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Abstract

Recent neural rendering approaches greatly improve im-
age quality, reaching near photorealism. However, the un-
derlying neural networks have high runtime, precluding
telepresence and virtual reality applications that require
high resolution at low latency. The sequential dependency
of layers in deep networks makes their optimization difficult.
We break this dependency by caching information from the
previous frame to speed up the processing of the current
one with an implicit warp. The warping with a shallow net-
work reduces latency and the caching operations can fur-
ther be parallelized to improve the frame rate. In contrast to
existing temporal neural networks, ours is tailored for the
task of rendering novel views of faces by conditioning on
the change of the underlying surface mesh. We test the ap-
proach on view-dependent rendering of 3D portrait avatars,
as needed for telepresence, on established benchmark se-
quences. Warping reduces latency by 70% (from 49.4ms
to 14.9ms on commodity GPUs) and scales frame rates ac-
cordingly over multiple GPUs while reducing image quality
by only 1%, making it suitable as part of end-to-end view-
dependent 3D teleconferencing applications.

1. Introduction
Telepresence via photo-realistic 3D avatars promises to

better connect people. Recent advances in neural rendering
already enable near photo-realistic image quality, but the
underlying deep neural networks limit the best possible la-
tency with their sequential, layer-wise processing. This is a
problem for virtual reality applications as these require low
latency upon head motion of the user to convey an immer-
sive experience. For example, [33] creates a high-fidelity
system using 120Hz projectors and user viewpoint track-
ing with a tracker having 60Hz updates and 3ms latency to
minimize users’ perception of warping of the scene when
they move. However, none of the existing neural renderers
reaches the required motion to photons latency, i.e., the time
it takes from the user input, such as moving the head in VR,
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Figure 1: Neural Rendering with Warping. While a sin-
gle frame method requires a deep neural network to synthe-
size a realistic head image from rough geometry, our im-
plicit warping yields low latency for a new frame at t + 1
with a shallow network.

until the display updates. It is henceforth an open problem
to find improved neural models that strike a better trade-off
between speed and image quality.

We develop a parallel implementation, inspired by previ-
ous approaches for improving the frame rate for other video
processing tasks [3] by spreading the computation over sev-
eral frames over multiple GPUs. By itself, parallel execu-
tion only improves frame rate, not the latency that is so cru-
cial for VR, since the effective network depth of sequen-
tially executed layers remains the same. To nevertheless
reach the desired latency reduction and frame rate, we com-
bine parallel execution with a dedicated warp layer that is
tailored for neural face synthesis and acts as a skip connec-
tion between consecutive frames.

This neural caching approach re-uses information from
the previous time step to improve latency from the current
one with a shallow network for image generation and a deep
network for computing the cache while waiting for the next
input frame. Note that this caching strategy by itself already
improves latency on a single GPU and scales in frame rate
on increasingly parallel hardware by breaking the sequential
layer dependencies and offloading the image cache genera-
tion into multiple threads.

The difficulty lies in finding the right representation for
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the cache to succeed with a low-capacity network. Our ap-
proach is inspired by classical low-latency rendering on VR
displays [27], which compute only the position of objects
for in-between frames and warp color from the previous.
However, explicit warping does not apply well to neural
renderers where the underlying geometry is approximate
and the neural texture is high-dimensional making warping
operations much more costly.

To warp the neural representation, we introduce an im-
plicit warp that provides a skip connection that is tailored
for neural rendering by taking into account the head model
parameterization. The result is a warp network that models
the image-space motion from one frame to the next given
the desired viewpoint and head model parameters. Figure 1
outlines the main components.

Our design is geared towards novel-view-synthesis of a
talking head given a dynamically changing viewpoint, such
as the user’s head motion in VR. We build upon the de-
ferred neural renderer (DNR) [24] that uses a neural texture
learned at training time. Our contributions towards scaling
frame rate and latency on parallel hardware are:

• Demonstrating that the proposed neural caching can
reduce latency by up to 70% with minimal degradation
in image quality (only 1% PSNR).

