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Abstract

Point-interactive image colorization aims to colorize
grayscale images when a user provides the colors for spe-
cific locations. It is essential for point-interactive coloriza-
tion methods to appropriately propagate user-provided col-
ors (i.e., user hints) in the entire image to obtain a reason-
ably colorized image with minimal user effort. However, ex-
isting approaches often produce partially colorized results
due to the inefficient design of stacking convolutional layers
to propagate hints to distant relevant regions. To address
this problem, we present iColoriT, a novel point-interactive
colorization Vision Transformer capable of propagating
user hints to relevant regions, leveraging the global recep-
tive field of Transformers. The self-attention mechanism of
Transformers enables iColoriT to selectively colorize rele-
vant regions with only a few local hints. Our approach col-
orizes images in real-time by utilizing pixel shuffling, an ef-
ficient upsampling technique that replaces the decoder ar-
chitecture. Also, in order to mitigate the artifacts caused
by pixel shuffling with large upsampling ratios, we present
the local stabilizing layer. Extensive quantitative and qual-
itative results demonstrate that our approach highly out-
performs existing methods for point-interactive coloriza-
tion, producing accurately colorized images with a user’s
minimal effort. Official codes are available at https:
//pmh9960.github.io/research/iColoriT/.

1. Introduction
Unconditional image colorization [11, 12, 30, 32, 39,

41] has shown remarkable achievement in restoring the

vibrance of grayscale photographs or films in a fully-

automatic manner. Interactive colorization methods [7, 15,

36, 37, 40, 43] further extend the task to allow users to gen-

erate colorized images with specific color conditions. These

approaches can dramatically reduce the user effort for pro-

ducing specific colorized images. It can also serve as an ef-

fective way of editing photos by re-coloring existing images

to have a new color theme. Among different types of inter-

* indicates equal contribution.

User hints Zhang et al. [43] Yin et al. [37] iColoriTSu et al. [30]

Figure 1. Example results of various point-interactive colorization

approaches. Previous approaches often produce partially colorized

results even where the grayscale values are persistent (e.g., water,

floor, and grass), which indicates that the user hints did not prop-

erly propagate to the relevant regions.

actions provided by users (e.g., a reference image or a color

palette), point- or scribble-based interactions [15,37,43] are

designed to progressively colorize images when a user pro-

vides the colors at specific point locations.

Practical point-interactive colorization methods assist

the user to produce a colorized image with minimal user

interaction. Thus, accurately estimating the regions relevant

to the user hint can be beneficial for reducing the amount

of user interactions. For example, using hand-crafted fil-

ters [15,37] to determine the region a user hint should fill in

was an early approach for colorizing simple patterns within

the image. Recently, Zhang et al. [43] proposed a learning-

based model trained on a large-scale dataset [26] which

produces colorized images with a simple U-Net architec-

ture. However, existing methods tend to suffer from par-

tially colorized results even in obvious regions where the

grayscale values are persistent, as seen in Figure 1. This is

due to the inefficient design of stacking convolutional lay-

ers in order to propagate hints to distant relevant regions.

In other words, propagating hints to large semantic regions

can only be done in the deep layers, which makes colorizing
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larger semantic regions more challenging than colorizing

smaller regions. To overcome this hurdle, we leverage the

global receptive field of self-attention layers [31] in Vision

Transformers [4], enabling the model to selectively propa-

gate user hints to relevant regions at each single layer.

Learning how to propagate user hints to other regions

aligns well with the self-attention mechanism. Specifically,

directly computing the similarities of features from all spa-

tial locations (i.e., the similarity matrix) can be viewed as

deciding where the hint colors should propagate in the en-

tire image. Thus, in this work, we present iColoriT, a novel

point-interactive colorization framework utilizing a modi-

fied Vision Transformer for colorizing grayscale images. To

the best of our knowledge, this is the first work to employ a

Vision Transformer for point-interactive colorization.

Furthermore, promptly displaying the results for a newly

provided user hint is essential for assisting users to pro-

gressively colorize images without delay. For this reason,

we generate color images by leveraging the efficient pixel

shuffling operation [27], an upsampling technique that re-

shapes the output channel dimension into a spatial reso-

lution. Through the light-weight pixel shuffling operation,

we are able to discard the conventional decoder architec-

ture and offer a faster inference speed compared to existing

baselines. Despite its efficiency, pixel shuffling with large

upsampling ratios tends to generate unrealistic images with

missing details and notable boundaries as seen in Figure 2.

