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Abstract

Computationally expensive neural networks are ubiqui-
tous in computer vision and solutions for efficient inference
have drawn a growing attention in the machine learning
community. Examples of such solutions comprise quanti-
zation, i.e. converting the processing values (weights and
inputs) from floating point into integers e.g. int8 or int4.
Concurrently, the rise of privacy concerns motivated the
study of less invasive acceleration methods, such as data-
free quantization of pre-trained models weights and acti-
vations. Previous approaches either exploit statistical in-
formation to deduce scalar ranges and scaling factors for
the activations in a static manner, or dynamically adapt
this range on-the-fly for each input of each layer (also re-
ferred to as activations): the latter generally being more
accurate at the expense of significantly slower inference. In
this work, we argue that static input quantization can reach
the accuracy levels of dynamic methods by means of a per-
channel input quantization scheme that allows one to more
finely preserve cross-channel dynamics. We show through
a thorough empirical evaluation on multiple computer vi-
sion problems (e.g. ImageNet classification, Pascal VOC
object detection as well as CityScapes semantic segmenta-
tion) that the proposed method, dubbed SPIQ, achieves ac-
curacies rivalling dynamic approaches with static-level in-
ference speed, significantly outperforming state-of-the-art
quantization methods on every benchmark.

1. Introduction
Deployment of State-of-the-art deep neural networks

(DNNs) on edge devices has become increasingly difficult.
Although edge computing has recently drawn more atten-
tion, motivated by privacy [30] and environmental sustain-
ability concerns [22], DNNs have grown more computation-
ally expensive. However, several techniques exist that aim
at reducing this burden, among which quantization.

As defined in [14], quantization consists in mapping a
set of continuous variables to a finite set of values, e.g. int8,

int4 or ternary, in order to compress the bit-wise represen-
tation. Quantization trends can be distinguished by data-
usage and range calibration.

First, the approximation introduced by quantization of-
ten requires adjustments in order to preserve the origi-
nal accuracy of the model. This can be performed us-
ing real training data and is called data-driven quantization
[17, 23, 32, 16]. Although such methods can afford lower
bit-wise representations, they are both computationally ex-
pensive and less convenient to use. On the other hand, when
quantization is performed without re-training, it is often re-
ferred to as post-training quantization (PTQ) or data-free
quantization [3, 12, 37, 27, 6]. Such methods are convenient
for applications where privacy and security are mandatory.
This work aims at reducing the gap between data-free and
data-driven quantization by rethinking input quantization.

Second, in order to quantize inputs, the range of their
distribution has to be estimated. In data-free quantization,
inputs of each layer are quantized based on statistics de-
termined either from the already trained parameters (static
quantization) [27] or based on statistics computed on-the-
fly based on each sample at inference (dynamic quantiza-
tion) [31]. The latter usually offers significantly higher ac-
curacy at the expense of a slower inference, more-so on low
bit-wise representations.

While most research on data-free quantization [2, 3, 5,
12, 13, 37, 27] don’t thoroughly study the specificities of
activation quantization. As such the naive per-channel ac-
tivation quantization from [2] can’t be applied in practice
in addition to per-channel weight quantization. This is due
to the requirement of rescaling each terms in the summa-
tion in the matrix products. We detail and tackle this issue
in order to achieve true per-channel quantization for both
weights and activations. As compared to standard static
quantization, the proposed method offers strong benefits in
terms of accuracy as illustrated in Fig 1. Furthermore, we
show that per-channel input range estimation allows tighter
modelling of the full-precision distribution as compared to
a per-example, dynamic approach. We call this approach
SPIQ, standing for Static Per-channel Input Quantization.
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Figure 1. Illustration of the accuracy drop attributable to the input and activation quantization. We perform input quantization as defined
in [27] as well as SPIQ (ours) but keep the DFQ quantized weight values, i.e. per-tensor weight quantization is applied. The results show
that input quantization is paramount to the network accuracy preservation, most notably on already compact designs (e.g. MobileNet and
EfficientNet). On all tested configurations, SPIQ significantly improves DFQ [27].

In practice, we show that SPIQ significantly improves over
both the static and dynamic approaches. It also outper-
forms current state-of-the-art data-free quantization tech-
niques on a variety of benchmarks, including image classi-
fication, object detection and semantic segmentation at sev-
eral bit widths.