• Extending a DNR to generate a high-resolution output
with low latency via caching and an implicit warping.

• Developing a parallel scheduler that supports warping
and synchronizes multiple threads using queues.

• Refining the representation of facial expression, head
pose, and camera angle to improve the implicit warp.

• Adding head-stabilization and tweaking the backbone
and training strategy for noisy real-world conditions.

Our experiments highlight the importance of how to cache
as well as what and how information from the current frame
is passed to the shallow implicit warping network. Figure 2
compares the most related methods. Ours strikes the best
latency and FPS improvement with the least image quality
trade-off.

2. Related Work
In this section we discuss recent high-quality image gen-

eration methods and contrast with those that optimize run-
time with a focus on face generation.

Photo-realistic synthesis. High-quality photorealistic
rendering is booming, using either implicit scene represen-
tations such as Neural Radiance Fields (NeRFs) [19] or
deep neural networks trained on GAN objectives [14, 15],
which can also be conditioned on viewpoint and pose
changes [4, 23]. However, these implicit models all rely on
very deep neural networks that do not run at high-enough
frame rates or are limited to static scenes via pre-computed
acceleration structures [31].
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Figure 2: Performance vs. latency (left) and fps (right)
for our models and the baselines on the beard dataset. Op-
timal performance is in the top-left and top-right corners,
indicated by the yellow star in each respective figure. The
vertical blue line marks the latency and fps of [32]. Models
suitable for parallel execution are run using two GPUs.

Talking head models. For dynamic faces, it is most
common to start from a parametric face model that param-
eterizes identity and expression in the form of blend shapes
that are linearly combined with the full mesh [1, 17]. The
coefficients of these models are low-dimensional and there-
fore suitable for driving avatars in telepresence and for reen-
actment by mixing identity and pose information of two
subjects. While earlier models focus on only modeling the
facial region [29, 25, 26, 22, 24] conditioning on a com-
plete head model, such as FLAME [17], enables novel view
synthesis of side views [9] suitable for view-dependent 3D
systems[35]. We follow this line of work and extend it by
reducing the rendering latency for interactive applications.

Another line of work developed subject-agnostic face
synthesis [21, 20, 8, 7] that is conditioned on single or mul-
tiple images instead of a subject-specific 3D model. How-
ever, this comes at the price of reduced details and entan-
glement of expressions and head motion [30], particularly
if the reference and target poses differ largely, and may re-
quire explicit warping operations that are relatively costly
and ill-defined for occluded regions [32]. Although [32]
is already extremely fast on medium image resolution with
4ms runtime, there is still room for improvement when ren-
dering high-resolution images and medium resolution on
embedded devices.

Caching approaches. Re-using information from the
previous time step has been used for many computer vi-
sion tasks, among them: object detection [18], video action
recognition [5], and segmentation [10]. Carreira et al. [3]
gives an excellent overview of different architectures for
video processing, including: i) depth parallel architectures
that execute a deep neural network over several iterations,
leading to a delay equal to the depth of the layers; ii) depth
parallel + skip in which the head (last couple of network
layers) of a depth parallel network is updated with the new
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input via a skip connection; and, iii) multi-rate clock ar-
chitectures in which the input features for the head are not
updated at every time step and the head and backbone op-
erate at different clock rates. Our caching approach follows
the multi-rate clock pattern. However, none of the existing
parallel models has demonstrated image generation. Our
contribution is to tailor this general concept to the problem
of novel-view-synthesis of faces via neural rendering by a
suitable form of warping.

3. Preliminaries
Our goal is an efficient neural renderer that outputs an

image I ∈ RH×W of a face parameterized as a surface mesh
with vertices v ∈ R3×K , triangle indices i ∈ R3×K , and
associated texture coordinates u ∈ R2×K and neural tex-
ture N ∈ RD×H×W [24]. These are the same inputs that a
normal renderer would expect, except that the texture N is
D-dimensional instead of storing three color values.