Therefore, we present the local stabilizing layer, which re-

stricts the receptive field of the last layer, to mitigate the

artifacts caused by pixel shuffling. Our contributions are as

follows:

• We are the first work to utilize a Vision Transformer

for point-interactive colorization enabling users to se-

lectively colorize relevant regions.

• We achieve real-time colorization of images by effec-

tively upsampling images with minimal cost, leverag-

ing the pixel shuffling and the local stabilizing layer.

• We provide quantitative and qualitative results demon-

strating that iColoriT highly outperforms existing

state-of-the-art baselines and generates reasonable re-

sults with fewer user interactions.

2. Related Work
Interactive Colorization Learning-based methods for im-

age colorization [11–13, 13, 30, 32, 39, 41, 44] have pro-

posed fully-automated colorization methods, which gener-

ate reasonable color images without the need of any user

intervention. Interactive colorization methods [7,15–17,21,

34, 36–38, 40, 43] are designed to colorize images given a

user’s condition which conveys color-related information.

A widely-studied condition type for interactive colorization

Figure 2. Images generated with large upsample ratios [5] tends to

suffer from evident borders between image patches.

methods are reference images [7, 16, 17, 21, 34, 36, 38, 40],

which are already-colored exemplar images. Using refer-

ence images can be convenient since the user can provide

the overall color tones with a single image. However, it is

difficult for the user to further edit specific regions in the

colorized image since a new reference image is likely to

produce a different colorization result.

Point-interactive Colorization Point-interactive coloriza-

tion models [15, 37, 43] allow the user to progressively col-

orize images by specifying colors (i.e., user hints) at differ-

ent point locations in the input grayscale image. Since com-

monly used point sizes for specifying the spatial locations

range from 2× 2 to 7× 7 pixels, the user hints only cover a

small portion of the entire image. Thus, a point-interactive

colorization model is required to propagate user hints to the

entire image in order to produce a reasonable result with

minimal user interaction. Early approaches [15,37] utilized

hand-crafted image filters to determine the propagation re-

gion of each hint by detecting simple patterns. The colors

of the user hints are then propagated within each region

using optimization techniques. Recently, Zhang et al. [43]

proposed a learning-based method by extending an exist-

ing unconditional colorization model [41] to produce color

images given a grayscale image and user hints. Although

these methods use user hints as a condition for generating

color images, common failure cases presented in Figure 1

indicate that the models often propagate hints incompletely.

Stacking convolutional layers to propagate user hints indi-

cates that propagating hints to distant relevant regions can

only be done in the deeper layers, which makes colorizing

larger semantic regions more challenging than nearby re-

gions. Thus, we utilize the self-attention layer to enable user

hints to propagate to any relevant regions at all layers.

Image Colorization with Transformers Unlike the

widely-used convolution-based approach for image syn-

thesis, recent studies [5, 12, 14, 35] made efforts to syn-

thesize images by only utilizing the Transformer architec-

ture. Colorization Transformer (ColTran) [12] proposes an

autoregressive model for unconditional colorization which

uses the Transformer decoder architecture [31] in order to

generate diverse colorization results. Despite its outstand-

ing performance for unconditional colorization, the exces-

sively slow inference speed of autoregressive models hin-

ders its application to user-interactive scenarios. Specifi-

cally, it takes 3.5-5 minutes to colorize a batch of 20 images
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Figure 3. The overall workflow of iColoriT. We first obtain input X by concatenating the grayscale image Ig and the user hint Ihint

containing color conditions. The input is reshaped into input patches for the Transformer encoder. The output features from the Transformer

encoder are passed through the local stabilizing layer and the pixel shuffling layer to obtain the final colors Iab
pred. Iab

pred is then concatenated

with Ig to produce the colorized image.

of size 64×64 images even with a P100 GPU. In this work,

we leverage the Transformer encoder to generate the colors

of a grayscale image. The multi-head attention of the Trans-

former encoder enables our approach to generate color im-

ages with a single forward pass which reduces the inference

time of our model compared to autoregressive colorization.

