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Abstract

The majority of the state-of-the-art shadow removal
models (SRMs) reconstruct whole input images, where their
capacity is needlessly spent on reconstructing non-shadow
regions. SRMs that predict residuals remedy this up to a
degree, but fall short of providing an accurate and flexible
solution. In this paper, we rethink residual predictions and
propose Learnable Residual Attention (LRA) and Learnable
Dense Reconstruction Attention (LDRA) modules, which
operate over the input and the output of SRMs. These mod-
ules guide an SRM to concentrate on shadow region recon-
struction, and limit reconstruction of non-shadow regions.
The modules improve shadow removal (up to 20%) and de-
tection accuracy across various backbones, and even im-
prove the accuracy of other removal methods (up to 10%).
In addition, the modules have minimal overhead (+<1MB
memory) and are implemented in a few lines of code. Fur-
thermore, to combat the challenge of training SRMs with
small datasets, we present a synthetic dataset generation
pipeline. Using our pipeline, we create a dataset called
PITSA, which has 10 times more unique shadow-free im-
ages than the largest benchmark dataset. Pre-training mod-
els on the PITSA significantly improves shadow removal
(+2 MAE on shadow regions) and detection accuracy of
multiple methods. Our results show that LRA&LDRA, when
plugged into a lightweight architecture pre-trained on the
PITSA, outperform state-of-the-art shadow removal (+0.7
all-region MAE) and detection (+0.1 BER) methods on the
benchmark ISTD and SRD datasets, despite running faster
(+5%) and consuming less memory (×150).

1. Introduction
Shadows are formed due to the interaction between oc-

cluder objects and light sources. Shadow intensity and lo-
cation provide useful clues, such as lighting [36, 52, 66],
geometry [32, 50, 59] and camera information [31], but can
also harm various vision tasks, either due to poor visibil-

*Equal contribution.

ity or shadow-induced phantom objects [4, 5, 9, 10, 41, 45,
46, 48, 75, 78]. Therefore, shadow detection and removal
remain difficult yet important problems to solve.

Following earlier methods [3, 17, 47, 70, 73], deep
learning approaches emerged for shadow detection [82, 81,
27, 79, 8, 49], removal [39, 11, 54, 16, 7, 76], or both
[24, 12, 65]. We believe that there are two primary issues
in the field; (i) the existing methods fail to focus on shadow
regions, and (ii) the available datasets are quite small. The
former leads to inefficient use of model capacity, whereas
the latter harms generalization ability.

An intuitive fact is that non-shadow regions of shadow
and shadow free images should be the same after removal.
Therefore, reconstructing the whole input image during
shadow removal (top diagram of Fig. 1) wastes model ca-
pacity on reconstructing the non-shadow regions. We also
explore the models predicting residuals [44, 39, 54, 24],
namely the difference between shadow and shadow-free im-
age (middle diagram of Fig. 1). These methods are encour-
aged to concentrate on shadow regions only, but tend to pro-
duce sub-optimal results. In this paper, we rethink residuals
in a stacked CNN paradigm [65] for jointly solving detec-
tion and removal; we propose Learnable Residual Atten-
tion (LRA) and Learnable Dense Reconstruction Attention
(LDRA) modules, which operate over input and output of a
shadow removal model (SRM) (bottom diagram of Fig. 1).
LRA and LDRA i) guide the SRM to concentrate on shadow
region reconstruction and ii) assist the final blending/color-
correction. We leverage SRM’s ability of concentrating on
shadow regions, and use this as an additional supervision for
the shadow detection model, which improves its accuracy.
LRA&LDRA have negligible overhead, improves existing
SRMs and works across various backbones.

We also propose a dataset generation pipeline (see Fig. 3)
to address dataset size limitations. In addition to small real-
life benchmarks [65, 54, 25], larger synthetic alternatives
[29] are present but they have a limited number of unique
shadow-free images, which limits their impact. We address
this with an idea that scales gracefully; we collect images
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Figure 1. Different shadow removal approaches, where input image Ishadow and shadow mask Imask are concatenated, and fed to a
shadow removal model (SRM) R to produce the shadow free output Iout. Top diagram shows the vanilla approach where a given image
is reconstructed (eqn. (2)). Middle diagram shows residual predictions (eqn. (3)), where the SRM is loosely encouraged to predict the
difference between shadow and shadow-free images. Bottom diagram shows our LRA&LDRA modules (eqn. (4)) that guide the SRM to
focus on reconstructing the shadow regions and perform blending/color-correction. For qualitative comparison, please see Fig. 5.

from various sources, extract shadow free patches by au-
tomatically filtering shadow regions and synthesize shad-
ows on these patches. With this pipeline we create PITSA,
formed of 172K triplets created from 20K unique shadow-
free images. Our results show that pre-training models us-
ing PITSA significantly improves shadow removal and de-
tection accuracy of various models. We believe that the
PITSA is the next step for shadow detection/removal due
to its scale and variety. Our contributions are as follows:

• We introduce LRA&LDRA that help guide an SRM
to focus on shadow region reconstruction and perform
blending/color-correction. LRA&LDRA bring up to
20% improvement over no-LRA&LDRA SRM base-
lines (including existing methods) with only <3ms
runtime and <1MB memory overhead.

• We propose a new dataset generation pipeline and in-
troduce PITSA 1, which is the largest shadow detection
and removal dataset in the literature. Pre-training mod-
els using the PITSA introduces significant improve-
ments in shadow removal (+2 MAE points on shadow
regions) and detection (+0.1 BER) on the ISTD.

• We combine the PITSA and LRA&LDRA, and present
a lightweight design for joint shadow detection and re-
moval, which outperforms state-of-the-art in removal
(+0.7 all-region MAE) and detection (+0.1 BER) on
ISTD and SRD datasets, despite being significantly
smaller (×150 less memory) and faster (+5%).

1Our dataset will be made publicly available at
https://terabox.com/s/1YQh2fc3SZ3prQZ1hJhejjQ

2. Related Work
Shadow detection. Early detection methods use physi-
cal models [51, 55, 62, 15], user input [77, 2], and hand-
crafted features [19, 13, 28, 37, 80]. An end-to-end solu-
tion is [64], where SBU dataset is proposed. Nguyen et
al. [49] extend the cGAN paradigm for detection. Le et
al. [40] use a shadow attenuation network to augment data.
Hu et al. [27] propose to learn global image context fea-
tures in a direction-aware manner. Wang et al. [65] and
Ding et al. [12] jointly address detection and removal. Re-
cent studies leverage multi-task learning [8] and intensity-
variant/invariant features [82].