Deferred neural rendering. Our starting point is the de-
ferred neural renderer introduced by Thies et al. [24], which
approximates the complex and computationally expensive
rendering equation with a convolutional neural network G.
Figure 1 gives an overview including the differences of [24]
applied to our full model including caching. Initially, a ras-
terizer renders UV maps U ∈ R2×H×W of the textured
mesh. These are of the same dimension as the output image
and store for every pixel the corresponding texture coordi-
nate. Sampling these locations from N gives the feature
map F ∈ RD×H×W . For classical deferred rendering, we
would sample from a color texture and combine it with light
position information to form the final image. In the case of
the neural renderer, the texture has more than three channels
forming learnable features. The network G turns F into the
final image, replacing geometric illumination computations
and material shaders in classical rendering. This forward
pass is traced with blue arrows in Figure 1 while the back-
wards information flow during training is marked in green.

Training and face reconstruction. The parameters of
the involved neural network G as well as the neural texture
itself are trained on a large dataset that has examples of the
input 3D mesh and a high resolution image of the face—the
desired output. We use real videos of the person as input
and reconstruct vertices v ∈ R3×K , expression coefficients
e ∈ R50, PCA shape parameters s ∈ R100, and head pose
θ ∈ R6 of the FLAME parametric model [17] alongside
camera position p ∈ R3 using the off-the-shelf estimator
DECA [6]. Internally, it is using the 2D keypoint detector
from [2]. The reconstructed face overlays well with the im-
age when re-projected, but details, such as hair and ears are
often misaligned, which puts a larger burden on the neu-
ral renderer to synthesize these. This reconstruction step is
marked with a red arrow in Figure 1.

The generator G is a U-Net and the neural texture N is

initialized at random and subsequently optimized by back-
propagation to store details of the training object locally.
The loss function is the L1 difference between the rendered
and the reference image in the dataset. This backwards
pass is traced with green arrows in Figure 1. Training is
on cropped images, which speeds up training.

Base architecture. We use the 10-layer U-Net as in [11]
and a multi-scale neural texture with four levels of detail as
in [24]. Furthermore, to better model viewpoint-dependent
effects, the view direction is projected to 9 spherical har-
monics coefficients which are subsequently multiplied to
channels 4 through 12 of the feature map. This enables
explicit encoding of view-dependent effects similar to po-
sitional encoding [28].

Real-time viewpoint-dependent rendering. Our pri-
mary application fields is 3D teleconferencing, where a per-
son must be rendered at a high frame rate, with low la-
tency, from the viewpoint of the user that is roughly frontal.
Given a new view direction, e.g., from an eye-tracker, our
focus is on generating a natural looking image of this novel
view as quickly as possible to mitigate motion sickness, re-
duce warping artifacts [34], and avoid discomfort. The ob-
ject motion capture could be performed offline or through
a slower channel, as usually only the viewpoint-dependent
rendering demands the low-latency. In telepresence appli-
cations, bandwidth is dictated by the size of the FLAME
model; estimated on the source side, transferred, and ren-
dered by our system given a new view from the receiver.

4. Method
In this section, we introduce our neural caching ap-

proach, and propose two variants that operate on single and
multi-GPU systems and are respectively tuned for latency
and frame rate. We cache information from the immedi-
ately preceding frames. Thereby, the motion that must be
bridged from the cached information to the current frame
is small, which allows us to introduce an implicit warp that
attains maximum performance.

Neural Cache. For our neural caching, we first run the
deep and slow image generator G(Nt,Ut,pt) that is condi-
tioned on the neural texture N, UV-map Ut and view direc-
tion (e.g., user’s head motion in VR) of the current frame t.
Figure 3 provides a detailed overview of our pipeline. We
cache features C

(3)
t , C(4)

t , and C
(5)
t from the last 3 lay-

ers of the generator together with camera position pt, and
spherical harmonics (SH) encoding of the pose, hobj

t . Fur-
thermore, we add the UV map Ut, expression et, and the
pose θt that are specific to rendering faces. Formally we
write the combined cache C as

Ct := [C
(3)
t ,C

(4)
t ,C

(5)
t , θt,pt, et,h

obj
t ,Ut]. (1)
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LPF = Low Pass Filter

Figure 3: Our low latency pipeline caches the previ-
ous frame (features from the generator (left) marked orange
and red) and the pose of the person to generate the subse-
quent frames with only two additional up-convolution lay-
ers (right) as soon as a new view direction is available. The
generator and warping networks are learned end-to-end and
can be applied in parallel at inference time.