Upsampling via Pixel Shuffling Pixel shuffling [27] is an

upsampling operation that rearranges a (H,W,C × P 2)
sized feature map into a shape of (H×P,W ×P,C) where

each channel in the original feature map is reshaped into a

P × P image patch. This can be viewed as upsampling via
reshaping, and is often used in super-resolution approaches

to effectively upsample an image with minimal computa-

tional overhead. A known issue [5] with pixel shuffling with

larger upsampling ratios (P > 8) was that output images

tend to contain evident borders between image patches as

seen in Figure 2. This is due to upsampling different im-

age patches from different locations in the feature map. To

overcome this hurdle, we present a local stabilizing layer,

which promotes neighboring image patches to have coher-

ent colors, allowing iColoriT to effectively upsample im-

ages to higher resolutions (i.e., 224 × 224) without such

artifacts.

3. Proposed Method
3.1. Preliminaries

We first prepare the grayscale image Ig ∈ R
H×W×1

and the simulated user hints Ihint ∈ R
H×W×3 to be used

as our training sample. A grayscale image Ig can be ac-

quired from large-scale datasets by converting the color

space from RGB to CIELab [28] and taking the L or light-

ness value. Similarly, the color condition Ihint provided by

the user can be expressed with the remaining a, b channel

values Ĩhint ∈ R
H×W×2 by filling the a,b channel values of

all non-hint regions with 0. The user hint Ihint ∈ R
H×W×3

is constructed by adding a third channel to Ĩhint that marks

hint regions with 1 and non-hint regions with 0.

During training, we simulate the user hints by determin-

ing the hint location and the color of the hint. We sam-

ple hint locations from a uniform distribution since a user

may provide hints anywhere in the image. Once the hint

location is decided, the color of the user hint is obtained

by calculating the average color values for each channel

within the hint region since a user is expected to provide

a single color for a single hint location. Finally, given the

grayscale image Ig ∈ R
H×W×1 and the simulated user

hints Ihint ∈ R
H×W×3, we obtain our input X ∈ R

H×W×4

by

X = Ig ⊕ Ihint,

where ⊕ is the channel-wise concatenation.

3.2. Propagating User Hints with Transformers

We utilize the Vision Transformer [4] to achieve a global

receptive field for propagating user hints across the image

as shown in Figure 3. We first reshape our input X ∈
R

H×W×4 into a sequence of tokens Xp ∈ R
N×(P 2×4),

where H,W are the height and width of the original im-

age, P is the patch size, and N = HW/P 2 is the number

of input tokens (i.e., sequence length). Thus, a P × P × 4
size image patch from the original input X is used as a sin-
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gle input token. These sequence of input tokens are passed

through the Transformer encoder, which computes the input

as,

z0 = Xp + Epos, Epos ∈ R
N×d (1)

z′l = MSA(LN(zl−1)) + zl−1, (2)

zl = MLP(LN(z′l)) + z′l, (3)

yp = LN(zL), (4)

where Epos denotes the sinusoidal positional encoding [4],

MSA(·) indicates the multi-head self-attention [31], LN(·)
indicates the layer normalization [2], d denotes the hidden

dimension, l denotes the layer number, and yp ∈ R
N×d

denotes the output of the Transformer encoder. Since self-

attention does not utilize any position-related information,

we add positional encoding Epos to the input and relative

positional bias [8, 9, 18, 25] in the attention layer. Thus, the

attention layer is computed as,

Attention(Q,K, V ) = softmax(QKT /
√
d+B)V, (5)

where Q,K, V ∈ R
N×d are the query, key and value matri-

ces, B ∈ R
N×N is the relative positional bias. The colors

of the user hints are able to propagate to any spatial loca-

tion at all layers due to the global receptive field of the self-

attention mechanism.