2. Related Work
2.1. Quantization

As pointed out in [15] by Gray and Neuhoff, quantization
as a compression method transforming continuous values
to discreet ones, has a long history. Rounding and truncat-
ing are the most common examples. As discussed in [14],
quantization methods are classified as either data-driven
[17, 20, 23, 32, 8, 16] or data-free [2, 3, 5, 12, 13, 37, 27, 6].
Data-driven methods have been shown to work remarkably
well despite a coarse approximation of the continuous op-
timisation problem. However, the cost of retraining the
model has limited the use of such solutions in inference
engine and in general for Machine Learning as a Service
(MLaaS) [28]. Furthermore, with the rise of privacy con-
cerns especially in health services [35], data-free methods
are becoming of most importance. However such methods
often come at the cost of a lower accuracy.

2.2. Data-Free Quantization

The importance of data-free quantization is discussed
in more details, in the most recent survey on the matter
[14]. Most data-free methods focus on mitigating the ac-
curacy drop resulting from the quantization process. For
instance, DFQ [27] proposes to balance-out weight distri-

bution across layers in order to reduce the bias induced by
quantization. They also propose the first static input quanti-
zation method based on learned statistics stored in batch-
normalization layers parameters. In SQuant [6], authors
propose to further improve weight quantization by chang-
ing the implicit objective function. More formally, round-
ing scalar weights minimizes the mean squared error be-
tween the scalar quantized weights and the original weights.
SQuant minimizes the absolute sum of errors between ten-
sor instead of scalar values. Similarly most data-free meth-
ods [2, 3, 5, 12, 13, 37, 27] don’t tackle the specificities of
activation quantization.

2.3. Input Quantization

In this work, we put the emphasis on the importance of
input quantization, especially for the already compact ar-
chitectures such as MobileNet [29] and EfficientNet [33] as
previously shown in Fig 1. The standard method for input
quantization, introduced in [27] and latter used in [6, 36],
consists in statically estimate coarse variation ranges for
each layer. The parameters for this static method are com-
puted once and for all during quantization then fixed during
inference: this provides the best inference speed but for at
the cost of a lower accuracy due to coarse modelization of
the input ranges. Other work, such as [2], apply the same
per-channel quantization to both weights and activations.
Unfortunately, this leads to unpractical inference. Conse-
quently, they require a floating point scaling factor for each
combination of weights and inputs which leads to as many
floating point multiplications as quantized multiplications
and defeats the purpose of quantization. This is why such
approaches are not considered here nor in practice. Still,
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in this work, we argue that a significant fraction of the ac-
curacy loss comes from input (and activation) quantization.
Following these observations, we propose SPIQ, a method
that reaches the accuracy level of the dynamic method by
implementing a per-channel input quantization scheme, that
don’t introduce floating operations in the quantized model.

3. Methodology
Let F : D 7→ Rno be a feed forward neural network de-

fined over a domain D ⊂ Rni and output space Rno . The
operation performed by a layer fl, for l ∈ {1, . . . , L}, is de-
fined by the corresponding weight tensor Wl ∈ Anl−1×nl

where A is simply R in the case of fully-connected layers
and Rk×k in the case of a k × k convolutional layer. We
note Il the input of a fully-connected layer fl. Let’s con-
sider a quantization operator Q : R → [−β;β] ∩ N which
maps real values to a bounded set of integer values where
β = 2b−1−1 and b defines the bit-width of the target repre-
sentation. The standard quantization operator is defined as
Q : x 7→ ⌊x/sx⌉ where ⌊·⌉ is the rounding operation and sx
is a scaling factor. Then, the quantized layer fq

l is defined
as

fq
l : Il 7→ Q−1 (Q(Il)×Q(Wl)) = sIl ⊙ sWl

⊙
(⌊

Il
sIl

⌉
×
⌊

Wl

sWl

⌉)
(1)

where ⊙ is the element-wise product. The values of sIl
and sWl

depend on the information available on Il and
Wl respectively. In the case of weight tensor Wl dur-
ing the quantization process, all the information is avail-
able. Consequently, the value of sWl

is derived from Wl

in order to scale the scalar weight values distribution to
[−β;β]. There are two quantization options. First, per
output-channel weight quantization, in this case sWl

∈ Rnl
+

is a nl−dimensional vector and each output channel (or
neuron) is scaled independently. Second, per-layer (or per-
tensor) quantization, where sWl

∈ R+ is a scalar value
that scales the whole weight tensor Wl. Formally, if the
note W channel

l the per-channel quantized tensor and W layer
l

the per-layer quantized tensor,
W channel

l =

⌊
(2b−1 − 1)

(
Wn

l

maxw∈Wn
l
{|w|}

)
n∈{1,...,nl}

⌉
W layer

l =
⌊
(2b−1 − 1) Wl

maxw∈Wl
{|w|}

⌉
(2)

where Wn
l is the nth column of Wl corresponding to the nth

neuron of layer fl.