Implicit Warping. Previous work used an explicit warp
operation from a reference frame, which requires preced-
ing neural network layers to predict the warp and is imple-
mented as a texture sampling step that is relatively slow due
to random access patterns for every pixel. We propose an
implicit warp with a neural network W that is composed
of only two up-convolution layers. These two layers take
in cached information Ct, rendered UV map and the new
camera, pose, and expression from the new frame t + 1, to
reconstruct the image It+1. This network is intentionally
kept shallow to decrease the latency of image generation.

In addition, we found in a detailed ablation study that
giving as input the new camera position pt+1, object pose
θt+1, expression et+1 and their differences to the previous
frame, via a single-layer MLP, M , works best. This yields

θ̄t+1 = M(pt+1,∆pt+1, θt+1,∆θt+1, et+1∆, et+1,h
obj
t+1),

(2)
where the ∆ refers to the change in a quantity between two
frames, here θt+1−θt. Additionally, we also include the UV
map Ut+1. Together with the cached features processing by
the first warping layer W1 gives

F1 = W1(C
(3)
t ,C

(4)
t ∆hobj

t+1, θ̄t+1,∆Ut+1) (3)

where ∆ht+1 and θ̄t+1 are broadcasted to the resolu-
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Figure 4: Our rendering pipelines for sequential (Top)
and parallel execution (Bottom). A network W warps a
cache from the previous frame as soon as a new viewpoint
V is ready for rendering, producing the output image much
quicker than the full generator G could. Leveraging two
threads further increases the output frame rate.

tion of the cache and ∆ht+1 modulates the feature map
by multiplication, similar to how positional encoding
works, but here for rotational changes. These features
are further processed to output the image with It+1 =

W2(F1,C
(5)
t ∆hobj

t+1). Note that W warps the previous
to the current frame, but without a spatial transformation
layer—it does so implicitly via a local approximation of
how the image changes with respect to changes in pose.

4.1. Operation Modes and Parallel Execution

Our approach scales easily between single and parallel
GPU execution. When only a single GPU is available, Fig-
ure 4-top visualizes the principle of reducing latency with
a shallow warp network, compared to running the slower
generator. Here, the cache is updated in sequence with the
warp, thereby reducing latency but not frame rate.

When multiple GPUs are available, we can combine the
proposed implicit warp with parallel execution, thereby ren-
dering at a two or more times higher frame rate by warping
a single or multiple images It, It+1, · · · while the generator
runs on a separate GPU on a separate thread. Figure 4-right
showcases this scheme. Notably, even though the warping
is an approximation, multiple warping does not reduce im-
age quality when operating online on high-frame rate video
streams. The higher processing speed of warping twice in
parallel reduces the distance between frames that can be
processed and thereby makes the two-frame warp as diffi-
cult as a single-frame warp operating at half the frame rate.

We experimented with different job assignment and
synchronization schemes between the two threads. We
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found that threads alternating between image generation
and warping is most efficient and eases implementation. In
this model, the main thread distributes newly arriving view-
point information to the two worker threads via a queue,
each associated to one GPU. These in turn wait for new
data in the queue. Upon receiving new data, they alter-
nate between caching and warping as visualized in Figure 4-
bottom. Thereby, the warping is executed on the same GPU
as the generator, such that the cache can remain on the same
GPU. The alternative of using a dedicated warp and cache
thread has a much lower performance since the cache would
have to be moved from one GPU to CPU and then again
from CPU to the target GPU. The required synchroniza-
tion of ques has a negligible overhead in our implementa-
tion on two RTX 2080s with only 0.25ms/frame. Moreover,
our preliminary attempt of using manual locks instead of
queues was more complex without improving performance.
We will make our implementation publicly available to fa-
cilitate further research.