3.3. Pixel Shuffling and the Local Stabilizing Layer

The output features of the Transformer encoder yp ∈
R

N×d can be viewed as a feature map y ∈ R
H/P×W/P×d

of the original image. The spatial resolution of the output

feature map y is smaller than the resolution of the input im-

age by a factor of P since image patches of size P × P
consists of a single input token. Therefore, the output fea-

ture map y needs to be upsampled in order to obtain a full-

resolution color image. While previous approaches [30, 43]

leverage a decoder for upsampling, we utilize pixel shuf-

fling [27] which is an upsampling technique rearranging a

(H/P,W/P,C×P 2) feature map into a shape of (H,W,C)

to obtain a full-resolution image.

However, as mentioned in Section 2, large upsampling

ratios (e.g., P > 8) may lead to images with visible ar-

tifacts along the image patch boundaries as seen in Fig-

ure 4. Thus, in order to promote reasonable generation of

colors, we propose a local stabilizing layer, which restricts

the model to generate colors utilizing neighboring features,

and place the layer before pixel shuffling. We provide ex-

periments in Section 4.2 with various design choices for the

local stabilizing layer (e.g., linear, convolutional layer, and

local attention) and select a simple yet effective convolu-

tional layer as our final model. To sum up, our upsampling

process can be written as,

Iab
pred = PS(LS(y)), (6)

iColoriTiColoriT w/o Local Stabilizing Layer

Figure 4. Example images of inconsistent colorization results ob-

served in images produced by without the local stabilizing layer.

where PS(·) is the pixel shuffling operation, LS(·) is the

local stabilizing layer, and Iab
pred ∈ R

H×W×2 is the ab

color channel outputs. The predicted color image Ipred ∈
R

H×W×3 is obtained by

Ipred = Ig ⊕ Iab
pred,

which is the concatenation of the given grayscale input Ig
(L channel) and Iab

pred (ab channel). Through pixel shuffling

and the local stabilizing layer, we can effectively obtain a

full-resolution color image without an additional decoder,

allowing real-time colorization for the user (Section 4.1).

3.4. Objective Function

We train our model with the Huber loss [10] between the

predicted image and the original color image in the CIELab

color space,

Lrecon =
1

2
(Ipred − IGT )

2
�|Ipred−IGT |<1

+ (|Ipred − IGT | − 1

2
)�|Ipred−IGT |≥1.

(7)

4. Experiments
Implementation Details We follow the configurations of

ViT-B [4] for the Transformer encoder blocks. For the lo-

cal stabilizing layer, we use a single layer with a receptive

field of 3. We experiment with two types of layers (Sec-

tion 4.2), the local attention and the convolutional layer, and

use the simple yet effective convolutional layer as the de-

fault local stabilizing layer. For training, we resize images

to a 224 × 224 resolution and use a patch size of P = 16
which also becomes the upsampling ratio. Thus, the se-

quence length N is 196 and the last output dimension d is

512. We sample hint locations uniformly across the image

and sample the number of hints from a uniform distribu-

tion U(0, 128). We provide experiments on different model

sizes, patch sizes, the local stabilizing layer, and the number

of hints in Section 4.2 and the supplementary material.
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ImageNet ctest Oxford 102flowers CUB-200ImageNet ctest CUB 200Oxford 102flowers

Figure 5. Average PSNR and LPIPS of the test images according to the number of provided hints. Hint locations are sampled from a

uniform distribution and 2 × 2 hints are revealed to the model. Yin et al. ∗ [37] denotes the results evaluated with 2 × 2 hints and Yin et
al. [37] denotes the results evaluated with 7 × 7 hints. iColoriT outperforms existing approaches by a large margin as the number of

provided hints increases.

We use the AdamW optimizer [20] with a learning rate

of 0.0005 managed by the cosine annealing scheduler [19].

The model is trained for 2.5M iterations with a batch size of

512. The codes for iColoriT implemented with the Pytorch

library [23] will be available.

Datasets For training, we use the ImageNet 2012 train

split [26] which consists of 1,281,167 images. We do not

use the classification labels during training since our model

is trained in a self-supervised manner. We evaluate our

method on three datasets from different domains, all of

which are colorful validation datasets suitable for evaluat-

ing colorization approaches. Note that we do not addition-

ally finetune the model for each validation dataset. The Im-

ageNet ctest [13] is a subset of the ImageNet validation

split used as a standard benchmark for evaluating coloriza-

tion models. ImageNet ctest excludes any grayscale image

from ImageNet and consists of 10,000 color images. We

also evaluate on the Oxford 102flowers dataset [22] and the

CUB-200 dataset [33] which provide 1,020 colorful flower

images from 102 categories and 3,033 samples of bird im-

ages from 200 different species, respectively.