Shadow removal. Early methods use illumination/color
[3, 48, 14, 42, 68, 47, 58], user input [18, 17, 73] and hand-
crafted features [15, 73, 71]. Supervised methods using
paired data have attracted attention [57, 33]. Qu et al. [54]
use localization, semantics and appearance features with
a matting loss. Hu et al. extend their work to removal
[81, 24]. Cun et al. [11] use a shadow matting network
to create new data and then use hierarchical feature aggre-
gation for removal. Fu et al. [16] cast shadow removal
as an autoexposure fusion problem, whereas [39] propose
a physics-based formulation using three networks. Chen et
al. [7] present a two-stage method where they transfer non-
shadow features to shadow features. Methods training on
unpaired data have emerged as well [25, 38, 43, 30, 63].

Residual predictions in shadow removal. Many removal
methods take in an image and reconstruct the whole im-
age during removal. Since the difference (i.e. the residual)
between shadow and shadow-free image is ideally only on
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shadow regions (in practice, all real-life datasets have er-
rors on non-shadow regions [39]), predicting that difference
is a solid alternative. A naive summation approach is used
in [24, 44, 39]. Ding et al. [12] predict residuals with a
shadow attention detector, and then feed these to a removal
encoder to iteratively remove shadows. Zhang et al. [76]
use a multi-generator GAN to predict negative residuals, in-
verse illumination and coarse removal image. In our work,
we build on existing residual prediction strategies.
Datasets. Earlier datasets, such as UCF [80] and UIUC [20]
for removal, are quite small. ISTD [65] has 1.8K triplets
(shadow image, mask and shadow-free image) for detection
and removal. For detection, SBU [64] has 4.7K (shadow
image and mask) pairs. SRD [54] provides 3K (shadow
and shadow-free image) pairs for removal. USR [25] pro-
vides ∼ 4K unpaired images. The largest detection dataset
has 10.5K pairs [26]. Synthetic datasets bypass the labeling
and acquisition requirements, but suffer from limitations in
shadow-free image variety (1.8K unique shadow-free im-
ages, with 10K shadow mattes [29]).

3. Rethinking Residual Predictions
We first introduce the shadow detection and removal

tasks, motivate the need for better models to perform these
tasks, and present LRA and LDRA modules which are inte-
grated to baseline models to boost their accuracy.
3.1. Preliminaries

Problem formulation. In shadow detection, we employ
a function D(·; θD) parameterized by θD (implemented by a
deep neural network (DNN) model D) to detect the location
of shadow(s) observed on an image Ishadow by

Imask = D(Ishadow; θD) (1)

where Imask is a binary mask representing the shadow lo-
cation. In shadow removal (Fig. 1), a function R(·, ·; θR)
parameterized by θR (which is implemented using a DNN
model R and depicted on the top diagram in Fig. 1) is used
to obtain a shadow-free output image Iout by

Iout = R(Ishadow, Imask; θR). (2)

We argue that shadow removal is localized image-to-
image translation, where only a part of Ishadow, localized
by Imask, will be translated to the target shadow-free do-
main. Most methods use Imask as an additional input to
the shadow removal model (SRM) (eqn. (2)), where it is
concatenated to Ishadow as the fourth channel. This aims
to condition the image translation on the masked area, but
still leads to whole image reconstruction in practice. A
way to see if SRMs focus only on shadow areas is to check
their non-shadow region error; it should be zero (or equal
to dataset error) if SRM focuses only on shadow regions.
Table 1 shows the results for various methods on the ISTD

dataset. Methods performing whole image reconstruction
using eqn. (2) are off from the dataset error; this means
these methods i) try to reconstruct the non-shadow region,
and ii) they cannot perform this reconstruction accurately.
Residual predictions. A revised shadow removal task can
be cast as only predicting the difference relative to the input
image by (please see the middle diagram in the Fig. 1)

Iout = R(Ishadow, Imask; θR) + Ishadow. (3)

The methods using residual predictions eqn. (3) have lower
error in Table 1, but still suffer from sub-optimal results.
3.2. LRA&LDRA Modules

In order to solve the aforementioned problems, we re-
think/extend residual predictions of eqn. (3) via LRA and
LDRA modules by (see the bottom diagram Fig. 1)

Iout = LDRA(R(Ishadow, Imask; θR); θLRA)

+ LRA(Ishadow; θLRA) (4)

where LDRA(·; θLDRA) and LRA(·; θLRA) functions op-
erate in image space. Note that eqn. 3 is a special-
case of eqn. 4, where identity function is employed
for both LRA&LDRA; this is what we refer as the re-
thinking/extending of residual predictions. Specifically,
LRA&LDRA should i) guide R(·, ·; θR) to focus on
shadow regions and ii) perform blending/color-correction.

When implementing, we aim LRA and LDRA to i) be
efficient, ii) have a strong spatial component to better guide
R to perform localized translation, and iii) have a strong
channel-wise component to transform output and input of
R for blending. We implement LRA&LDRA using [23]

LRA(i, j; θLRA) ≜ X(i, j)⊙ gh(i)⊙ gw(j),

LDRA(i, j; θLDRA) ≜ X(i, j)⊙ gh(i)⊙ gw(j),
(5)

where X denotes a matrix of an input image, i and j de-
note the spatial locations of a pixel, ⊙ denotes element-
wise multiplication, θLDRA ̸= θLRA, and gh and gw are
attention vectors with horizontal and vertical components.
We omit the channel dimension for brevity. We implement
LRA&LDRA with eqn. (5) and train them jointly with R.
Why [23]? We use [23] as it meets our criteria; i) mini-
mal overhead, ii) strong spatial component due to global-
pooling-free and direction-aware design and iii) ability to
capture cross-channel information. Note that our formula-
tion can use any implementation (learnable or hand-crafted)
for LRA and LDRA, not just [23] (Sec. 5.3 for ablation).
How does LRA&LDRA guide R? Note that vanilla resid-
ual predictions guide R to focus on shadow regions already
(see Fig. 1), and since LRA&LDRA extend them (LRA
specifically, as it extends the residual), they inherently per-
form this guidance as well. We later show LRA&LDRA
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Methods Original STC [65] DSN [54] MSG[25] DCS[30] LGS [43] AE[16] G2R[44] SP-I-M[39]
Non-shadow 2.6 7.7 6.0 4.0 3.5 3.4 3.8 2.9 3.1

Table 1. MAE of the state-of-the-art methods on non-shadow regions using the Adjusted-ISTD. Original denotes the intrinsic error of
A-ISTD. Residual predictions are used in [44, 39] and whole image reconstruction is performed in the others.
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Figure 2. The positive effect of LRA&LDRA on the shadow de-
tection model D, when D is not detached from R. Top diagram
shows the whole image reconstruction where the gradients gR of
costR with respect to R do not help D to improve its accuracy, be-
cause R does not predict localized outputs. Bottom diagram shows
LRA&LDRA that force R to produce localized outputs, where the
gradients gR help D. Imask shows outputs of the model D trained
in a weakly-supervised manner by only using the gradients gR (see
supplementary material for details).

does a better job in guiding R to focus on shadow regions,
and what these modules do individually (see Figure 4).
Blending and color correction. LRA&LDRA can be
thought as a refinement network, where it operates over both
the input and the output of R. This is in contrast with exist-
ing removal methods with secondary refinement networks
[39, 44], which operate only on the output of R. We hypoth-
esize (and later show) LRA&LDRA to be a much efficient
alternative to such approaches.