4.2. Improved Neural Head Rendering

Our starting point, DNR [24], is a general rendering
approach. In the following, we explain our architectural
changes towards tuning it for face synthesis.

Head stabilization To reduce jitter and flicker of the
head, we ensure that the virtual camera that we use to gen-
erate our UV masks is always centered on the subject’s head
and has consistent scale when generating videos by center-
ing the camera on the head midpoint and scaling by the pro-
jected ear-to-ear distance. Because the driving motion cap-
ture signal is often unstable, we further smooth the global
head position pt with a delayed Gaussian filter of size five
and fix the identity s of the FLAME model to be the mean
identity estimated by DECA on the training set. To maintain
facial expressions and lip motion faithfully, the jaw orienta-
tion in θ and expression parameters e are left untouched.

Loss Function For our baselines which only predict the
image at time t we define the loss function as

Ltrain = λtexLtex + λimgLimg + λpLp, (4)

which measures the L1 distance between the first three
channels of the sampled neural texture and the ground truth
image (Ltex), the L1 photometric loss (Limg), and the per-
ceptual loss [12] between the predicted image and ground
truth image (Lp). We weight these loss terms with coeffi-
cients 1, 1, and 0.1. For the warping we add λimg and Lp on
the future frame t+ 1 and down-weight the existing Limg
by 0.1 to put much more weight on the prediction for It+1

that is used at inference time.
Architectural Changes. Based on the work of [13] we

make the following improvements to the base DNR [24]
network to improve output image quality. First, we replace
the transpose convolutions in the latter half of of the U-Net

with a bilinear upsample layer followed by a 2D convolu-
tion (up-convolution). This has been shown to increase the
final image quality of output and reduce grid-like noise in
reconstructed images. Furthermore, we apply a Gaussian
low pass filter (LPF) on the smallest spacial features of the
U-Net architecture. We refer to the baselines that utilize all
these improvements as DNR+.

5. Experiments
We evaluate our Neural Warping technique with respect

to our goal of maximizing image quality and minimizing
the latency by applying our Neural Warping. Figure 2 sum-
marizes our main results on the possible trade-offs between
accuracy vs. latency and accuracy vs. fps, comparing our
two variants to the most related work and showing an im-
provement in fps of up to 300% and a reduction in latency
of 70%. We also provide an ablation study to identify spe-
cific trade-offs with respect to individual components of our
warping network. The supplemental material contains ad-
ditional results.

Baselines. DNR [24] is the backbone we use as our
reference. DNR+ improves DNR with recent neural net-
work architecture improvements from [13]. We further-
more add DNR++ that uses the current and past frame as
input. DNR+ and DNR++ both act as a theoretical upper
bound for our model’s image quality and therefore, pro-
vide a good measure of the effectiveness and efficiency
of our approach. We also compare against the recent
method from Wang et al. [30], using their online interface
(http://imaginaire.cc/vid2vid-cameo/) and in terms of run-
time to Zakharov et al. [32] using the same 512× 512 im-
age resolution. We do not provide PSNR numbers as it was
designed for a much smaller resolution of 256 × 256. In
addition, we create a naive baseline where we shift input
frames by one to emulate the delay that incures when run-
ning a large image generator without warping. It serves as
an expected lower bound on accuracy.

Datasets. We use the talking head sequences from [24]
to compare against prior work as well as a beard and a
high-fps sequence with more difficult facial hair that was
recorded with ethics board approval. Videos for the beard
and high-fps dataset were recorded at 1920x1080 and split
into, respectively, 2604/558/558 and 3600/500/1000 frames
for training/validation/testing. Trump [24] sequences is a
1280x720 of 431 frames. The Obama [24] sequence is a
512x512 of 2412 frames. The male and female [24] se-
quences are both 768x768 with 2380 frames. The high-fps
recording has 60 fps, all others run at 30 fps.

