This WACYV 2023 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

SVD-NAS: Coupling Low-Rank Approximation and Neural Architecture Search

Zhewen Yu, Christos-Savvas Bouganis
Imperial College London
London, UK

{zhewen.yul8, christos-savvas.bouganis}@imperial.ac.uk

Abstract

The task of compressing pre-trained Deep Neural Net-
works has attracted wide interest of the research commu-
nity due to its great benefits in freeing practitioners from
data access requirements. In this domain, low-rank ap-
proximation is a promising method, but existing solutions
considered a restricted number of design choices and failed
to efficiently explore the design space, which lead to se-
vere accuracy degradation and limited compression ratio
achieved. To address the above limitations, this work pro-
poses the SVD-NAS framework that couples the domains
of low-rank approximation and neural architecture search.
SVD-NAS generalises and expands the design choices of
previous works by introducing the Low-Rank architecture
space, LR-space, which is a more fine-grained design space
of low-rank approximation. Afterwards, this work proposes
a gradient-descent-based search for efficiently traversing
the LR-space. This finer and more thorough exploration
of the possible design choices results in improved accuracy
as well as reduction in parameters, FLOPS, and latency
of a CNN model. Results demonstrate that the SVD-NAS
achieves 2.06-12.85pp higher accuracy on ImageNet than
state-of-the-art methods under the data-limited problem set-
ting. SVD-NAS is open-sourced at https://github.
com/Yu-Zhewen/SVD—-NAS.

1. Introduction

Deep Neural Networks (DNNs) have attracted the inter-
est of practitioners and researchers due to their impressive
performance on a number of tasks, pushing the state-of-the-
art beyond of what was thought to be achievable through
classical Machine Learning methods. However, the high
computational and memory storage cost of DNN models
impede their deployment on resource-constrained edge de-
vices. In order to produce lightweight models, the following
techniques are often considered:

» compression of a pre-trained model followed by op-

tional fine-tuning [14, 15].

* compression-aware training, where the computational
costs are integrated into the training objective as a reg-
ulariser [8].

* design and train a lightweight model by construc-
tion using domain knowledge or Automated Machine
Learning (AutoML) [23, 25].

However, in the real-world scenario, the access to the
original training dataset might not be easily granted, es-
pecially when the training dataset is of value or contains
sensitive information. In this situation, compressing a pre-
trained model has attracted wide interest of the research
community, as the task of compression has the minimal re-
quirement of data access.

Among the model compression methods, pruning [12]
and quantisation [1] have been well researched and deliver
good results. However, the low-rank approximation ap-
proaches still remain a challenge on their application due
to the severe accuracy degradation and limited compression
ratio achieved [18]. The value of low-rank approximation
originates from their potential impact on computational sav-
ings as well as their ability to result in structured computa-
tions, key element of today’s computing devices.

This work considers the low-rank approximation prob-
lem of a Convolutional Neural Network (CNN). Let’s con-
sider a CNN that contains L convolutional layers. Let’s de-
note the weight tensor of the i* convolutional layer by W,
where i € [0, L — 1], and having dimensions ( f;, ¢;, ki, k;),
denoting f; filters, ¢; input channels and k; x k; kernel size.
The low-rank approximation problem can be expressed as
finding a set of low-rank tensors W; = {W2, W} ..},
and a function F'(W;) that approximate Wj, in some met-
ric space. Therefore, the low-rank approximation problem
has two parts; to identify the decomposition scheme, i.e. the
function F', and the rank kept to construct the low-rank ten-
sors, i.e. r; = {rY,r} ...}, such that the metrics of interest
are optimised.

The above problem defines a large design space to be
explored but existing approaches restrict themselves to only
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Figure 1: Main contributions of SVD-NAS. Upper: Given a pre-trained model, construct LR-space and utilise NAS to
identify optimal approximations. Left Lower: Extend LR-space with the residual-style building block. Right Lower:
Create a synthetic dataset and fine-tune the low-rank model by knowledge distillation.

consider a small fraction of this space, by forcing the weight
tensors in a network to adopt the same or similar decompo-
sition schemes across all the layers in a network [8, 17].
Moreover, even within their small sub-space, their design
space exploration was slow and sub-optimum, either re-
quires extensive hand-craft effort [34] or is based on heuris-
tics that employ the Mean Squared Error (MSE) of weight
tensors approximations as a proxy of the network’s overall
accuracy degradation [35, 32].