3.3. LRA&LDRA Improves Shadow Detection

Preliminaries. Shadow removal without an explicit local-
ization prior (i.e. mask) is possible, but we consider shadow
detection as a necessary step. Therefore, similar to [65], we
jointly train the models R and D. Assume that we have a
cost function cost (identified by the ℓ1 loss) defined by

cost(y, y′; θ) ≜ ∥y − y′∥1 (6)

where y denotes the shadow-free image Iout predicted by
a model with parameters θ and y′ denotes the ground-
truth shadow-free image Ifree for the shadow removal cost
costR, and y denotes the predicted mask Imask and y′ de-
notes the ground-truth mask Imask−gt for the shadow detec-
tion cost costD. During training of the model R, gradients
gR of costR with respect to parameters of R are calculated
and used to update the parameters of R. Similarly, during
the training of D, gradients gD of costD with respect to
D are calculated and used to update the parameters of D.
Since D and R are stacked, where the output of D is an in-
put to R, a common practice is to detach the first model (in

this case, D) when updating the parameters of the second
model (in this case, R). In other words, the gradients gR are
not backpropagated to D; each model is updated separately
with their own cost functions. Alternatively, not detaching
means that the gradients gR will be backpropagated to D
and used to update the parameters of D; essentially, costD
will have an additional term in eqn. (6).
Benefits of LRA&LDRA in shadow detection. In the
baseline removal model R implementing eqn. (2), the de-
tach operation can be useful for D; D outputs Imask which
is a binary mask with shadow localization information, and
R outputs the entire image Iout (see the top diagram of Fig.
1). These two images do not have much in common, es-
pecially in terms of the information they have. In contrast,
when R implements eqn. (4) with LRA&LDRA, we con-
jecture that not detaching might be useful for D; in this
case, R outputs a region that has the same localization in-
formation as the output Imask of D (see bottom diagram
of Fig. 1). We confirm the usefulness of not detaching D
from R with LRA and LDRA in Section 5 by experiment-
ing with and without detaching. See Fig. 2 for a detailed
visualization. Also see supplementary material Section 3.8
for weakly-supervised detection experiments supporting the
benefits of LRA&LDRA.

4. Large Scale Shadow Detection and Removal
In this section, we motivate the need for a new dataset

and present our pipeline.

4.1. Motivation.

Real-life removal and detection datasets are small (10K
[26] and 4K samples [25]), and even large synthetic datasets
[29] have a limited amount of unique shadow-free images
(1.8K). One can assume any image to be shadow-free to
scale a dataset, but these images are likely to have shadows
already and might lead to suboptimal models.

4.2. Our Proposed PITSA Dataset

We propose a new pipeline to find a working compro-
mise; ability to leverage any image for dataset generation
while keeping the noise (i.e. existing shadows) at mini-
mum. We aim to create a dataset of triplets (Ishadow, Ifree,
Imask−gt), corresponding to shadowed, shadow-free and
shadow mask images. This is done via a two-stage process;
shadow-free patch extraction and shadow superimposition.
Shadow-free patch extraction. First, we collect a database
of images D from various sources. For each image Isrc ∈
D, we run a pre-trained shadow detection model M [8] (not
to be confused with D) to obtain a shadow mask. This
shadow mask is refined via a CRF [35] model (CRF ) to
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Figure 3. Our dataset creation pipeline. Top images show an input
(left), predicted shadow mask (eqn. (7)), shadow-free patch candi-
dates (red boxes) and resulting shadow-free image patches (right).
Bottom images show an extracted shadow-free patch (left), sam-
pled mask (middle) and synthesized shadow image (right).

Ablation on different (LRA, LDRA)
B (1,1) (1-Im,Im) ([23],1) (1,[23]) ([23],[23])

S ↓ 7.94 8.69 7.32 7.73 8.45 7.54
NS ↓ 3.20 2.66 2.97 2.71 2.55 2.55
All ↓ 3.86 3.56 3.54 3.45 3.40 3.29

BER ↓ 2.84 1.91 1.81 1.69 1.85 1.56
Table 2. Accuracy (MAE and BER) obtained for D and R,
equipped with various (LRA, LDRA). Im denotes the Imask.
The baseline B formulates R with eqn. (2). S, NS and All stand for
shadow, non-shadow and all regions, respectively.

improve its precision, and it is thresholded by a function
thresh to remove low-confidence areas by

msrc = thresh(CRF (M(Isrc), Isrc)). (7)

We identify all the regions in msrc without shadows;
we look for the largest square bounding boxes in the
mask that do not intersect shadow pixels, and we filter
out highly overlapping candidates according to intersection-
over-union (IOU) metric and require a minimum patch size.
In our pipeline, we set a minimum IOU threshold of 0.3, a
minimum size of 128 pixels, and we extract up to 10 patches
per input image. The coordinates of the resulting boxes are
used to sample the input image, giving us N Ifree, where
N is the number of patches/images that meet the above cri-
teria. The process is visualized in Fig. 3.
Shadow superimposition. We then proceed to generate a
modified version of Ifree images by applying a sequence
of operations aimed at approximating the shadow region.
Unlike [29], we do not attempt to only constrain the light
model to ambient light. Instead, we additionally allow the
following parameters to be altered: warmth, hue, saturation
and lightness. The warmth is altered by modifying the red
and blue channels of the image. For the latter, the image
is first converted into HSV format, each channel is modi-
fied independently, and then it is converted back to its BGR
format. We call the resulting output Idark.