3.1. Static and Dynamic Input Quantization

The definition of sIl from equation 1 induces a dimen-
sionality constraint. We need to apply sIl to both Il (which
has nl−1 channels) and

⌊
Il
sIl

⌉
×
⌊

Wl

sWl

⌉
, i.e. if sIl is a vector

then sIl needs to be of dimension nl−1 and nl in order to be

applied to Il and
⌊

Il
sIl

⌉
×
⌊

Wl

sWl

⌉
respectively. Therefore, sIl

has to be a single, scalar value that scales the whole input
tensor.

Similarly to the weight scaling factor sWl
, the input scale

sIl is computed based on the support of the distribution to
scale. However, in the case of data-free quantization, we
don’t have access to the statistical properties of the input
domain D of F . In order to circumvent this limitation we
can apply either a static or dynamic activation quantization
scheme.

Static Input Quantization: The goal is to compute
sstatic
Il

∈ R based on an estimation of the maximum of Il
over the domain D. Assume a BN layer precedes fl, we can
assert that

E[Il]n = βn and V[Il]n = γn (3)

where β ∈ Rnl−1 and γ ∈ Rnl−1 are the centering and scal-
ing vector parameters of the BN layer respectively. Conse-
quently, the maximum value of Il over the domain D, can
be derived by searching for the maximum over the output
channels and we get,

maxi∈Il from D{|i|}
2b−1−1

≈ maxn{βn+λ×
√
γn}

2b−1−1
= sstatic

Il
∈ R

(4)
where λ is a sensitivity parameter. This quantization
method requires no additional computations at inference but
only introduces a very coarse, per-layer scaling factor sstatic

Il
.

Dynamic Input Quantization: The goal is to compute
sdynamic
Il

∈ R based on the inferred input Il at the cost of
overhead computations at inference. Consequently

maxi∈Il{|i|}
2b−1 − 1

= sdynamic
Il

∈ R (5)

The computation of max i ∈ Il{|i|} is performed at each
inference which adds a significant computational over-
head (see section 4.3). However, the scaling factor
max i ∈ Il{|i|} is necessarily tighter than in the static case,
hence a lower quantization error. Nevertheless, we argue
that it is possible to design a tighter static input quantiza-
tion scheme thanks to per-channel rescaling.

3.2. Per-Channel Static Input Quantization

We define the scaling vector schannel
Il

∈ Rnl−1 using the
BN layers. Formally,

maxi∈In
l from D{|i|}

2b−1 − 1
≈ βn + λ×

√
γn

2b−1 − 1
=
(
schannel
Il

)n
(6)

with schannel
Il

∈ Rnl−1 . However, we are no longer able to
perform the de-quantization as described in equation 1 be-
cause of dimensionality issues. Formally, the scaling vec-
tor schannel

Il
can be applied to Il but not to the activation
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⌊
Il
sIl

⌉
×
⌊

Wl

sWl

⌉
. To tackle this limitation, we propose to

decompose the quantization in two steps. First, we update
Wl such that it applies both the inverse of the rescaling sIl
to the inputs Il and the operation originally defined by Wl.
Then we note,

W channel
l = diag(schannel

Il
)×Wl (7)

where diag is the transformation of a vector in a diagonal
matrix. Second, we scale the new value W channel

l as a single
weight tensor. Consequently, equation 1 becomes:

fq
l : Il 7→ sW channel

l
⊙

(⌊
Il

schannel
Il

⌉
×

⌊
W channel

l

sW channel
l

⌉)
(8)

In other words, the per-channel input ranges and scaling fac-
tor schannel

Il
are computed and folded within Wl (equation 7).