In this work, we offer a new perspective in applying low-
rank approximation, by converting it to a Neural Architec-
ture Search (NAS) problem. The key novel aspects of this
work are:

Firstly, we describe the process of low-rank approxima-
tion as a per-layer substitution of the original pre-trained
network. For every layer, we introduce a Low-Rank archi-
tecture design space, LR-space, which is defined by a set of
parameterisable building blocks. We demonstrate searching
the design parameters of these building blocks is equivalent
to exploring different decomposition schemes and ranks.
Afterwards, we utilise the gradient-descent NAS to navi-
gate the LR-space, and jointly optimise the accuracy and
the computational requirements (e.g. FLOPs) of the com-
pressed model.

Secondly, a residual-style low-rank approximation is
proposed to further refine the accuracy-FLOPs trade-off,
based on a divide-and-conquer approach. We convert every
convolutional layer in the original pre-trained network into
the residual-style computational structure containing mul-
tiple branches, where each branch can have a distinct de-
composition scheme and rank. Such a residual structure ex-
pands the design space, leading to a more fine-grained but
still structured low-rank approximation solution.

Finally, motivated by previous work in model quanti-
sation [5], where the authors generated synthetic dataset
to deal with the data-limited problem setting, we applied

a similar approach for low-rank approximation. The syn-
thetic dataset is fed into both the original pre-trained model
and the compressed low-rank model, enabling the tuning
of the weights of the compressed model through knowledge
distillation, improving further the framework’s performance
without accessing the actual training data.

A comparison of the proposed framework to the state-
of-the-art approach [18] demonstrates that our framework
is able to achieve 2.06-12.85pp higher accuracy on ResNet-
18, MobileNetV2 and EfficientNet-B0O while requiring sim-
ilar or even lower FLOPs under the data-limited problem
setting.

2. Related Work
2.1. Low-rank Approximation

Previous work on low-rank approximation of CNNs can
be classified broadly into two categories depending on the
underlying methodology applied; Singular Value Decom-
position (SVD) and Higher-Order Decomposition (HOD).
In the case of SVD, the authors of [34, 28, 21] approxi-
mated W; with two low-rank tensors where the latter tensor
corresponds to a point-wise convolution. Their approaches
differ in whether the first low-rank tensor corresponds to a
grouped convolution and on the number of groups that it
employs. Instead of having a point-wise convolution, Tai et
al. [24] implemented the low-rank tensors with two spatial-
separable convolutions. Our framework uses the SVD al-
gorithm for decomposing the weight matrix mainly because
of its low complexity compared to HOD methods, such as
Tucker [11] and CP [13], that use the more expensive Alter-
nate Least Squares algorithm.

2.2. Neural Architecture Search

NAS considers the neural network design process
through the automatic search of the optimal combination of
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high-performance building blocks. The search can be per-
formed using a top-down approach [3], where a super net-
work is initially trained and then pruned, or bottom-up [19]
approach, where optimal building blocks are firstly iden-
tified and put together to form the larger network. Popu-
lar searching algorithms include reinforcement learning [9],
evolutionary [3] and gradient descent [29]. In this work,
we adopt a gradient-descent search through a top-down ap-
proach to solve the low-rank approximation problem, and
unlike the common problem setting of NAS which assumes
the availability of large amount of training data, we focus
on the data-limited scenario instead.

3. Design Space

The objective of the proposed approach is to approxi-
mate each convolutional layer in a given CNN through a
low-rank approximation such as the computation cost of
the CNN is minimised, while a minimum penalty in the
accuracy of the network is observed. Towards this, a de-
sign space, LR-space, is firstly defined in this section and a
searching methodology to traverse that space will be intro-
duced in section 4.

3.1. Low-rank Architecture Space (LR-space)

In the rest of the paper, the convolutional layers in the
pre-trained model are referred to as original layers. Each
original layer is substituted with a parameterisable build-
ing block, as Fig. 2 Left shows. The building block has the
same input and output feature map dimensions as the origi-
nal layer, but it contains two consecutive convolutional lay-
ers which are referred to as low-rank layers.

The proposed building block is characterised through
three design parameters: the low-rank kernel size k"™,
the low-rank group number gf and the rank 79, where
j € {0, 1}, denoting the first and the second low-rank layer
respectively, and m € {0, 1}, denoting two spatial dimen-
sions. In order to derive the weights of low-rank layers from
the original layer with SVD-based decomposition, which
will be elaborated in section 3.2, additional constraints on
the design parameters are introduced as follows:

I k‘f "™ = k;, which equivalently forces the kernel size

J
of the low-rank layers to be one of {1x 1, k; xk;, k; x1,
1 x k;}, since k; is a prime number for most CNNs.