While the produced results could appear unrealistic un-
der certain combinations, we are able to approximate differ-
ent light colors and improve the model resilience to slight
color variations in the shadow regions. Finally, we use a

Dataset Number of samples Detection Removal Paired
ISTD [65] 1870 ✓ ✓ ✓
SRD [54] 3088 × ✓ ✓
USR [25] 4215 × ✓ ×
SBU [64] 4087 ✓ × ✓

CUHK-Shadow [26] 10500 ✓ × ✓
PITSA (ours) 172539 ✓ ✓ ✓

Table 3. Our PITSA dataset is the largest detection and removal
dataset by a significant margin. It is also significantly diverse, both
in terms of scenery and shadow mask shapes/locations. Number
of samples refer to number of image pairs or triplets.

shadow mask database Dmask to obtain a shadow mask by

Imask−gt = F (σ(Dmask)) (8)

where F is a function that applies random transformations
(flips and rotations) to the mask randomly sampled by σ(·).
We use Imask−gt to determine the shadow image via the
following blending operation

Ishadow = Idark⊙Imask−gt+Ifree⊙(1−Imask−gt) (9)

where ⊙ denotes element-wise multiplication. The mask
database is initially comprised of masks of [29], but during
the generation, it is expanded by the masks msrc produced
by M . At the end, we obtain over 20000 masks.
Discussion. Using HR-WSI [69] and MIT-Adobe-5K [6],
we create PITSA (Patch Isolation Triplets with Shadow
Augmentations); it consists of 172539 triplets created us-
ing 20416 unique images and over 20000 masks (see Fig. 3
for an example). Our pipeline is similar to [38, 29], but
has key differences; i) [38] use small overlapping patches
with fixed size, whereas we analyse entire masks and ex-
tract largest patches to include more context, ii) unlike [29],
we generate new shadow-free patches and iii) do not limit
ourselves to realistic shadow masks, we also use mask out-
puts of the filtering detection model, and further increase
mask diversity. A limitation of our pipeline is the error of
the shadow detector M . This can be improved by repeating
the detection process or updating M with a better model.
We show in Section 5 that the volume of data overcomes
the potential noise. Table 3 shows that the PITSA dataset is
the largest shadow detection and removal dataset by a large
margin. See supplementary material for details on PITSA.

5. Experiments
5.1. Datasets and Evaluation Metrics
Datasets. We examine LRA&LDRA on the benchmark
datasets ISTD [65] and SRD [54]. ISTD consists of 1870
image triplets (1330 train, 540 test) and is used for training
& evaluation of models for detection and removal. We use
the color-corrected version of ISTD test set (A-ISTD) [39].
SRD is formed of 3088 image pairs (2680 train, 408 test),
and it is used for training & evaluation of models.
Evaluation metrics. To evaluate removal accuracy, we use
MAE in the LAB space for shadow, non-shadow and all
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Ablation on different backbones Ablation on existing methods
RNXt[72]-50 RNXt[72]-101 MNas[60] EffNet[61] Ghost[21] STC[65] G2R [44] SP-I-M [39]

S ↓ 7.26 / 7.39 7.11 / 7.27 8.09 / 7.86 7.82 / 7.80 7.91 / 8.11 8.08 / 7.78 10.3 / 9.90 5.84 / 5.55
NS ↓ 3.33 / 2.87 3.13 / 2.90 3.45 / 2.89 3.88 / 2.63 3.70 / 3.11 3.87 / 3.47 3.87 / 3.81 2.59 / 2.57
All ↓ 3.91 / 3.58 3.73 / 3.58 4.11 / 3.62 4.46 / 3.39 4.37 / 3.77 4.53 / 4.16 4.84 / 4.70 3.11 / 3.01

BER ↓ 1.99 / 1.94 2.09 / 2.20 2.26 / 2.20 2.06 / 1.61 2.60 / 2.77 3.88 / 3.65 – –
Table 4. Accuracy obtained with different backbones (columns 1 to 5) and existing methods (columns 6 to 8), with (right) and without (left)
using LRA&LDRA. First five columns use backbones pre-trained on the ImageNet for implementing R and D. We retrain all existing
methods [65, 44, 39] with official code, when available. For [44], we evaluate images with 480×640 resolution, following the official
codebase. The model proposed in [39] was trained using GT masks.

regions; we note that although many methods claim to re-
port RMSE, they actually report MAE [1]. For detection,
we use the balanced error rate (BER). Images are resized to
256×256 for evaluation. Unlike [82, 27, 40, 8, 79], we do
not post-process the masks predicted by D.

5.2. Architecture and Implementation Details

Network architecture. LRA&LDRA can be plugged into
any model, but as our primary solution, we use the architec-
ture of [74], which is an efficient dense prediction network
based on MobileNetv2 [56] and FBNet [67]. We use this
architecture, as our preliminary experiments show it has a
good efficiency/accuracy trade-off. We use the same archi-
tecture for both R and D, where the differences between the
two are the number of input channels (3 and 4 for D and R,
respectively), and R having LRA&LDRA.
Implementation details. We initialize the encoders of R
and D with ImageNet-pretrained weights, and the rest with
[22]. Models are jointly trained using PyTorch [53] for 2K
epochs with batch size 16, where learning rates for both
are set to 2e-4. Images are resized to 286×286, randomly
cropped to 256×256 and augmented (random horizontal
flipping). Adam [34] optimizer is used with ℓ1 loss for
training both models. We use early stopping with a vali-
dation split from the training set (20% hold-out ratio). For
the ISTD and SRD, we train the models separately. When
indicated, the models are pre-trained for 350 epochs on the
PITSA using the same hyperparameters.

5.3. Ablation Studies

We conduct detailed ablation studies to show the effect
of several components of our method on accuracy. We ex-
periment on the ISTD dataset using the lightweight archi-
tecture described in Section 5.2 (unless stated otherwise).
Component Analyses of LRA&LDRA. Fig. 4 shows the
outputs obtained at each stage of our pipeline. The addition
of LRA does not seem to change much (spatially) visually,
but it improves the shadow region accuracy (see Table 2);
it prepares the input for blending with Rout. Note the in-
effective blending without LRA in rows 2 and 3 in Fig. 4;
artefacts are visible in the final outputs. Furthermore, as
mentioned earlier in the paper, the addition of LRA&LDRA
guides R to produce a localized results. Note that Rout is
sharpest with LRA&LDRA, showing that it does the guid-
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Figure 4. Rows show the output obtained using baseline w/o resid-
uals, vanilla residuals (i.e. identity for LRA&LDRA), (1- Imask.
Imask) and the final LRA&LDRA. Columns show stage-wise out-
puts of our method; input, output of LRA, predicted mask, out-
put of the SRM R, output of the LDRA and the final result.
Our LRA&LDRA produce sharper masks, removal outputs and
artefact-free results.