This allows us to re-scale the input Il prior to quantization
only, thus circumventing the dimensionality constraint in-
troduced in section 3.1. Moreover, this allows us to reduce
the error as compared to the quantization as each output
channel (or neuron) becomes:

(fq
l (Il))

n
=
∑nl−1

m=1 s
n
W

⌊
Im
l

smIl

⌉
×
⌊
(2b−1 − 1)

Wn,m
l /smIl

maxm{|Wn,m
l |/smIl}

⌉
(9)

where smIl is the mth value of schannel
Il

and Wn,m
l is value of

coordinate n,m. Furthermore, we deduce from equation 6
that, ∥∥∥∥∥Il − smIl

⌊
Iml
smIl

⌉∥∥∥∥∥ ≤

∥∥∥∥∥Il − sstatic
Il

⌊
Iml
sstatic
Il

⌉∥∥∥∥∥ (10)

in other words, the quantization error on the input is lower
with the per-channel method. However, this method also
changes the weight quantization by folding the input scales
in the weight tensor Wl. The difference between the static
and per-channel static methods lies in the denominator
maxm{|Wn,m

l |/smIl } from equation 9. By definition, we
have smIl ≤ sstatic

Il
and scalar values Wn,m

l of Wl are likely to
be cancelled if and only if both the Wn,m

l and correspond-
ing Iml have near zero ranges. We deduce that the proposed
method results in a lower quantization error on average, i.e.

EI∈D

[∥∥∥∥∥IW − sWschannel
I

⌊
I

schannel
I

⌉⌊
Wschannel

I

sWschannel
I

⌉∥∥∥∥∥
]

≤ EI∈D

[∥∥∥∥IW − sstatic
I sW

⌊
I

sstatic
I

⌉⌊
W

sW

⌉∥∥∥∥]
(11)

This provides an intuition on the superior performance of
the proposed SPIQ quantization scheme over the reference
static approach. In what follows, we show that SPIQ also
empirically outperforms the dynamic approach, which in
turn allows to significantly improve over current state-of-
the-art methods.

4. Experiments
4.1. Datasets and Implementation Details

We validate the proposed method on three challenging
computer vision tasks. First, on image classification, we
consider ImageNet [9]. Second, on object detection, we
conduct the experiments on Pascal VOC 2012 [11]. Third,
on image segmentation, we use the CityScapes dataset [7].

In our experiments we tackle the challenging compres-
sion of MobileNets [29], ResNets [18], EfficientNets [33]
and DenseNets [19] on ImageNet. For Pascal VOC object
detection challenge we use an SSD [24] architecture. On
CityScapes we use DeepLab V3+ [4].

ResNet, DenseNet, MobileNet and EfficientNet for Ima-
geNet come from Tensorflow model zoo [1]. In object de-
tection, we tested the SSD model with a MobileNet back-
bone from [25]. Finally, in image semantic segmentation,
the DeepLab V3+ model came from [10]. The networks
pre-trained weights provide standard baseline accuracies
on each task. SPIQ and quantization baselines are imple-
mented using Numpy. The results were obtained using an
Intel Core i9-9900K CPU and RTX 3090 GPU.

We performed hyper parameter settings as well as com-
parisons using the standard quantization operator over
weight values from [21] (same as as OCS [37] and SQNR
[26]). For our comparison with state-of-the-art approaches
in data-free quantization, we applied the more complex
quantization operator from SQuant [6] using our own im-
plementation which was carefully implemented so as to
match the results for the original paper.

4.2. Hyper-Parameter Setting

The proposed method only requires one hyper-parameter
λ which sets the number of standard deviations in the scal-
ing value of the inputs, as defined in equation 6. In DFQ
[27], authors recommend setting λ = 6 for the static input
quantization, based on a Gaussian prior and the objective
to keep over 99.99% of the input values not clipped. Intu-
itively, the value of λ determines the support of the expected
input distribution. In other words, a large value λ induces
almost no outliers but many small values will be quantized
in a very coarse manner. On the other hand, a small value λ
induces many input outliers that will be clipped but a fine-
grained quantization of smaller inputs. We empirically val-
idate the best value for λ and report our results in Fig 2. We
observe that the bit-width (int4,...) has more importance
than the neural network architecture on the value of λ: the
smaller the representation the lower the optimal value for
λ. This is a consequence of the fact that smaller bit-width
can represent less values while still needing to finely quan-
tize small input values. For the sake of simplicity, we use a
common value of λ for all architectures and define λ = b,
e.g. in int8 we use λ = 8 and in int4 we use λ = 4.
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Figure 2. Influence of hyper-parameter λ on top1 accuracy for weights quantized in int8 using the naive per-channel quantization and inputs
quantized either in int8 or int4 our protocol for input quantization, on ResNet 50, MobileNet V2, DenseNet 121 and EfficientNet B0 for
classification on ImageNet.

