ↑ ERGAS↓ RMSE ↓ MPSNR ↑ MSSIM ↑

Bicubic 4.176 0.9868 5.272 0.0212 34.721 0.9303 2.588 0.9758 3.871 0.0177 37.505 0.9122
EDSR [34] 3.965 0.9926 3.738 0.0155 37.738 0.9519 2.527 0.9825 3.201 0.0146 39.183 0.9306
RCAN [74] 4.010 0.9928 3.666 0.0289 37.952 0.9515 2.810 0.9803 3.467 0.0156 38.560 0.9240
HAN [43] 3.726 0.9761 6.859 0.0147 38.457 0.9541 2.891 0.9790 3.611 0.0161 38.246 0.9215
GDRRN [31] 3.726 0.9927 3.735 0.0155 37.687 0.9525 2.581 0.9807 3.369 0.0152 38.750 0.9267

×4 MCNet [29] 3.412 0.9843 4.222 0.0146 37.870 0.9540 2.558 0.9811 3.356 0.0147 38.924 0.9289
ERCSR [30] 3.273 0.9847 4.153 0.0144 38.009 0.9553 2.530 0.9820 3.304 0.0147 38.992 0.9295
SSPSR [24] 3.360 0.9930 3.543 0.0146 38.302 0.9566 2.474 0.9834 3.063 0.0142 39.484 0.9326
HSISR [28] 3.319 0.9945 3.204 0.0131 39.060 0.9618 2.471 0.9837 3.056 0.0141 39.572 0.9340
Ours 3.169 0.9953 2.861 0.0118 40.073 0.9659 2.459 0.9846 3.007 0.0129 40.096 0.9359
Bicubic 5.896 0.9666 8.435 0.0346 30.206 0.8494 2.981 0.9533 5.606 0.0261 34.357 0.8534
EDSR [34] 7.036 0.9764 6.887 0.0289 31.956 0.8746 3.425 0.9588 5.278 0.0242 34.847 0.8626
RCAN [74] 7.288 0.9761 6.857 0.0289 32.015 0.8711 3.579 0.9585 5.298 0.0240 34.833 0.8620
HAN [43] 6.429 0.9783 6.465 0.0275 32.635 0.8817 3.795 0.9567 5.422 0.0243 34.687 0.8593
GDRRN [31] 5.858 0.9731 7.346 0.0307 31.430 0.8709 3.047 0.9608 5.080 0.0235 35.147 0.8666

×8 MCNet [29] 5.407 0.9695 3.573 0.0278 32.417 0.8873 2.892 0.9640 4.963 0.0232 35.309 0.8766
ERCSR [30] 5.210 0.9630 3.440 0.0267 32.602 0.8901 2.884 0.9683 4.957 0.0232 35.391 0.8801
SSPSR [24] 4.722 0.9800 6.050 0.0257 33.217 0.8936 2.853 0.9753 4.760 0.0233 35.613 0.8867
HSISR [28] 5.108 0.9821 5.971 0.0246 34.096 0.9101 2.829 0.9667 4.625 0.0219 35.856 0.8901
Ours 4.623 0.9831 5.723 0.0239 34.797 0.9167 2.746 0.9787 4.430 0.0202 36.537 0.9003

Table 1. Quantitative evaluation on CAVE and Harvard datasets of state-of-the-art SR methods by SAM, CC, ERGAS, RMSE, MPSNR,

and MSSIM for scaling factors 4 and 8. Best results are highlighted.

GDRRN MCNet ERCSR SSPSR HSISR Ours
[31] [29] [30] [24] [28]

×4 0.4M 17M 12.5M 6M 8.7M 12.2M
×8 0.8M 23.5M 16.5M 7.6M 9.9M 14.4M

Table 2. Comparison of the number of parameters of state-of-the-

art SR methods.

is performed on DIV2K by adding Gaussian noise, the train-

ing samples of DIV2K are about 10 times larger than ICVL

[3]. For real HSI denoising, the auxiliary RGBI denoise

task is performed on RENOIR [2], the training samples of

RENOIR are about 20 times larger than HSIDwRD dataset.