ance better than vanilla residual predictions. Another ef-
fect of LDRA, as seen in LDRAout, is color correction; the
shape is the same with Rout but LDRA refines the colors,
making them suitable for the final blending. Finally, note
that Imask is sharpest in LRA&LDRA, verifying the use-
fulness of the gradients provided by R in the training of D.
Choosing LRA&LDRA. We test alternatives for imple-
menting LDRA and LRA, such as the identity function
1, Imask predicted by D and coordinate attention [23]. Ta-
ble 2 shows that, regardless of the type of LDRA&LRA,
both D (+1 BER) and R (+0.6 MAE) are improved. LRA
and LDRA modules (with [23]) introduce improvements in-
dividually, and even more so when they are used together,
which justifies their presence. Note that the best shadow
region accuracy comes from choosing Imask, whereas the
best overall accuracy is obtained from LRA&LDRA that
use coordinate attention [23]. This shows the flexibility of
our approach, where different functions can be chosen for
different goals. See supplementary material Section 3.2 for
an extended version of this ablation.
LRA&LDRA as plug-and-play. Table 4 shows the com-
parisons of different methods and backbones with and with-
out using LRA&LDRA. The first five columns show that
across different backbones, LRA&LDRA improve over-
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Ablation on D Ablation on Pre-training on PITSA
(B, B†) (LL, LL†) LL SP-I-M [39] STC[65]

S ↓ 7.77 / 7.43 7.53 / 7.82 (7.54, 5.67) (5.84, 5.02) (8.08, 6.49)
NS ↓ 3.14 / 3.28 2.49 / 2.76 (2.55, 2.40) (2.59, 2.48) (3.87, 2.77)
All ↓ 3.87 / 3.94 3.28 / 3.56 (3.29, 2.91) (3.11, 2.85) (4.53, 3.30)

BER ↓ 2.55 / 2.04 1.82 / 1.93 (1.56, 1.47) – (3.88, 2.01)
Table 5. Accuracy of D and R across various experiments. The
first two columns show results where the model D is detached
(marked by †) from the model R, where R implements the base-
line (B) (eqn. (2)) or our LRA&LDRA (LL). Columns 3 to 5
show results where different methods are pretrained on our PITSA
dataset (right) or not (left).

all and non-shadow MAE consistently, whereas they im-
prove shadow MAE and BER in most cases. The last three
columns show that existing methods are consistently im-
proved with LRA&LDRA (+0.4 MAE).
Improved shadow detection with LRA&LDRA. Tables 2
and 4 show that LRA&LDRA improve accuracy of D. We
also experiment with and without LRA&LDRA where the
model D is detached, or not detached, from R. The first two
columns of Table 5 show that detaching R from D improves
the accuracy of D for whole image reconstruction (eqn.
(2)), but is detrimental for D and R with LRA&LDRA. This
supports our claim in Section 3.3 that with LRA&LDRA,
backpropagating the gradients gR to D improves D.
Pre-training models using the PITSA. Columns 3 to 5 of
Table 5 show that pre-training models on PITSA signifi-
cantly improves (+1.2 MAE all) accuracy of all methods.
In non-shadow regions, improvements are slight as both
[39] and us are already close to dataset error. However,
shadow regions are improved significantly. In detection,
accuracy is improved slightly with LRA&LDRA, and that
of [65] is improved greatly (+1.8 BER). We credit this to
LRA&LDRA having improved detection already, so there
is a smaller room for improvement compared to [65]. Fur-
thermore, PITSA outperforms the (previously) largest syn-
thetic dataset (see supplementary material Table 1).

5.4. Comparison with State-of-the-art

Shadow removal. We compare LRA&LDRA with hand-
crafted methods [73, 17], ST-CGAN [65], DHAN [11], De-
ShadowNet [54], G2R-ShadowNet [44], SP-I-M [39], DC-
ShadowNet [30] and several other methods.

Table 6 shows removal accuracy for the SRD test set.
Our methods outperform others considering accuracy on
the shadow regions and overall accuracy. Furthermore,
pre-training on the PITSA dataset shows significant accu-
racy improvements. Table 7 shows shadow removal accu-
racy for the A-ISTD. Our methods (LL) produce the best
non-shadow (2.5 MAE) and overall (3.2 MAE) accuracy,
which shows that LRA&LDRA enable models to focus
on shadow removal rather than reconstructing non-shadow
regions. In shadow regions, our methods perform quite
competitively, despite others using significantly larger net-
works for removal. We note that LRA&LDRA actually im-
prove these methods as well (last two columns of Table 4).

Input ISR[17] DSC[24] DSN[54] DCS[30] B LL LL †
S ↓ 37.4 25.4 8.8 3.5 7.7 7.6 7.5 6.5

NS ↓ 3.9 6.9 3.2 8.8 3.4 4.0 3.5 3.4
All ↓ 13.7 12.3 4.8 5.1 4.6 4.8 4.4 4.0

Table 6. Removal performance on SRD. B denotes the baseline
method (described in eqn. (2)). † indicates pre-training models on
the PITSA. LL indicates LRA&LDRA.

LRA&LDRA, once pre-trained on our PITSA dataset, sig-
nificantly outperform (+0.7 all-regions MAE) others.
Shadow detection. We compare our model D against
MTMT [8], DSD [79], stacked-CNN [64], scGAN [49],
ST-CGAN [65], DSC [24], BD-RAR [81] and FDRNet
[82]. Table 8 shows that FDRNet [82] outperforms us by
only 0.01 BER despite performing post-processing [35].
Once pre-trained on PITSA, our method outperforms FDR-
Net (+0.1 BER). These results verify the usefulness of
LRA&LDRA in improving detection accuracy. See supple-
mentary material for qualitative results.