Table 1. Comparison of the inference time on the ImageNet valida-
tion set for different architectures quantized with the static (same
runtime as SPIQ) and the dynamic methods. We report the boost
induced by using the proposed static method.

Method ResNet MobNet V2 DenseNet EffNet B0
dynamic 79s 50s 93s 59s

SPIQ 63s 41s 77s 51s
boost 20.2% 18.0% 17.2% 13.6%

Table 2. Comparison between state-of-the-art, data-free, post
training quantization techniques with ResNet 50 on ImageNet. We
distinguish methods requiring data generation (No DG). In SPIQ
the weight quantization method is SQuant.

Method No DG W-bit A-bit Accuracy

R
es

N
et

50

Baseline - 32 32 76.15
DFQ [27] ✓ 8 8 75.45
ZeroQ [3] ✗ 8 8 75.89
DSG [36] ✗ 8 8 75.87

GDFQ [34] ✗ 8 8 75.71
SQuant [6] ✓ 8 8 76.04

SPIQ + SQuant ✓ 8 8 76.15
DFQ [27] ✓ 4 4 0.10
ZeroQ [3] ✗ 4 4 7.75
DSG [36] ✗ 4 4 23.10

GDFQ [34] ✗ 4 4 55.65
SQuant [6] ✓ 4 4 68.60

SPIQ + SQuant ✓ 4 4 69.70

4.3. Comparison with Static and Dynamic baselines

Fig 3 presents the comparison between the static, dy-
namic and SPIQ method in terms of accuracy with re-
spect to the bit-width of the inputs and activations. Given
weights quantized with [21] in int8, we observe the accu-
racy improvement offered by the dynamic approach over

the static one. For instance, on DenseNet 121 in W8/A3
(int 8 weights and int3 activations), we observe an improve-
ment of 15.38 points. This is due to the adaptive scaling
to each input from the dynamic method. Nonetheless, the
proposed per-channel manages to further improve the accu-
racy over the dynamic method. On the same example, SPIQ
adds 46, 39 and 31, 01 points over the static and dynamic
baselines respectively. The only architecture on which the
dynamic and SPIQ methods achieve similar results is Mo-
bileNet V2 while on EfficientNet B0 quantized in W8/A6,
SPIQ outperforms the dynamic approach by 30.35 points.
These results are a consequence of a tighter quantization
for each specific channel with SPIQ.

Furthermore, in terms of inference speed, as measured
in Table 1, the SPIQ method systemically outperforms the
dynamic approach. For instance, on MobileNet V2 the pro-
posed method achieves a 18% faster inference. This corre-
sponds to the cost of tuning the scaling parameters for each
inputs during inference. Consequently, SPIQ offers the in-
ference speed of the static approach and with an accuracy
on par or greater than the dynamic method.

In the following section, we comapre the SPIQ perfor-
mance to other data-free quantization algorithm.

4.4. Comparison with State-Of-The-Art

Table 2 lists the performances of several data-free quan-
tization methods on different quantization configurations of
ResNet 50 on ImageNet. We classify methods by their us-
age of data generation (DG). Such requirement is time con-
suming as compared to the proposed method which takes
less than a second to quantize the model while several back-
propagation passes take a few minutes and fine-tuning a few
hours. Nonetheless, we demonstrate that the proposed input
quantization allows us to achieve superior results than other
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Figure 3. Comparison between SPIQ and static and dynamic inputs quantization. The weight quantization is fixed to 8 bits and we vary
the input bit range from int2 (ternary quantization) to int8. We report the top1 accuracy on over ImageNet for ResNet 50, MobileNet V2,
EfficientNet B0 and DenseNet 121.

Table 3. Comparison between state-of-the-art, data-free, post
training quantization techniques with MobileNet V2, DenseNet
121 and EfficientNet B0 on ImageNet. We focused on data-
free post training quantization methods that don’t involve back-
propagation. In SPIQ the weight quantization method is SQuant.