« min(g}) = 1. This ensures that two low-rank layers
J

cannot be grouped convolutions at the same time.

0

o mjax(gz)( kOm + f’ szlm) < ¢; fikik;, the

total number of welghts 1n51de two low-rank layers
should be less than the original layer.

The proposed LR-space generalises previous works
which only took a subset of the space into account. Specif-
ically, [34, 28, 6] considered the corner case of low-rank
group number that g0 € {1, fi, ¢;}. Although [21, 17] in-
troduced a design parameter to control group number, they
did not explore different possibilities of kernel sizes as well
as not attempt to put the grouped convolution in the second
layer.

3.2. Data-free Weight Derivation

In this section, we demonstrate how to use SVD to derive
the weights of low-rank layers from the original layers in
a data-free manner. Same as before, we denote the weight
tensor of the original layer by W, while the weight tensors
of the corresponding two low-rank layers are denoted by
W2 and W} respectively.

W;, as a 4-d tensor, has the dimensions of ( f;, ¢;, ki, k;).
As (1) shows, if we slice and split W on its first and sec-
ond dimension into g; and ¢? groups respectively, we will
obtain g¥g} tensors in total, where the dimensions of each
tensor are (g17 O,kz,k: ).

fi fz L C;
Wi,q,p = Wl[qu : (q+ ]-)glv pg() . (p+ 1)707 ) :]7

Q i % %

€ [O’gi _1]a S [Oagz’l - 1] (1)

Due to the previous constraint on design parameters,
we can substitute k; with the low-rank kernel size k™.
Therefore, the dimensions of each sliced tensor can also

0,0,1,0 ;0,1;1,1
be expressed as (5}, Ca,kz k" k; k7). If we now

reshape each sliced tensor W; ,q,p from 4-d to 2-d, we
obtain the tensors W, , ,,, each having the dimensions of
5 12.1,07.1,1 ¢, 1.0,070,1
(S{Tkz k; 7@1% ki)
Applying SVD to W , ,, and keeping only the top-r? sin-
gular values, we obtain the following approximation,

Wigp =USV = UyoSiVio = Wiy Wiy, @)

i,q,p" Vi q,p
where W? q,p and Wzlq p» are 2-d low-rank tensors after ab-
sorbing the truncated diagonal matrix .S,.0 into V0 and U, 0.

The obtained 2-d low-rank tensors arelreshapegi back into
the 4-d weight tensors, and they are concatenated together
on their first and second dimension, which reverts the slice
operation in (1). Eventually, two 4-d low-rank weight ten-
sors are generated, denoted by WO and Wl and have the

dimensions of (r ?,ﬁ k)0 km)and(f’u ?7]{110 kit

) re-
spectively.

Recall that the SVD-based low-rank approximation
problem is to identify optimal F'(W;}, W2) that approx-
imates W;, involving choosing both the decomposition
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Figure 2: Left: Each building block contains two convolutional layers which are characterised by the design parameters:
k'™, g7 and r?. Right: The process of deriving the low-rank weight tensors.

scheme and the decomposition rank. Among the design pa-
rameters of LR-space, k7™ and the g/ determine how the
slicing and reshaping are performed, which correspond to
the decomposition scheme F, while 7) represents the de-
composition rank.

3.3. Residual Extension of LR-space

We also propose a residual-style building block as an ex-
tension of the LR-space in order to further refine metrics
trade-off. Continuing the previous analysis on the weight
tensors, the process of low-rank approximation replaces W;
with W}, Wio, and injects the error E; at the same time.

W, = F W}, W?) + E; (3)

So far, E; is completely ignored and pruned. Alterna-
tively, we can choose to keep part of E; by further applying
low-rank approximation to E;. Therefore,

1
Wi =Y F(W* W>® (4)
b=0

which corresponds to a residual-style building block
with 2 branches whose outputs are element-wise summed,
each branch containing two unique low-rank layers. The
superscript b is to distinguish these two branches. The com-
putation in the first branch is to approximate W; while
the second branch is to approximate E;. Although both
branches have been low-rank approximated, their decom-
position schemes and decomposition ranks can differ with
each other, which makes the low-rank approximation more
fine-grained compared with merely having one branch and
increasing its rank.