Training Setup. We train all our models for 150 epochs
using Adam [16] with betas equal to {0.9, 0.999}, learning
rate of 1e-4 for both the Generator, G and Warp network
W , and 1e-3 for the neural texture.

Metrics. We evaluate our image reconstruction accuracy
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Figure 5: Frames and their error maps for our model (1x
and 2x warp), DNR+, and naive baseline. Based on the L1
error we can see all models perform similarly, differences
are visible in the error maps for high-frequency details.

using an L1 reconstruction error between the ground truth
and reconstructed image as well as PSNR and SSIM. Fur-
thermore, to show our increase in speed, we report the la-
tency and frames-per-second (fps) of our models and base-
lines. For all methods, we only measure the time it takes to
process the input UV maps and the corresponding skeleton
(pose), expression, and camera (extrinsics) information; ex-
cluding the time it takes to render the UV map because they
are implementation dependent and with negligible overhead
when implemented in a rasterizer. Similarly, we only ac-
count for the time the inference generator takes in [32],
ignoring the processing of the conditional keypoint image.
All latency and fps metrics are computed on NVIDIA RTX
2080 GPUs. For our approaches we report metrics and tim-
ings when we cache every frame (1x warp) and every sec-
ond frame (2x warp) to show our method is robust to vary-
ing deviations between input frames.

5.1. Latency and Runtime Improvement

The generator backbone has a runtime of 47.02ms and
equivalent latency. Our warp net has a runtime of 14.62ms
and therefore deduces latency by a factor of 3.2. Running
on multiple GPUs improves frame rate from 28.5 to 67.6
while inducing only a negligible 0.25 ms increase in latency
due to the required synchronization. Note that parallel ex-
ecution across multiple GPUs can by itself not improve the
latency of a sequential process. When processing even and
odd frames on different GPUs, the time from input view to
rendering output remains the same. The impact of different
model configurations on latency is evaluated in Table 3.

5.2. Offline Reconstruction Quality

To test image generation quality, we use a held-out test
video and drive the trained models using the FLAME head
model reconstructed on the reference video. The results
from Figure 5 and Table 1 evaluate the difference to the
reference video in offline processing mode. When compar-
ing individual frames between the baseline and our model,
Figure 5 shows that single (1x warp) and multi-frame warp-
ing (2x warp) work nearly as well in terms of error. Table 1
reveals, somewhat surprisingly that 1x warp slightly outper-
forms the DNR+ baseline in terms of PSNR despite having
to warp with a shallow network. This is possible since it
has access to the current and past frame that helps to correct
errors in the facial expression estimation. To this end, we
introduced the DNR++ baseline as a new upper bound that
also has access to the two previous frames. In summary, at a
small reduction in accuracy compared to the baseline mod-
els, latency and frame rate are greatly improved by a factor
of two or more.

5.3. Online Reconstruction Quality

Online reconstruction requires the algorithm to run at the
native frame rate of the video. This has a significant in-
fluence on the performance of our algorithm as the warp-
ing operation becomes simpler for high-frame rate videos
where the motion between two frames is reduced, leading
to even higher performance gains than for the previous of-
fline evaluation. We test this effect on the high-fps sequence
shown in Fig. 6. Table 2 reveals that running online on 60
fps videos with Ours (2x warp) improves on Ours (1x warp),
as the latter can only process every other frame requiring
larger warps. Hence, warping multiple times is beneficial,
jointly improving in latency, runtime, and image quality,
when parallel hardware is available. The basic DNR base-
lines do not even run at 30 fps and are hence not comparable
in the high-fps online setting.