Experimental Parameters. For SR task, the RSTG num-

ber, DSTB number, window size, attention head number are

generally set to 8, 6, 6, and 6, respectively. The RSTG num-

ber is set to 6 for HSI denoising. We use ADAM optimizer

and the initial learning rate is set to 10−4. The batch size is

set to 12 and the epoch is set to 20.

Metrics. We evaluate the performance of all methods

qualitatively by six standard metrics: spectral angle map-

per (SAM)[67], cross correlation (CC)[37], erreur relative

globale adimensionnelle de synthese (ERGAS)[50], root

mean squared error (RMSE), mean peak signal-to-noise ra-

tio (MPSNR), and mean structure similarity (MSSIM)[55].

4.2. HSI Super-Resolution Results

We compare our DSTrans with state-of-the-art meth-

ods: EDSR[34], RCAN[74], HAN[43], GDRNN[31],

MCNet[29], ERCSR[30], SSPSR[24], HSISR[28]. The

quantitative results, including SAM, CC, ERGAS, RMSE,

MPSNR, and MSSIM, are respectively listed in Table 1, in

which the best results are highlighted. Table 1 indicates

that our DSTrans achieves significant performance gains

over existing approaches on CAVE and Harvard datasets in

terms of all evaluation metrics. Compared to the recent best

method HSISR, DSTrans achieves 1.013dB and 0.701dB

improvement on CAVE dataset. In order to intuitively show

the performance of our method, we further exhibit the qual-

itative results of different SR methods. The visual results

and error maps with upsampling factor ×4 are shown in

Fig. 4. Our method has a great performance in constructing

edges and structures than those of the other algorithms.

We also compare the number of parameters between our

DSTrans and state-of-the-art super-resolution algorithms.

Table 2 shows the number of parameters, where the results
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Figure 5. Denoising results and error maps at the 20th band of

image eve 0331-1549 under Gaussian noise.

are evaluated for 4× and 8× upscaling factors. The results

demonstrate that our DSTrans has a better tradeoff between

model size and performance.

4.3. HSI Denoising Results

Gaussian denoising. To demonstrate the equally supe-

rior performance on HSI denoise, we compare our DSTrans

with six state-of-the-art HSI denoising algorithms, includ-

ing three traditional methods, BM4D [40], KBR [59], WL-

RTR [7], and NGmeet [18], and three recently devel-

oped deep learning methods, including HSID-CNN [66],

QRNN3D [57] and DPPR [26].

The HSI denoising results under different noise levels

for ICVL dataset are presented in Table 3. We evaluate the

performance of our DSTrans on simulated Gaussian noise.

Following [26], additive Gaussian white noise is added to

each input HSI with different strengths, including 30, 50,

70, and random strengths ranging from 30 to 70. As one can

see, the proposed DSTrans outperforms most of the com-

peting methods in terms of MPSNR, SAM, and MSSIM at

all noise levels. The visual results and error maps are pre-

sented in Fig. 5, “Noisy” is obtained by adding the additive

Gaussian white noise with noise levels 50. It is evident that

our method is superior to the other methods, which restores

more details and achieves pleasing results.

Real-world denoising. Table 4 shows the quantitative com-

parisons between DSTrans and state-of-the-art HSI denois-

ing algorithms: BM4D [40], ITSReg [60], LRTDTV [54],

QRNN3D [57] and DPPR [26]. As we can see, the pro-

posed DSTrans has MPSNR gains of 1.7dB compared to

the recent best method DPPR. This is benefited from the

proposed Transformer structure and modeling long-range

spectrum and spatial dependencies and the learning knowl-

edge from heterogeneous datasets. It can be seen in Fig. 6

(a) GT (b) Noisy (c) BM4D (d) ITSReg

(e) LRTDTV (f) QRNN3D (g) DPPR (h) Ours

Figure 6. Denoising results of image 46 under real-world noise

with spectral bands 23-15-7 as R-G-B.

that our DSTrans removes heavy noise corruption and gen-

erates clean HSI without compromising fine texture.