4. Searching Algorithm

Having defined the design space, the proposed frame-
work considers the following multi-objective optimisation
problem. The formulation aims to minimise the required
number of computations per layer and at the same time to
maximise the achieved accuracy of the network, subject to

the form of decomposition.

min  FLOP(W},), max
KIm g3 0 v jm _j 0
i 9i,0:Tib i 0 9i,6°Tib

i€[0,L—1],7€{0,1},m € {0,1},b € {0,1} (5)

FLOP and ACC represents the total operations and
validation accuracy of the low-rank model respectively.

4.1. Gradient-descent NAS

ACC(W,),

The framework uses a standard gradient-descent NAS
approach [29] to solve the above optimisation problem. As
Fig. 1 shows, each convolutional layer in the pre-trained
model is replaced with a super block during the search. The
per-layer super block is constructed by exhaustively travers-
ing through all the combinations of the design parameters of
the LR-space and instantiating the corresponding building
blocks. Notice that the original layer is also included as a
candidate inside the super block, which provides the option
to not compress this layer at all.

The super block provides a Gumbel-Softmax weighted
sum of the candidate building blocks drawn from LR-space.
Within this weighted sum, the weight of each candidate is
given by 6;, which is known as the sampling parameter in
the previous literature to be distinguished from W;, the ac-
tual weight tensors of convolution. During the search, the
sampling parameter 6; gets updated with gradient descent
by minimising the following multi-objective loss function.

lnas(e) = lce : [lOg(FLOPN)/ZOQ(FLOPNﬂ’H (6)

where [ is the cross-entropy loss, while F'LO Py, and
FLOPy represents the FLOPs of the compressed model
and the original model respectively. (3 is a hyperparame-
ter which implicitly controls the compression ratio. When
calculating the FLOPs of the super block, we also take the
weighted sum of each candidate by the sampling parameter.
At the end of the search, the candidate with the largest value
of the sampling parameter is finally selected to replace the
original layer.

4.2. Reduce Searching Cost

It is well-known that NAS can be very time-consuming
and GPU-demanding given the huge size of the design
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space to be explored. For example, considering the LR-
space of a single convolutional layer where (f;, c;, ki, k;)
is (64,64, 3, 3), there are 74902 candidates to be compared
for approximating that layer. In this section, we introduce
some techniques to help explore the design space more ef-
ficiently, but at the same time, we can still keep the design
choices of our framework more fine-grained than the previ-
ous work.

Before the searching starts, we prune the LR-space to
reduce the number of candidate configurations considered
by the framework. The following strategies are considered:

e prune by FLOPs, we perform a grid search across
the FLOPs.  For example, we are only inter-
ested in those candidates whose FLOPs is close to
{95%, 90%, 85%, ...} of the original layer.

e prune by accuracy, we use a proxy task where only one
layer from the original network is compressed using
the candidate configuration, while all other layers are
left uncompressed, and we evaluate the corresponding
accuracy degradation. The candidate will be pruned
from the design space if this degradation is larger than
a pre-defined threshold 7,05y

During the searching, we explore the space by an itera-
tive searching method, which only searches for the config-
uration of one branch each time rather than simultaneously.
We start with the case that there is only one branch and no
residual structure inside the building block. With the help of
NAS, we find the optimal configuration of design parame-
ters belonging to that branch and fix that configuration. Af-
terwards, we add the residual branch into the building block
and we start the searching again.

Moreover, during every forward pass of searching, we
sample and only compute the weighted sum of two candi-
dates rather than all of them. The probabilities of each can-
didate getting sampled are the softmaxed ;. This technique
was proposed by [4] to reduce GPU memory.

Algorithm 1 Iterative Searching
1: Eiyo =W;
2: forb € {0,1} do
3:  identify optimal Fb(Wil’b, Wio’b) to approximate F; p
4
5

Eipt1 = Eip — F,(WH?, W2?)
: end for

5. Experiments

The proposed SVD-NAS framework is evaluated on
the ImageNet dataset using pre-trained ResNet-18, Mo-
bileNetV2 and EfficientNet-BO coming from torchvision!.

Uhttps://github.com/pytorch/vision

Thanks to techniques discussed in 4.2, we can perform the
searching on a single NVIDIA GeForce RTX 2080 Ti or
a GTX 1080 Ti. Details of hyperparameters set-up can be
found in this paper’s supplementary material.