Note that absolute PSNR numbers differ across subjects
and scenes since faces are smaller/bigger and also contain

Model #GPU L1 ↓ PSNR ↑ SSIM ↑ Latency [ms] ↓ FPS ↑
timing baseline [32] 1 - - - 16.60 60.2
DNR+ (Naive) 1 0.0278 25.56 0.8970 46.81 21.4
DNR+ 1 0.0240 26.59 0.9165 46.81 21.4
DNR++ 1 0.0237 26.67 0.9168 49.37 20.3
ExWarp as in [32] (1x warp) 2 0.0257 26.33 0.9108 18.84 26.4
ExWarp as in [32] (2x warp) 2 0.0260 26.24 0.9094 18.84 60.8
Ours (1x warp) 1 0.0244 26.66 0.9107 14.62 16.3
Ours (1x warp) 2 0.0244 26.66 0.9107 14.87 28.5
Ours (2x warp) 1 0.0251 26.45 0.9069 14.62 26.3
Ours (2x warp) 2 0.0251 26.45 0.9069 14.87 67.6

Table 1: Offline evaluation on the beard dataset. As ex-
pected, our model does not achieve the best metrics on the
image reconstruction metrics, but they outperform the base-
lines in terms of latency and fps. Timing results for Ours 2x
warp are using parallel execution.
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Figure 6: Online application. When running at their native
frame rate, high-fps models (2x warp) improve as they have
to bridge a smaller gap between frames.

more or less high-frequency details, including the texture
on the shoulder region that is of little concern for the fa-
cial feature reconstruction fidelity. Hence, it does not make
sense to relate absolute but only relative numbers between
the beard and high-fps scores.

5.4. Novel View Synthesis Quality

Reproducing a pre-recorded sequence does not necessar-
ily need low latency since the entire video could be cached.
Yet, latency is crucial for rendering a face from a novel
viewpoint to account for the user’s head motion in VR and
in general for viewpoint-dependent displays. We gener-
ate novel views of characters by rotating their underlying
3D mesh (which is used to generate our input UV maps)
while holding other parameters fixed. Figure 8 shows the
retargeting of poses and views across videos and 7 shows
synthetically generated views and compares it to the re-
sults from [30]. Because we condition on a full 3D face
model, our rotation is more precise and keeps the pose un-
changed compared to the learned 3D features from Wang
et al. that lead to opening of the mouth and up-rotation.
The quality by [30] is expected to be slightly lower as it
is not person-specific, which serves our motivation to train
a person-specific model.

5.5. Retargeting

To show the flexibility of our approach, we retarget facial
and head motions from one person to another on in-the-wild
videos that were established as a benchmark in [24]. In this
setting we train the neural texture and renderer on our tar-
get subject and use these learned models at inference time,

Operation Mode L1 ↓ PSNR ↑ SSIM ↑
Ours (1x warp @ 30fps) 0.0361 23.19 0.8148
Ours (2x warp @ 60fps) 0.0359 23.23 0.8162

Table 2: high-fps comparison for our warping network
using realistic operation settings on the high-fps dataset. 2x
warp not only improves speed but even slightly improves
the rendering quality.
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Figure 7: Comparison against Wang et al. [30]. While
both models show similar levels of detail, ours is anchored
in a 3D representation which gives us more fine-grained and
independent control.

Source Target -20.0 -10.0 0.0 10.0 20.0

Figure 8: Novel views while retargeting. Our model is ca-
pable of generating realistic, view-dependent novels views
(Section 5.4) while mimicking the source’s facial expres-
sions (Section 5.5). These examples are generated using
Ours (1x warp) using the target actors from [24].

driven by the head motion reconstructed from a source se-
quence with a different actor. In Figure 9 we show that
our approach is capable of retargeting with just transferring
expressions (as in [24]) and also when mapping the global
head orientation. The original results, provided from [24]
do not include head stabilization. Nevertheless, this com-
parison shows that our approach (1x warp) is reproducing
or even outperforming their image quality.

Furthermore, as we condition on a full 3D head model,
we are able to generate novel views while performing the
retargeting as shown in Figure 8. Since our approach only
approximates the background for each scene, we use a static
background in our predictions.