5.5. Qualitative Results and Discussions
Qualitative results. Fig. 5 shows that LRA&LDRA barely
affect the non-shadow regions. This is especially visible
in the first, fourth and fifth rows. Even high complexity
SP-I-M [39] attempt to recover the non-shadow regions and
fail, when non-shadow regions are complex. Our models
are competitive on shadow regions; they produce minimal
ghosting and consistent colors. Finally, all rows show the
significant effect of PITSA pre-training; LRA&LDRA pre-
trained on the PITSA significantly outperform all others,
both in shadow and non-shadow regions. See supplemen-
tary material for more results using in-the-wild images.
Analysis of performance. Table 9 shows that
LRA&LDRA have minimal overhead; 0.1 MFLOPs
complexity, 0.7MB memory and 2.7ms runtime (0.5ms
for [39]). We also show that LRA&LDRA plugged into
our architecture (Table 9 second column) is smaller, faster
and consumes less memory compared to others, despite
outperforming them. Compared to [39], our method is
faster (5%), smaller (×150 less memory) and more accurate
despite performing detection and removal jointly.
Why not just..copy-paste (CP) the non-shadow region?
A natural question against LRA&LDRA is; instead of these,
why don’t we just copy-paste the non-shadow region from
the input image to the output image? In ideal cases, CP
might provide 0 MAE on non-shadow regions. In prac-
tice, however, our solution is better due to several reasons;
i) CP relies on the availability of perfect shadow masks,
which may not be feasible ii) LRA&LDRA performs blend-
ing/color correction, iii) LRA&LDRA provides robustness
to minor mask errors and iv) also improves shadow detec-
tion performance. It is also plausible to use CP and then
do blending, but LRA&LDRA is an end-to-end, learnable
alternative that can scale with data/capacity. See supple-
mentary material for further details and discussions.
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Input SRB[73] ISR[17] STC[65] DHN[11] DSN[54] PRS[20] DSC[24] G2R[44] SP-I-M[39] AE[16] BMN [83] B LL LL †
S ↓ 40.2 24.7 13.3 13.4 11.4 15.9 22.0 7.6 7.3 6.0 6.5 6.1 7.9 7.5 5.6

NS ↓ 2.6 14.4 2.6 7.7 7.2 6.0 3.1 3.2 2.9 3.1 3.8 2.9 3.2 2.5 2.4
All ↓ 8.5 16.0 4.3 8.7 7.9 7.6 6.1 3.9 3.6 3.6 4.2 3.5 3.8 3.2 2.9

Table 7. Removal performance on A-ISTD. B is the baseline method. † indicates pre-training on the PITSA. LL indicates LRA&LDRA.
SCN[64] SCG[49] STC[65] BDR[81] DSC[24] DSD[79] MTM[8] FDR[82] LL LL †

BER ↓ 8.60 4.70 3.85 2.69 3.42 2.17 1.72 1.55 1.56 1.47
Table 8. Detection performance on A-ISTD. † indicates pre-training on the PITSA. LL indicates LRA&LDRA.

Input              ST-CGAN [65]      SP-M-I [39]            G2R[44]          DSC-Net [24]           DHAN [11]             Baseline             LRA/LDRA            LRA/LDRA *      Ground-TruthLRA&LDRA LRA&LDRA*

Figure 5. Qualitative comparison of LRA&LDRA and others. * indicates models pre-trained on the PITSA. We highlight some examples
where alternatives unnecessarily alter non-shadow areas (→), miss shadow areas (→) or produce artefacts in shadow areas (→). Note that
LRA&LDRA barely touches non-shadow areas and has competitive shadow area performance. Best viewed when zoomed in.

B LL STC[65] STC[65] † SP-I-M[39] SP-I-M[39] † G2R[44] G2R[44] †
Runtime (ms) 37 39.7 280 281.4 40.4 40.9 116 118.9
Memory (GB) 0.061 0.062 2.74 2.74 10.5 10.05 0.141 0.142

FLOPs (G) 0.6835 0.6836 721.2651 721.2652 25.8018 25.8019 94.5756 94.5757
ISTD MAE (All) 3.86 3.29 4.53 4.16 3.60 3.49 4.84 4.70

Table 9. The overhead of LRA&LDRA (LL). B is the baseline method (eqn. (2)). Methods with † are trained with LRA&LDRA. FLOPs
are for removal networks only. Memory and runtime values are for D and R for the first four columns, and for R only for the last four.
Measurements are performed with an RTX 3090 using PyTorch. Note that the overhead brought by LL (and †) is negligible.

6. Conclusions
We address shadow detection and removal tasks; we re-

think residual predictions with LRA&LDRA modules that
operate over the input and output of a shadow removal
model. These modules guide the model to concentrate on
shadow regions, and perform color-correction and blending.
Our experiments show that LRA&LDRA achieve state-of-
the-art accuracy on detection & removal with a significantly
smaller and faster network. LRA&LDRA work across var-
ious backbones and even improve existing methods. Fi-
nally, we propose a new dataset generation pipeline and
the PITSA dataset for detection & removal, which is 10
times more diverse than the largest dataset. Our results
show that pre-training models on the PITSA further im-
proves LRA&LDRA and other methods significantly.
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Durand. Learning photographic global tonal adjustment with
a database of input / output image pairs. In The Twenty-
Fourth IEEE Conference on Computer Vision and Pattern
Recognition, 2011.

[7] Zipei Chen, Chengjiang Long, Ling Zhang, and Chunxia
Xiao. Canet: A context-aware network for shadow removal.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4743–4752, 2021.

[8] Zhihao Chen, Lei Zhu, Liang Wan, Song Wang, Wei Feng,
and Pheng-Ann Heng. A multi-task mean teacher for
semi-supervised shadow detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5611–5620, 2020.

[9] Rita Cucchiara, Costantino Grana, Massimo Piccardi, and
Andrea Prati. Detecting moving objects, ghosts, and shad-
ows in video streams. IEEE transactions on pattern analysis
and machine intelligence, 25(10):1337–1342, 2003.

[10] Rita Cucchiara, Costantino Grana, Massimo Piccardi, An-
drea Prati, and Stefano Sirotti. Improving shadow suppres-
sion in moving object detection with hsv color information.
In ITSC 2001. 2001 IEEE Intelligent Transportation Sys-
tems. Proceedings (Cat. No. 01TH8585), pages 334–339.
IEEE, 2001.

[11] Xiaodong Cun, Chi-Man Pun, and Cheng Shi. Towards
ghost-free shadow removal via dual hierarchical aggrega-
tion network and shadow matting gan. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34,
pages 10680–10687, 2020.

[12] Bin Ding, Chengjiang Long, Ling Zhang, and Chunxia Xiao.
Argan: Attentive recurrent generative adversarial network
for shadow detection and removal. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10213–10222, 2019.

[13] Graham D Finlayson, Mark S Drew, and Cheng Lu. Entropy
minimization for shadow removal. International Journal of
Computer Vision, 85(1):35–57, 2009.

[14] Graham D Finlayson, Steven D Hordley, and Mark S Drew.
Removing shadows from images. In European conference
on computer vision, pages 823–836. Springer, 2002.

[15] Graham D Finlayson, Steven D Hordley, Cheng Lu, and
Mark S Drew. On the removal of shadows from images.
IEEE transactions on pattern analysis and machine intelli-
gence, 28(1):59–68, 2005.