4.4. Ablation Studies

To validate the effectiveness of proposed components,

we perform ablation experiments to analyze the contribu-

tion of all components and the parameter choices. For ab-

lation experiments, we train the HSI SR model with scaling

factor ×4 on CAVE dataset.

Discussion on Auxiliary Task. In our DSTrans, we train

the HSI restoration task and RGBI restoration task together.

Both tasks share the same dual-stream Transformer to en-

code features such that there are an enormous amount of

training samples to learn the parameter distribution. To ver-

ify the effectiveness of this strategy, we first remove the

RGBI restoration task. Meanwhile, we further perform the

ablation study on the number of RGBI samples. The quan-

tity of HSI samples is limited, and we gradually increase

the number of RGBI samples. As shown in Table 5, where

v represents the ratio of the number of RGBI samples to

HSI samples. “w/o RGBI” denotes that the RGBI samples

are discarded, thus the quantitative results get worse. With

the introduction of RGBI samples, the auxiliary RGBI SR

strategy leads to a significant performance improvement.

As expected, the quantitative results gradually improved as

the sample number increased, and the performance gain be-

comes saturated gradually.

Discussion on the DSA and DSFN. We conduct an abla-

tion study of different self-attention mechanisms and feed-

forward networks. For self-attention mechanisms, we com-

pare our DSA with vanilla MSA [15]. We further ana-

lyze the performance of two key components, MSSA and

MDSA. Table 6(d) demonstrates that our DSA provides a

favorable gain of 0.62 dB over the baseline. Furthermore, a

single MSSA or MDSA brings expected improvement (see
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Sigma Metric Method
Noise BM4D [40] KBR [59] WLRTR [7] NGmeet [18] HSID-CNN [66] QRNN3D [57] DPPR [26] Ours

30 MPSNR ↑ 18.589 38.451 41.478 42.622 42.988 38.704 42.217 43.056 43.534
MSSIM ↑ 0.1100 0.9341 0.9840 0.9878 0.9889 0.9493 0.9883 0.9900 0.9934
SAM ↓ 0.807 0.126 0.088 0.056 0.050 0.103 0.062 0.052 0.047

50 MPSNR ↑ 14.154 35.641 39.156 39.722 40.260 36.167 40.151 40.911 41.360
MSSIM ↑ 0.0462 0.8890 0.9743 0.9781 0.9784 0.9189 0.9820 0.9843 0.9889
SAM ↓ 0.991 0.169 0.101 0.073 0.059 0.134 0.074 0.059 0.056

70 MPSNR ↑ 11.231 33.677 36.714 37.520 38.656 34.312 38.303 38.817 39.667
MSSIM ↑ 0.0254 0.8450 0.9605 0.9667 0.9743 0.8856 0.9742 0.9763 0.9789
SAM ↓ 1.105 0.207 0.113 0.095 0.067 0.161 0.093 0.087 0.081

[30, 70] MPSNR ↑ 17.338 37.662 40.681 41.664 42.230 37.811 41.369 42.231 42.589
MSSIM ↑ 0.1144 0.9141 0.9790 0.9825 0.9852 0.9350 0.9847 0.9873 0.9914
SAM ↓ 0.859 0.143 0.087 0.064 0.053 0.116 0.068 0.056 0.049

Table 3. Quantitative evaluation results of state-of-the-art denoise methods on ICVL dataset. Best results are highlighted.

Method MPSNR ↑ MSSIM ↑ SAM ↓
Noise 20.907 0.3186 25.299
BM4D [40] 25.318 0.8156 6.302
ITSReg [60] 25.460 0.8400 5.143
LRTDTV [54] 25.564 0.7859 6.488
QRNN3D [57] 23.832 0.791 10.019
DPPR [26] 25.879 0.5244 16.398
Ours 27.642 0.8406 4.629

Table 4. Quantitative evaluation results of state-of-the-art denoise

methods on HSIDwRD. Best results are highlighted.

v SAM ↓ MSSIM ↑ MPSNR ↑
w/o RGBI v = 0 3.471 0.9587 38.921

v = 10 3.332 0.9612 39.587
with RGBI v = 20 3.181 0.9649 39.921

v = 30 3.169 0.9659 40.073

Table 5. Ablation study of the auxiliary task. We add or remove

the RGBI samples to modify the ratio v of the number of RGBI

samples to HSI samples.