5.6. Ablation Study

Network Backbones. To show our method’s general-
ity to other backbones, we compare our UNet to the widely
successful ResNet-backbone using residual blocks. As ex-
pected, warping is effective in reducing latency from 113
ms to 26 ms, but the ResNet does not outperform the UNet
architectures. On the beard sequence, the ResNet backbone
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Concat UV Use Θ Use MLP SH Pose SH Skips ExWarp Exp. L1 ↓ PSNR ↑ SSIM ↑ Latency [ms] ↓ Rel. Latency [ms] ↓
✓ 0.0276 25.6799 0.8987 12.80 -
✓ ✓ 0.0275 25.6994 0.8989 13.24 0.44
✓ ✓ ✓ 0.0271 25.8378 0.9012 13.61 0.81
✓ ✓ ✓ ✓ 0.0260 26.1627 0.9038 13.79 0.99
✓ ✓ ✓ ✓ ✓ 0.0244 26.5705 0.9105 14.40 1.60
✓ ✓ ✓ ✓ ✓ ✓ 0.0257 26.3326 0.9108 18.84 6.03
✓ ✓ ✓ ✓ ✓ ✓ 0.0244 26.6562 0.9107 14.62 1.82

Table 3: Ablation study results for our warping network using the sequential variant (1x warp), showing the relative
improvement resulting from including each component on the beard dataset.
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Figure 9: Retargeting, without and with transfer of the
global head motion, including the comparison to [24].

operating using single warps gives a PSNR of 23.70 (UNet
26.66) and 23.18 PSNR using two warps (UNet 26.45).

Model Components. Adding the parameters and trans-
formations used in Our full model one-by-one increases im-
age quality (L1, PSNR, and SSIM) while only incurring a
slight decrease in latency and fps (see relative latency and
relative fps column, the relative latency compared to our
full model). Table 3 presents the results for the sequential
operation mode on the beard sequence over the following
components:

• Concat UV: using the difference of the current and
cached UV maps in C3.

• Use θ: concatenating the cached pose and camera ex-
trinsics to C3.

• Use MLP: passing θ, e, p through an MLP M before
concatenation with C3.

• SH Pose: includes the spherical harmonics Sobj in θ.
• SH Skips: ’rotationally’ encode C4,C5 using ∆Sobj .
• ExWarp: explicit warping from a reference by sam-

pling the learned neural texture with Ut+1 and con-
catenating it with C3.

• Exp: cache and concatenate the expression e with θ.

The explicit warping (ExWarp, second-last row) adds a
large latency increase while not improving the quality met-
rics consistently. Hence, we favour the implicit warp in our

full model. When applied in parallel on multiple GPUs,
these reduced latencies translate directly to improved frame
rate. The synchronization overhead in the parallel imple-
mentation is only 0.25ms/frame, which we measured by
running the sequential model with the same threading and
queue synchronization as for the parallel mode and taking
their latency difference.

6. Limitations
Because our generator, G, and warping network, W ,

learn how to generate an image without an explicit render-
ing equation, we require a diverse set of training views to
ensure that we can perform novel view synthesis and accu-
rate warping at inference time. We can see in Figure 8 that
the novel views break at extreme angles around the ears of
the target subject as these are not seen during our training
videos. The limiting factor is here the face reconstruction
algorithm that becomes unreliable when large parts of the
face are occluded. Eyes and a wide-open mouths can also
pose a problem since they are represented as holes in the
underlying FLAME model and therefore the direction of
the eye gaze and tongue cannot be modeled. Furthermore,
because the FLAME model only estimates 3D models for
the head, the network struggles in cases where users have
glasses or expressions that it cannot express. Improving im-
age quality in these directions is largely orthogonal to our
contributions towards low latency and high frame rate.

7. Conclusion
We introduced an implicit warping method that reduces

the latency and, if parallel hardware is available, increases
the frame rate of neural face rendering. We believe that such
parallel execution to reduce latency and increase frame rate
will gain importance with VR and AR emerging on the con-
sumer market at scale, as our caching approach is compat-
ible with the deeper neural network architectures required
to meet the ever-increasing demand for output resolution.
Thus, our work makes an important step towards end-to-end
VR and 3D telepresence using view-dependent displays.
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