Baselines We compare the performance of iColoriT with

existing interactive colorization methods [37, 43]. We also

extend a recent unconditional colorization model by Su et
al. [30], which utilizes an off-the-shelf object detector [6] to

individually color multiple instances, to a point-interactive

colorization model. Since the model proposed by Su et
al. [30] employs the same model architecture and objec-

tive function as the point-interactive colorization model by

Zhang et al. [43], we are able to effortlessly extend the ap-

proach to a point-interactive colorization method by condi-

tioning the model with user hints in the same manner. The

extended model is trained under the configurations provided

by Zhang et al. [43] and Su et al. [30] using ImageNet [26].

Note that although the model proposed by Su et al. [30]

is trained with the ImageNet [26] dataset, this approach is

assisted by an off-the-shelf object detector pre-trained on

a large-scale object detection dataset [3]. All baselines are

trained and evaluated with the publicly available official

codes.

4.1. Comparison with Existing Approaches
Quantitative Evaluation of iColoriT We plot the average

peak signal-to-noise ratio (PSNR) and the learned percep-

tual image patch similarity (LPIPS) [42] of the test im-

ages according to the number of provided hints in Figure 5.

For evaluating the point-interactive colorization models, we

simulate user hints with the ground-truth colors from the

image, considering a situation where the user intends to

colorize the grayscale image into the original color image.

User hints are simulated by randomly selecting hint loca-

tions from a uniform distribution. The hint sizes are set

to 2 × 2 and the hint color is given as the average color

within each hint region in the original color image follow-

ing the protocol of Zhang et al. [43]. We empirically find

that smaller hint sizes are usually beneficial for both the

colorization model and the user in terms of receiving and
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Input User hints Zhang et al. [43] Yin et al. [37] Su et al. [30] iColoriT Ground-truth

Figure 6. Qualitative results of point-interactive colorization methods given 1, 5, 10, and 100 user hints. iColoriT is able to produce

reasonable color images by appropriately propagating user hints.

giving accurate color conditions. However, the method pro-

posed by Yin et al. [37] assumes that a user provides an

abundant amount of user hints. Thus, we further evaluate

this method by revealing larger hints of size 7× 7 which is

the result we report for all following evaluations.

We empirically find that methods proposed by Zhang et
al. [43] and Su et al. [30] tend to arbitrarily colorize im-

ages without reflecting user hints. While this may be help-

ful for achieving a relatively higher initial PSNR when the

arbitrarily colorized color is the ground-truth color, it hin-

ders further control for the user to achieve a high PSNR

in subsequent stages of colorization. As seen in Figure 5,

iColoriT quickly reflects the user hints and aids the user to

efficiently colorize grayscale images with minimal interac-

tion. The PSNR in the early stages of colorization notably

increases with each additional hint. The results indicate that

iColoriT highly outperforms existing baselines for generat-

ing colorized images a user specifically has in mind.

Qualitative Results of iColoriT We provide qualitative re-

sults produced by the baselines and iColoriT in Figure 6

when given an original grayscale image and the simulated

user hints. iColoriT is able to produce realistic images that

closely resemble the ground-truth image indicating that a

user can colorize images as they please. Also, as seen in the

colorized results in Figure 1 and Figure 6, iColoriT is capa-

ble of appropriately colorizing large areas even with a small

number of user hints while other approaches leave most re-

gions uncolored or incorrectly colored. iColoriT can also

Methods PSNR@10 LPIPS@10

iColoriT-T 28.86 0.084

iColoriT-S 29.67 0.073

iColoriT 30.63 0.062
Table 1. Scalability of iColoriT to lightweight models. PSNR and

LPIPS given 10 user hints (PSNR@10 and LPIPS@10) on the Im-

ageNet ctest [13] are reported for each model.

colorize detailed regions when given a sufficient number of

hints as shown in the last row of Figure 6.

iColoriT is also suitable for producing diverse colorized

images when given various user hints as seen in Figure 7.