5.1. Performance Comparison

According to the previous work [1, 20, 16], the data-
limited problem setting can be interpreted as two kinds of
experiment set-up: post-training, where no training data is
allowed for fine-tuning, and few-sample training, only a tiny
subset of training data can be used for fine-tuning.

For both set-ups, the proposed SVD-NAS framework’s
performance was evaluated and compared against existing
works on CNN compression. The metrics of interest in-
clude, the reduction of FLOPs and parameters, in percent-
age (%), as well as the degradation of Top-1 and Top-5 ac-
curacy, in percentage point (pp).

5.1.1 Post-training without tuning

We firstly report the performance of the compressed model
without any fine-tuning. Table 1 presents the obtained re-
sults of the proposed framework for a number of networks
and contrasts them to current state-of-the-art approaches.

ALDS [18] and LR-S2 [8] are two automatic algorithms
based on the MSE heuristic, while F-Group [21] is a hand-
crafted design. The results show that SVD-NAS outper-
forms all existing works when no fine-tuning is applied. In
more details, on ResNet-18 and EfficientNet-B0, our work
produced designs that achieve the highest compression ratio
in terms of FLOPs as well as parameters, while maintain-
ing a higher accuracy than other works. In terms of Mo-
bileNetV2, we achieve the best accuracy-FLOPs trade-off
but not the best parameters reduction, as we do not include
the number of parameters as an objective in (6).

5.1.2 Post-training, but tuning with synthetic data

Even though our framework outperforms the state-of-the-art
approaches, we still observe a significant amount of accu-
racy degradation when no fine-tuning is applied. As training
data are not available in the post-training experiment set-up,
the proposed framework considers the generation of an un-
labelled synthetic dataset and then uses knowledge distilla-
tion to guide the tuning of the parameters of the obtained
model.

Inspired by the previous work on post-training quantisa-
tion [5], the synthetic data are generated by optimising the
following loss function on the randomly initialised image I:
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iy and o is the running mean and running standard de-
viation stored in the batch normalisation layers from the
pre-trained model. u’f and a} represents the corresponding
statistics recorded when the current image is fed into the
original pre-trained network. In addition, u/; and o repre-
sents the mean and standard deviation of the current image
itself, while « is a hyperparameter that balances these two
terms.

Once the synthetic dataset is generated, we treat the orig-
inal pre-trained model as the teacher and the compressed
low-rank model as the student. Since the synthetic dataset is
unlabelled, the knowledge distillation focuses on minimis-
ing the MSE of per-layer outputs. According to the results
in Table 1, the synthetic dataset can improve the top-1 ac-
curacy by 2.44pp-7.50pp on three targeted models, which
enlarges our advantage over the state-of-the-art methods.

lbn(I) =

2y (o — ar)?l (T)

5.1.3 Few-Sample Training

Few-sample training differs from the previous post-training
in that now a small proportion of training data are available
for the fine-tuning purpose. Specifically, for evaluation, we
randomly select 1k images from the ImageNet training set
as a subset and fix it throughout the experiment. During
the fine-tuning, we use the following knowledge distillation
method,

L—-1

lka(Wi) = Y MSE(ji, y:)
=0

+ g TRy lxrndiv + (1 — k) lee  (8)

where M SE(4;, y;) stands for the Mean Square Error on
the outputs of convolutional layers, while [ 1,4, is the KL
divergence on logits which are softened by temperature 7T}4
(set as 6). [ is the cross-entropy loss on the compressed
model. Hyperparameter « is set as 0.95.

As none previous work has reported any result on few-
sample low-rank approximation, we compare our frame-
work with existing works on few-sample pruning instead.
From Table 2, our SVD-NAS framework provides a com-
petitive accuracy-FLOPs trade-off on ResNet-18, especially
when we are interested in those structured compression
methods. We also observe that the compression ratio of
MobileNetV2 achieved by our method is relatively less pro-
found than the pruning methods, as that network contains

Table 1: Post-training results of low-rank approximation. *

no fine-tuning. ** fine-tuning with 25k synthetic images

A FLOPs A Params A Top-1 A Top-5
(%) (%) (pp) (pp)

—13.35* —9.14*
—5.85%* —3.34**

Model Method

SVD-NAS -58.60  -68.05

ResNet-18 ~ ALDS[I8] 4231 6514 <1870 -13.38
LR-S2[8] -5649 -5791 -38.13 -33.93
F-Group21]-4231  -10.66  -69.34  -87.63
SVD-NAS -12.54  -9.00 :é%%%* :2191

MobileNetV2 . :

ALDS [18] 2.62  -37.61 -1695 -1091
LR-S2[8] -381 624  -1746 -10.34
—10.11F —5.497
SVD-NAS 2217 1641 . o ol
ALDS (18] -7.65 _ -1002 -1688 9.6
LR-S2[8] -1873 -1456 -22.08 -14.15

EfficientNet-BO

Table 2: Comparison with few-sample pruning.