Method No BP W-bit A-bit Accuracy

M
ob

ile
N

et
V

2

Baseline - 32 32 71.80
DFQ [27] ✓ 8 8 70.92

SQuant [6] ✓ 8 8 71.68
SPIQ + SQuant ✓ 8 8 71.79

DFQ [27] ✓ 6 6 45.84
SQuant [6] ✓ 6 6 55.38

SPIQ + SQuant ✓ 6 6 63.24

D
en

se
N

et
12

1

Baseline - 32 32 75.00
DFQ [27] ✓ 8 8 74.75
OCS [37] ✓ 8 8 74.10

SQuant [6] ✓ 8 8 74.70
SPIQ + SQuant ✓ 8 8 75.00

DFQ [27] ✓ 4 4 0.10
OCS [37] ✓ 4 4 0.10

SQuant [6] ✓ 4 4 47.14
SPIQ + SQuant ✓ 4 4 51.83

E
ffi

ci
en

tN
et

B
0

Baseline - 32 32 77.10
DFQ [27] ✓ 8 8 46.43

SQuant [6] ✓ 8 8 76.93
SPIQ + SQuant ✓ 8 8 77.02

DFQ [27] ✓ 6 6 20.29
SQuant [6] ✓ 6 6 54.51

SPIQ + SQuant ✓ 6 6 74.67

data-free quantization protocols by a large margin. Specifi-
cally, in int8 the accuracy almost reaches the full precision
(float 32) accuracy while in int4, we reduce the accuracy
drop by 14.56% as compared to SQuant alone and by 68.5%
as compared to GDFQ [34]. This confirms that the applica-
tion of the input scaling to the weights before quantization
(equation 8 in section 3.2) does not harm the weight quanti-
zation even in low precision. Overall, the proposed method
achieves remarkable accuracy in this benchmark.

Table 4. Performance (mIoU) on semantic segmentation on
CityScapes dataset.

method W4/A4 W6/A6 W8/A8 -

D
ee

pL
ab

V
3+

baseline - - - 70.71
DFQ + static 6.51 45.71 70.11 -

DFQ + dynamic 7.51 66.65 70.22 -
SQuant + static 7.69 66.77 70.21 -

SQuant + dynamic 28.87 66.98 70.42 -
SQuant + SPIQ 36.14 68.69 70.66 -

Table 5. Performance (mAP) on object detection on Pascal VOC
2012 dataset with SSD MobileNet.

method W4/A4 W6/A6 W8/A8 -

SS
D

M
ob

ile
N

et baseline - - - 68.56
DFQ + static 3.94 53.52 67.91 -

DFQ + dynamic 15.95 62.31 67.52 -
SQuant + static 14.98 61.29 68.43 -

SQuant + dynamic 35.47 66.72 68.56 -
SQuant + SPIQ 37.88 68.01 68.56 -

To further validate the efficiency of SPIQ, in Table 3, we
report results on DenseNet 121, EfficientNet and MobileNet
V2. The considered architectures, especially MobileNet V2
and EfficientNet, are even more challenging than ResNet
to quantize without accuracy drop even in relatively large
representations such as int6. We only focused on the state-
of-the-art approaches (without data generation) OCS [37],
DFQ [27] and SQuant [6]. We observe the large benefits
of a stronger input quantization method as SPIQ improves
by 7.86% the accuracy of SQuant and 17.4% over DFQ on
MobileNet V2 in int6. The results are even more impressive
on EfficientNet B0 in int6, as SPIQ improves the accuracy
by 20.16% of SQuant and 31.59% over DFQ. As compared
to OCS, on DenseNet 121, the proposed method boosts the
accuracy by 8.74%. Still, data-free quantization has room
for improvement in int4 quantization, on already efficient
architectures such as MobileNet V2 and EfficientNet B0.
In the following section, we propose to generalize these re-
markable results to other challenging tasks.
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Figure 4. Distribution of the quantization ranges outputted by SPIQ, the dynamic and static baselines on the inputs of 3 different layers
of a ResNet 50. The static baseline is constant, while dynamic and SPIQ vary depending on the input samples and channels respectively.
The lower the computed ranges to 0 (the closer to the left of the each subplot), the better. SPIQ generally allows tighter adaptation to the
original input distribution, as compared with both the static and dynamic methods.