Instead of the simulated user hints from the ground-truth

image, we provide multiple sets of hand-picked user hints to

colorize a single grayscale image. We fix the hint locations

for an image and alter the user-provided colors to observe

the colorized results. iColoriT can produce various realistic

colorization results that reflect the intention of the user. We

provide uncurated qualitative results and a demo video in

the supplementary material. Also, we will release the iCol-

oriT demo including the graphical user interface, providing

a powerful tool for image colorization.

Scaling to Lightweight Models iColoriT can easily scale

to smaller models and still achieve high performance. We

train iColoriT in smaller scales using the configurations

of the ViT-S and the ViT-Ti [29] for our Transformer en-

coder. We report the PSNR and the LPIPS given 10 hints
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Input Diverse Colorization Results

Figure 7. Images colorized with different colors provided by the

user. The images from the ImageNet ctest [13] are colored by

hand-picking hint locations and changing the hint colors.

(PNSR@10 and LPIPS@10) for ImageNet ctest and com-

pare them against other models in Table 1. We were able

to train iColoriT-S and iColoriT-T with only a slight perfor-

mance drop and still maintain a high performance. We be-

lieve that the Transformer architecture and the self-attention

mechanism are central for propagating hints to larger se-

mantic regions, achieving a high PSNR even in small-scale

models.

Real-time Inference The inference speed (i.e., latency) of

point-interactive models is important for providing a satis-

fying user experience. Thus, we measure the time required

for a single forward pass and compare it with the latency of

baseline models in Table 2. We report the speed on both

CPU and GPU using a commercial AMD Ryzen 5 PRO

4650G and a single NVIDIA RTX 3090. We also provide

the number of floating-point operations (FLOPs) and the

number of parameters required for each model. We were

not able to measure GPU latency, FLOPs, and the num-

ber of parameters for Yin et al. [37] since the method is

not a learning-based model. The model proposed by Su et
al. [30] operates in two stages, an initial object detection

stage and an instance-wise colorization stage. We only re-

port the latency for the second stage which still exhibits

a slow inference speed since the colorization model needs

to color multiple objects individually. Due to the efficient

pixel shuffling for upsampling images, iColoriT enjoys a

short latency of 540ms and 14ms on a CPU and GPU de-

vice respectively, providing real-time colorization results

for the user. iColoriT-T and iColoriT-S show an exception-

Methods
CPU

Latency

GPU

Latency
GFLOPs

Zhang et al. [43] 881ms 24ms 58.04

Yin et al. [37] 15,248ms - -

Su et al. [30] 1,389ms 45ms 123.48

iColoriT-T 177ms 13ms 1.43
iColoriT-S 253ms 14ms 4.95

iColoriT 540ms 14ms 18.22

Table 2. Inference speed of iColoriT and each baseline model. We

provide the latency of each model in a CPU device and a GPU

device along with the computational cost measured in FLOPs and

number of parameters.

ally fast inference speed on a CPU-only device (i.e., 177ms

and 253ms, respectively), which makes the model an ap-

pealing option when considering applications to real-world

scenarios where accelerators may not be available.

4.2. Ablation Study
Designing the Local Stabilizing Layer We provide an ab-

lation study on the local stabilizing layer by replacing it

with different operations such as the linear layer and the

local self-attention layer [24]. Using a linear layer can be

viewed as eliminating the local stabilizing layer since a lin-

ear layer does not utilize neighboring features for generat-

ing the final output. In order to quantify the inconsistent

color generation among image patches seen in Figure 4,

we measure the mean squared error (MSE) for each image

patch and report the variance of the errors within an image.

We denote this measure the patch error variance (PEV). A

high PEV implies that the model has varying accuracy de-

pending on the image patch. The local stabilizing layer re-

solves this issue in a simple yet effective manner by predict-

ing the ab channel values of an image patch from neighbor-

ing output features as illustrated in Figure 3. We also mea-

sure the PSNR near the image patch boundaries (i.e., one

pixel from the patch borders) to observe the accuracy in the

regions containing inconsistent color generation. As seen in

Table 3, adding an operation with a limited receptive field

(i.e., convolution and local self-attention) lowers the PEV

and increases the PSNR along the patch boundaries, indi-

cating that the model generates colors with consistent accu-

racy across the image. The convolutional layer serves as a

simple yet effective approach for reducing artifacts caused

by pixel shuffling and generating realistic colorized images.