[16] Lan Fu, Changqing Zhou, Qing Guo, Felix Juefei-Xu,
Hongkai Yu, Wei Feng, Yang Liu, and Song Wang. Auto-
exposure fusion for single-image shadow removal. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10571–10580, 2021.

[17] Han Gong and Darren Cosker. Interactive shadow removal
and ground truth for variable scene categories. In BMVC,
pages 1–11. Citeseer, 2014.

[18] Maciej Gryka, Michael Terry, and Gabriel J Brostow. Learn-
ing to remove soft shadows. ACM Transactions on Graphics
(TOG), 34(5):1–15, 2015.

[19] Ruiqi Guo, Qieyun Dai, and Derek Hoiem. Single-image
shadow detection and removal using paired regions. In CVPR
2011, pages 2033–2040. IEEE, 2011.

[20] Ruiqi Guo, Qieyun Dai, and Derek Hoiem. Paired regions for
shadow detection and removal. IEEE transactions on pattern
analysis and machine intelligence, 35(12):2956–2967, 2012.

[21] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing
Xu, and Chang Xu. Ghostnet: More features from cheap
operations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1580–
1589, 2020.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015.

[23] Qibin Hou, Daquan Zhou, and Jiashi Feng. Coordinate atten-
tion for efficient mobile network design. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13713–13722, 2021.

[24] Xiaowei Hu, Chi-Wing Fu, Lei Zhu, Jing Qin, and Pheng-
Ann Heng. Direction-aware spatial context features for
shadow detection and removal. IEEE transactions on pat-
tern analysis and machine intelligence, 42(11):2795–2808,
2019.

[25] Xiaowei Hu, Yitong Jiang, Chi-Wing Fu, and Pheng-Ann
Heng. Mask-shadowgan: Learning to remove shadows from
unpaired data. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 2472–2481,
2019.

[26] Xiaowei Hu, Tianyu Wang, Chi-Wing Fu, Yitong Jiang,
Qiong Wang, and Pheng-Ann Heng. Revisiting shadow de-
tection: A new benchmark dataset for complex world. IEEE
Transactions on Image Processing, 30:1925–1934, 2021.

[27] Xiaowei Hu, Lei Zhu, Chi-Wing Fu, Jing Qin, and Pheng-
Ann Heng. Direction-aware spatial context features for
shadow detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7454–
7462, 2018.

[28] Xiang Huang, Gang Hua, Jack Tumblin, and Lance
Williams. What characterizes a shadow boundary under the
sun and sky? In 2011 international conference on computer
vision, pages 898–905. IEEE, 2011.

[29] Naoto Inoue and Toshihiko Yamasaki. Learning from syn-
thetic shadows for shadow detection and removal. IEEE
Transactions on Circuits and Systems for Video Technology,
31(11):4187–4197, 2020.

[30] Yeying Jin, Aashish Sharma, and Robby T Tan. Dc-
shadownet: Single-image hard and soft shadow removal
using unsupervised domain-classifier guided network. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5027–5036, 2021.

4933



[31] Imran N Junejo and Hassan Foroosh. Estimating geo-
temporal location of stationary cameras using shadow tra-
jectories. In European conference on computer vision, pages
318–331. Springer, 2008.

[32] Kevin Karsch, Varsha Hedau, David Forsyth, and Derek
Hoiem. Rendering synthetic objects into legacy photographs.
ACM Transactions on Graphics (TOG), 30(6):1–12, 2011.

[33] Salman H Khan, Mohammed Bennamoun, Ferdous Sohel,
and Roberto Togneri. Automatic shadow detection and re-
moval from a single image. IEEE transactions on pattern
analysis and machine intelligence, 38(3):431–446, 2015.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR (Poster), 2015.

[35] John D Lafferty, Andrew McCallum, and Fernando CN
Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In ICML, 2001.

[36] Jean-François Lalonde, Alexei A Efros, and Srinivasa G
Narasimhan. Estimating natural illumination from a single
outdoor image. In 2009 IEEE 12th International Conference
on Computer Vision, pages 183–190. IEEE, 2009.

[37] Jean-François Lalonde, Alexei A Efros, and Srinivasa G
Narasimhan. Detecting ground shadows in outdoor con-
sumer photographs. In European conference on computer
vision, pages 322–335. Springer, 2010.

[38] Hieu Le and Dimitris Samaras. From shadow segmentation
to shadow removal. In European Conference on Computer
Vision, pages 264–281. Springer, 2020.

[39] Hieu Le and Dimitris Samaras. Physics-based shadow image
decomposition for shadow removal. IEEE Transactions on
Pattern Analysis & Machine Intelligence, (01):1–1, 2021.

[40] Hieu Le, Tomas F Yago Vicente, Vu Nguyen, Minh Hoai,
and Dimitris Samaras. A+ d net: Training a shadow de-
tector with adversarial shadow attenuation. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 662–678, 2018.

[41] Zhengqi Li and Noah Snavely. Learning intrinsic image de-
composition from watching the world. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 9039–9048, 2018.

[42] Feng Liu and Michael Gleicher. Texture-consistent shadow
removal. In European Conference on Computer Vision,
pages 437–450. Springer, 2008.

[43] Zhihao Liu, Hui Yin, Yang Mi, Mengyang Pu, and Song
Wang. Shadow removal by a lightness-guided network with
training on unpaired data. IEEE Transactions on Image Pro-
cessing, 30:1853–1865, 2021.

[44] Zhihao Liu, Hui Yin, Xinyi Wu, Zhenyao Wu, Yang Mi, and
Song Wang. From shadow generation to shadow removal.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4927–4936, 2021.

[45] Chengjiang Long and Gang Hua. Multi-class multi-
annotator active learning with robust gaussian process for vi-
sual recognition. In Proceedings of the IEEE international
conference on computer vision, pages 2839–2847, 2015.

[46] Chengjiang Long and Gang Hua. Correlational gaussian pro-
cesses for cross-domain visual recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 118–126, 2017.

[47] Ankit Mohan, Jack Tumblin, and Prasun Choudhury. Edit-
ing soft shadows in a digital photograph. IEEE Computer
Graphics and Applications, 27(2):23–31, 2007.

[48] Sohail Nadimi and Bir Bhanu. Physical models for moving
shadow and object detection in video. IEEE transactions on
pattern analysis and machine intelligence, 26(8):1079–1087,
2004.