A FLOPs A Params A Top-1 A Top-5

Model Method Struct.
ode etho et ) %) (p) (P

SVD-NAS yes -59.17 -66.77 -3.95 -2.36

FSKD [16] yes -59.01 -64.64 -6.01 -
Reborn [26] yes  -33.33 - - -4.24
POT [12] no - -50.00 - -1.48

ResNet-18

SVD-NAS yes -1417 -10.66 -6.63 -3.61

MobileNetV2 MiR [27] yes -13.30  -7.70 -1.80 -
POT [12] no - -40.00 - -2.87

a lot of depth-wise and point-wise convolutions which are
less redundant in terms of the ranks of weight tensors.

5.1.4 Full Training

Although we are mainly interested in the data-limited sce-
narios, it is also interesting to remove the constraint of data
availability and check the results when the full training set is
available. Under this setting, we totally abandon knowledge
distillation and only keep the cross-entropy term in (8) for
fine-tuning. All other experiment settings remain the same
as before.

Table 3 presents the obtained results. In the case of
ResNet-18, SVD-NAS reduces 59.17% of the FLOPs and
66.77% of parameters without any penalty on accuracy. In
the case of MobileNetv2, the proposed framework produces
competitive results as the other state-of-the-art works.

To summarise, we observe that the advantage of our
framework over SOTA is correlated with the problem set-
ting on data availability, as the advantage is more prominent
in post-training and few-sample training, but is less evident
in full training. This finding suggests that when the data
access is limited, the design choices of low-rank approxi-
mation should be more carefully considered, while when a
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Table 3: Fine-tune low-rank network on the full training set.

A FLOPs A Params A Top-1 A Top-5

Model Method @ % ep P
SVD-NAS 59.17 6677  +0.03  +0.10
ALDS[18] 4351 6670 040 -0.05
S-Conv [2] 5123 5218 -0.63 -

ResNet-18 MUSCO[7]  -5867 - 047 -0.30
ADMM-TT [31]-59.51 - . 0.00
CPD-EPC [22] -67.64 -7382 -069 -0.15
TRP [30] 6855 376  -2.33
SVD-NAS 1417  -1066 -1.66  -1.90

. Shared [10]  0.00 743 +039 +0.37

MobileNetV2 ;g (18] 21101 <3297 153 -073

S-Conv [2] 21967 2514 -090 -

lot of training data are available, the performance gap be-
tween different design choices can be compensated through
fine-tuning.

5.2. Ablation Study

In this section, we analyse the individual contribution of
each part of our framework.

5.2.1 Design Space

As motioned earlier, although the low-rank approximation
problem involves choosing both decomposition scheme and
decomposition rank, many existing works [17, 8] focused
on proposing a single decomposition scheme and lowering
the rank of the approximation that would minimise the re-
quired number of FLOPs with minimum impact on accu-
racy.

In our framework, we construct the LR-space which
expands the space of exploring different decomposition
schemes and ranks on a per-layer basis. In Fig. 3 Left,
the accuracy vs. FLOPs trade-off is plotted for the pos-
sible configurations when considering a single layer. As
the figure demonstrates, the optimal decomposition scheme
and rank depend on the FLOPs allocated to each layer, and
the Pareto front is populated with a number of different
schemes. These results confirm that previous work which
overlooked the choice of decomposition scheme would lead
to sub-optimal performance.

5.2.2 Searching

Many previous works [24, 8, 18] exploit the MSE heuris-
tic to automate the design space exploration of low-rank
approximation. Although their methods would result in a
faster exploration, that would penalise the quality on esti-
mating the accuracy degradation. Fig. 3 Right confirms that
MSE of the weight tensor is a poor proxy of the network ac-
curacy degradation. We observed that some configurations
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Figure 3: Explore the LR-space of the second convolutional
layer in ResNet-18. All other layers are not compressed.
Each type of marker corresponds to a specific decomposi-
tion scheme. Left: Accuracy versus FLOPs Right: Accu-
racy versus MSE

of design parameters have similar MSE, but they lead to dis-
tinct accuracy results. Therefore, it demonstrates the neces-
sity of using NAS to explore the diverse LR-space, which
directly optimises accuracy versus FLOPs.