Changing the Upsampling Ratio We experiment on vari-

ous patch sizes P (i.e., P = 8, 16, and 32), which also be-

comes the upscaling ratio for pixel shuffling. While smaller

patch sizes may allow fine-grained calculation of the sim-

ilarity matrix, the computational cost escalates biquadrat-
ically, since the computational complexity for the self-

attention follows O(N2) and N = HW/P 2 is the se-

quence length. Thus, we were not able to train our base
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Methods PSNR@10 B-PSNR@10 PEV↓
Linear 28.78 28.71 39.39

Local Attention 28.85 28.77 38.82

Convolution 28.86 28.80 38.81
Table 3. Ablation study on the local stabilizing layer. PSNR@10,

PSNR along the boundary (B-PSNR@10), and PEV on the Im-

ageNet ctest [13] are reported for each model. All models are

trained with the iColoriT-T configuration.

Patch Size PSNR@10 CPU Latency

8× 8 29.17(+0.31) 373ms(+196ms)

32× 32 28.32(−0.54) 147ms(−30ms)

16× 16 28.86 177ms

Table 4. iColoriT different upsampling ratios. PSNR@10,

LPIPS@10, and CPU latency are reported for each model on

the ImageNet ctest [13] test set. All models are trained with the

iColoriT-T configuration.

model with a smaller patch size due to the prohibitive com-

putational overhead. Instead, we compare the results on the

smaller iColoriT-T model and report the average PSNR@10

and CPU latency on Table 4. While using a smaller patch

size may be beneficial for achieving a higher PSNR, the in-

creased computational cost hinders scaling to larger models

for an additional performance gain and increases the CPU

latency. We choose a patch size of 16 × 16 since it can ob-

tain both a short latency and a high PSNR while also being

scalable to larger models (i.e., iColoriT-S and iColoriT).

4.3. Visualizing the Internal Representation
We further provide analysis on the self-attention mech-

anism to examine how our model is propagating user hints

to other regions. We use the attention rollout method [1]

to interpret the attention weights from the Transformer en-

coder for specific spatial locations. We visualize the atten-

tion maps for the input tokens which contain a user hint

in Figure 8. Attention maps for hint locations can be di-

rectly interpreted as how the hint is propagating to other

locations since tokens with high similarities are likely to

be colorized with similar color as the color of the user

hint. The self-attention mechanism enables iColoriT to se-

lectively colorize relevant locations, even for regions with

spatially complicated structures. These visualization aligns

well with our qualitative and quantitative results demon-

strating that iColoriT can effectively aid users to colorize

images with minimal interaction.

5. Conclusion and Limitations
In this paper, we present iColoriT, a novel real-time

point-interactive colorization framework capable of selec-

tively propagating colors of the user hints to relevant re-

gions. Through the Transformer encoder, pixel shuffling and

the local stabilizing layer, iColoriT highly outperforms ex-

Figure 8. Visualization of the self-attention mechanism employing

the attention rollout [1] method. iColoriT appropriately attends the

user hint to relevant locations even for complex structures.

Ground-truthiColoriTUser hintsInput
Figure 9. A common failure case for point-interactive colorization

models in detailed regions.

isting baselines, being able colorize images with minimal

user interaction. Also, qualitative results indicate that iCol-

oriT can generate diverse and realistic results when given

various user hints. We justify our novel design through ex-

tensive experiments and ablation studies.

Although iColoriT shows its strength even in detailed

regions as shown in both quantitative and qualitative re-

sults, iColoriT may not be able to colorize small objects

or distinguish close objects with the same grayscale inten-

sity, since it does not leverage any semantic labels. This is

a common drawback of point-interactive colorization ap-

proaches as seen in Figure 9 since models are trained in a

self-supervised manner. Directly utilizing segmentation la-

bels for training a point-interactive colorization model can

be a promising future work. Nonetheless, we believe that

the iColoriT is a practical application for real-world scenar-

ios, effectively assisting the user to colorize images.
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