Network Component SAM ↓ MSSIM ↑ MPSNR ↑
(a) MSA+FN 3.327 0.9483 39.273

Multi-head (b) MSSA+FN 3.232 0.9620 39.683
attention (c) MDSA+FN 3.235 0.9611 39.632

(d) DSA+FN 3.186 0.9639 39.893

Feed-forward (e) MSA+DSFN 3.252 0.9561 39.497
network (f) DSA+DSFN 3.169 0.9659 40.073

Table 6. Ablation study of different self-attention mechanisms and

feed-forward networks.

Figure 7. Ablation study on different settings of DSTB number

and DSTG number.

Table 6(b) and Table 6(c), and the combination of both is

the optimal choice. Experimental results confirm that the

proposed DSA capture long-range dependencies in spatial

and spectral dimensions. For feed-forward networks, we

compare our proposed DSFN with the standard FN [49].

Table 6(e)shows that introducing local mechanisms to FN

also brings performance advantages. Our DSFN also brings

a MPSNR gain of 0.19 dB over the standard FN (see Table

6(f) for DSA. Overall, our Dual-stream Transformer block

contributions lead to a significant gain of 0.80 dB over the

standard Transformer block.

Discussion on DSTB number and DSTG number. We

show the effects of RSTG number and RSTB number on

model performance in Fig. 7(a) and Fig. 7(b). It can be ob-

served that the MPSNR is positively correlated with RSTB

number and RSTG number. As for RSTB number and

RSTG number, the performance gain becomes saturated

gradually. To balance the performance and model size, the

RSTG number and RSTB number are set to 8 and 6 to ob-

tain a relatively effective and small model.

5. Conclusion

In this work, we have customized a hyperspectral image

restoration Transformer model DSTrans. Motivated by the

HSI characteristics, we introduce key designs to the core

components of the Transformer block for capturing inter-

spectrum and inter-pixel similarity and long-range depen-

dencies. Specifically, our Multi-Dconv-head spectral atten-

tion (MDSA) and Multi-head Spatial self-attention (MSSA)

model local and global context by applying self-attention

across spectral and the spatial dimension on local windows.

The proposed Dual-stream feed-forward network (DSFN)

introduces a gating mechanism to activate the detailed fea-

ture. Moreover, we train our DSTrans with an auxiliary

RGBI restoration task. This strategy exploits the enormous

high-quality RGBI samples and sparse HSI samples to opti-

mize our DSTrans. We establish a series of experiments for

HSI SR and denoise. Quantitative and qualitative compar-

isons demonstrate that our DSTrans surpasses state-of-the-

art methods and obtains more pleasant visual results.
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Dias, Xavier Briottet, Jocelyn Chanussot, Nicolas Dobigeon,

Sophie Fabre, Wenzhi Liao, Giorgio A Licciardi, Miguel

Simoes, et al. Hyperspectral pansharpening: A review. IEEE
Geoscience and remote sensing magazine, 3(3):27–46, 2015.

[38] Zhisheng Lu, Hong Liu, Juncheng Li, and Linlin Zhang. Ef-

ficient transformer for single image super-resolution. arXiv
preprint arXiv:2108.11084, 2021.

[39] Alessandro Maffei, Juan M Haut, Mercedes Eugenia Pao-

letti, Javier Plaza, Lorenzo Bruzzone, and Antonio Plaza.

A single model cnn for hyperspectral image denoising.

IEEE Transactions on Geoscience and Remote Sensing,

58(4):2516–2529, 2019.

[40] Matteo Maggioni, Vladimir Katkovnik, Karen Egiazarian,

and Alessandro Foi. Nonlocal transform-domain filter for

volumetric data denoising and reconstruction. IEEE trans-
actions on image processing, 22(1):119–133, 2012.

[41] Gabriela Takahashi Miyoshi, Nilton Nobuhiro Imai, Anto-

nio Maria Garcia Tommaselli, Eija Honkavaara, Roope Näsi,
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