[49] Vu Nguyen, Tomas F Yago Vicente, Maozheng Zhao, Minh
Hoai, and Dimitris Samaras. Shadow detection with condi-
tional generative adversarial networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages
4510–4518, 2017.

[50] Takahiro Okabe, Imari Sato, and Yoichi Sato. Attached
shadow coding: Estimating surface normals from shadows
under unknown reflectance and lighting conditions. In 2009
IEEE 12th International Conference on Computer Vision,
pages 1693–1700. IEEE, 2009.

[51] Alexandros Panagopoulos, Chaohui Wang, Dimitris Sama-
ras, and Nikos Paragios. Illumination estimation and cast
shadow detection through a higher-order graphical model. In
CVPR 2011, pages 673–680. IEEE, 2011.

[52] Alexandros Panagopoulos, Chaohui Wang, Dimitris Sama-
ras, and Nikos Paragios. Simultaneous cast shadows, illu-
mination and geometry inference using hypergraphs. IEEE
transactions on pattern analysis and machine intelligence,
35(2):437–449, 2012.

[53] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

[54] Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong
Tang, and Rynson WH Lau. Deshadownet: A multi-context
embedding deep network for shadow removal. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4067–4075, 2017.

[55] Elena Salvador, Andrea Cavallaro, and Touradj Ebrahimi.
Cast shadow segmentation using invariant color features.
Computer vision and image understanding, 95(2):238–259,
2004.

[56] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018.

[57] Li Shen, Teck Wee Chua, and Karianto Leman. Shadow op-
timization from structured deep edge detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2067–2074, 2015.

[58] Yael Shor and Dani Lischinski. The shadow meets the mask:
Pyramid-based shadow removal. In Computer Graphics
Forum, volume 27, pages 577–586. Wiley Online Library,
2008.

[59] Kalyan Sunkavalli, Todd Zickler, and Hanspeter Pfister. Visi-
bility subspaces: Uncalibrated photometric stereo with shad-
ows. In European Conference on Computer Vision, pages
251–264. Springer, 2010.

4934



[60] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2820–2828, 2019.

[61] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019.

[62] Jiandong Tian, Xiaojun Qi, Liangqiong Qu, and Yandong
Tang. New spectrum ratio properties and features for shadow
detection. Pattern Recognition, 51:85–96, 2016.

[63] Florin-Alexandru Vasluianu, Andres Romero, Luc Van Gool,
and Radu Timofte. Shadow removal with paired and un-
paired learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 826–835, June 2021.

[64] Tomás F Yago Vicente, Le Hou, Chen-Ping Yu, Minh Hoai,
and Dimitris Samaras. Large-scale training of shadow detec-
tors with noisily-annotated shadow examples. In European
Conference on Computer Vision, pages 816–832. Springer,
2016.

[65] Jifeng Wang, Xiang Li, and Jian Yang. Stacked conditional
generative adversarial networks for jointly learning shadow
detection and shadow removal. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1788–1797, 2018.

[66] Tianyu Wang, Xiaowei Hu, Qiong Wang, Pheng-Ann Heng,
and Chi-Wing Fu. Instance shadow detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1880–1889, 2020.

[67] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10734–10742, 2019.

[68] Tai-Pang Wu, Chi-Keung Tang, Michael S Brown, and
Heung-Yeung Shum. Natural shadow matting. ACM Trans-
actions on Graphics (TOG), 26(2):8–es, 2007.

[69] Ke Xian, Jianming Zhang, Oliver Wang, Long Mai, Zhe Lin,
and Zhiguo Cao. Structure-guided ranking loss for single im-
age depth prediction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
611–620, 2020.

[70] Chunxia Xiao, Donglin Xiao, Ling Zhang, and Lin Chen.
Efficient shadow removal using subregion matching illumi-
nation transfer. In Computer Graphics Forum, volume 32,
pages 421–430. Wiley Online Library, 2013.

[71] Yao Xiao, Efstratios Tsougenis, and Chi-Keung Tang.
Shadow removal from single rgb-d images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3011–3018, 2014.

[72] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017.

[73] Qingxiong Yang, Kar-Han Tan, and Narendra Ahuja.
Shadow removal using bilateral filtering. IEEE Transactions
on Image processing, 21(10):4361–4368, 2012.

[74] Mehmet Kerim Yucel, Valia Dimaridou, Anastasios Drosou,
and Albert Saa-Garriga. Real-time monocular depth estima-
tion with sparse supervision on mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 2428–2437, 2021.

[75] Jiqing Zhang, Chengjiang Long, Yuxin Wang, Xin Yang,
Haiyang Mei, and Baocai Yin. Multi-context and enhanced
reconstruction network for single image super resolution.
In 2020 IEEE International Conference on Multimedia and
Expo (ICME), pages 1–6. IEEE, 2020.

[76] Ling Zhang, Chengjiang Long, Xiaolong Zhang, and
Chunxia Xiao. Ris-gan: Explore residual and illumination
with generative adversarial networks for shadow removal.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 12829–12836, 2020.

[77] Ling Zhang, Qing Zhang, and Chunxia Xiao. Shadow re-
mover: Image shadow removal based on illumination recov-
ering optimization. IEEE Transactions on Image Processing,
24(11):4623–4636, 2015.

[78] Wuming Zhang, Xi Zhao, Jean-Marie Morvan, and Liming
Chen. Improving shadow suppression for illumination robust
face recognition. IEEE transactions on pattern analysis and
machine intelligence, 41(3):611–624, 2018.

[79] Quanlong Zheng, Xiaotian Qiao, Ying Cao, and Rynson WH
Lau. Distraction-aware shadow detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5167–5176, 2019.

[80] Jiejie Zhu, Kegan GG Samuel, Syed Z Masood, and Mar-
shall F Tappen. Learning to recognize shadows in monochro-
matic natural images. In 2010 IEEE Computer Society con-
ference on computer vision and pattern recognition, pages
223–230. IEEE, 2010.

[81] Lei Zhu, Zijun Deng, Xiaowei Hu, Chi-Wing Fu, Xuemiao
Xu, Jing Qin, and Pheng-Ann Heng. Bidirectional feature
pyramid network with recurrent attention residual modules
for shadow detection. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 121–136, 2018.

[82] Lei Zhu, Ke Xu, Zhanghan Ke, and Rynson WH Lau. Miti-
gating intensity bias in shadow detection via feature decom-
position and reweighting. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4702–
4711, 2021.

[83] Yurui Zhu, Jie Huang, Xueyang Fu, Feng Zhao, Qibin Sun,
and Zheng-Jun Zha. Bijective mapping network for shadow
removal. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5627–
5636, 2022.

4935