5.2.3 Synthetic Dataset

To investigate the proper quantity of the synthetic images,
Fig. 4 Left demonstrates the top-1 accuracy vs number of
FLOPs for 1k, 5k and 25k synthetic images. To distinguish
the different experiment configurations that we carried on,
they are denoted in the form of Bz-SDy, where x rep-
resents the number of branches in the building block (the
residual-style building block is disabled when z=1), and
y represents the number of synthetic images. The results
demonstrate that the accuracy improvement from Sk to 25k
images is below 0.5pp.

70
65
=
860 —— Bl
B1-SD1k
55 —— B1-5D5k
—— B1-5D25k
15 20 25 3.0

GFLOPs

Figure 4: Left: ResNet-18 results of varying the size of
synthetic dataset. Right Upper and Lower: Synthetic im-
ages of MobileNetV2, taken from our approach and ZeroQ
respectively.

In terms of the quality of the synthetic dataset, although
our method is inspired by ZeroQ [5], we found their algo-
rithm is not directly applicable to our problem. Compared
with ZeroQ, we scale the loss of batch normalisation lay-
ers by the number of channels, as (7). Fig. 4 Right shows
two sample images taken from our method and the origi-
nal ZeroQ implementation respectively on MobileNet-V2.
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Figure 5: Ablation study of top-1 accuracy-FLOPs trade-off for different configurations of the SVD-NAS approach.
Left: ResNet-18. Centre: MobileNetV2. Right: EfficientNet-BO

Without the introduced scaling term, the synthetic image
becomes noisy, which we found, is more likely to cause
overfitting during the fine-tuning.

5.2.4 Residual Block

An investigation was performed in Fig. 5 to assess the im-
pact of multiple branches in the building block of the pro-
posed framework. The system’s performance was assessed
under considering building blocks with one (B1) and two
branches (B2). In the case of ResNet-18 and EfficientNet-
B0, moving from B1 to B2, improvement in accuracy is
obtained, which increases with the compression ratio.

However, we observed that this gap shrinks when the
synthetic dataset is applied, suggesting that the multiple
branch flexibility is a more attractive option when we have
no training data at all and cannot generate synthetic dataset;
in the later case, for example, when the pre-trained model
has no batch normalisation layer at all or the batch normal-
isation layer has already been fused into the convolutional
layer.

5.3. Latency-driven Search

Till now, the framework has focused on reducing the
FLOPs without considering the actual impact on the exe-
cution time reduction on a hardware device. We extended
the framework by integrating the open-source tool nn-Meter
[33] to provide a CNN latency lookup table targeting a
Cortex-A76 CPU. The lookup table is then used to replace
the FLOPs estimate in (6). Having exposing the latency in
the execution of a layer to the framework, we optimised the
targeted networks for execution on a Pixel 4 mobile phone.
We used a single thread and fixed the batch size to 1. Table
4 presents the obtained results measured on device, showing
that FLOPs can be used as a proxy for performance, espe-
cially for ResNet-18 and MobileNetV2. EfficientNet con-
tains SiLU and squeeze-and-excitation operations [25], that
currently are not well optimised on CPU and lead to larger
discrepancy between latency and FLOPs as a measure of
performance.

Table 4: Latency-driven search results on Pixel 4

A Top-1 A FLOPs A Latency Latency
(pp) (%) (%) (ms)

FLOPs -583 -59.17 -44.52 76.70
Latency -5.67 -54.78  -49.46 69.87
FLOPs -9.99 -12.54 -1.03 30.66
Latency -8.22  -9.55 -4.75 29.51
FLOPs -9.45 -22.85 -1.92 67.08

EfficientNet-BO |\ hov 11049 2139 -646  63.97

Model Objective

ResNet-18

MobileNetV2

6. Conclusion

This paper presents SVD-NAS, a framework that signifi-
cantly optimises the trade-off between accuracy and FLOPs
in data-limited scenarios by fusing the domain of low-rank
approximation and NAS. Regarding future work, we will
look into further expanding the LR-space by including non-
SVD based decomposition methods.
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