4.5. Other Applications

Semantic Segmentation: In table 4, we report the per-
formance of SPIQ method on image semantic segmenta-
tion task of CityScapes dataset. The dynamic approaches
still provides more accuracy than the static baseline due to
its adaptive scaling of each input regardless of the weight
quantization process. Still, due to a finer quantization of the
inputs for each channel, SPIQ manages to further improve
the accuracy over the dynamic method reaching outstand-
ing results such as 68.69 mIoU in W6A6. This confirms the
two previous main results: first, SPIQ offers the highest ac-
curacy while preserving the inference-time benefits of static
input quantization. Second, when used in combination with
a strong weight quantization protocol, SPIQ achieves state-
of-the-art performances and significantly improve the accu-
racy in low-bit representation (int4). More precisely, we
improve by 29.63% the mIoU of a DeepLab V3+.

Object Detection: In Table 5, we report the performance
of SPIQ method on object detection of Pascal VOC 2012
dataset. Dynamic input quantization outperforms the static
baseline in terms of accuracy at the expense of runtime.
Nonetheless, SPIQ manages to further improving the mAP
by 2.41 points. This is a consequence of the fine-grained
quantization suited for each input channel of each layer of
the network, in all bit-width configurations. These results
confirm our two main results: SPIQ offers the highest mean
average precision (mAP) in all quantization configurations
as compared to static and dynamic methods, from int8 to
low-bit int4. Furthermore, the SPIQ method achieves higher

mAP than other state-of-the-art quantization schemes that
focus only on improving weight quantization. These results
conclude our empirical validation of SPIQ.

5. Discussion
Empirical Intuition: Fig 4 shows a comparison of sam-
ple scaling ranges calculated with the static and dynamic
approaches as well as SPIQ. It stems from the definition of
these methods that the closer the range is to 0 (on the left on
Fig 4 subplots), the tighter the quantized inputs to the orig-
inal inputs. Furthermore, while the static range is the same
across all examples and channels, the dynamic method as
well as SPIQ respectively vary upon those two factors. We
observe that the static approach is not very tight to the in-
put distribution in all cases. The dynamic approach, allows
tighter adaptation in every scenario. Furthermore, depend-
ing on the input example (first row of Fig 4), SPIQ is gen-
erally tighter than the dynamic approach (most notably on
e.g. layer 15 where the range computed with SPIQ is far
lower, and to a lesser extent on e.g. layer 2). Furthermore,
varying the input channels with one fixed example (second
row of Fig 4) shows that the ranges computed with SPIQ
are generally tighter than those computed with the dynamic
approach. Fig 5 also illustrates how, on certain channels
(e.g. channel 32 of layer 2), the dynamic approach strug-
gles to leverage the full quantized range of values. By con-
trast, SPIQ qualitatively allows to better preserve feature
map details, which in turn improves the accuracy. Hence,
we argue that, if one had to chose between per-example and
per-channel quantization, the latter would be more relevant.
However, why wouldn’t we do both?
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Figure 5. Illustration of different feature map channels of a quantized (static, dynamic and SPIQ) ResNet 50.

On the possibility to design a Per-Channel Dynamic
Quantization: Per-channel dynamic quantization could
mathematically be performed by simply combining equa-
tion 5 and equation 6. However, in practice this would re-
quire to perform weight quantization in addition to activa-
tions quantization at each inference step. This would be
extremely time-consuming, especially when dealing with
fully-connected layers that have larger weight tensors than
input tensors. Furthermore, this would require to store
weight values in full precision instead of low-bit preci-
sion which removes one of the benefits of quantization,
i.e. memory foot-print reduction. Consequently, while per-
channel dynamic quantization is theoretically feasible, in
practice one has to choose between per-example and per-
channel modelling as combining the two is highly impracti-
cal. We show that per-channel leads to better performance.

6. Conclusion
In this work, we highlighted a current limitation of post-

training quantization methods, arguing that quantizing the
inputs of each layer is of paramount importance to success-
ful PTQ, that is often neglected in the literature. Further-
more, we showed that per-channel range estimation allows
tighter modelling of the full-precision distribution e.g. as
compared to per-example, dynamic approaches. Thus, we

proposed SPIQ, a novel static input quantization approach
which leverages per-channel quantization of the inputs in
a data-free manner. We empirically showed that SPIQ
achieved better speed vs. accuracy trade-offs than both the
static and dynamic input methods, in addition to signifi-
cantly improving existing state-of-the-art methods across a
wide range of applications and neural network architectures
without bells and whistles.

Limitations and Future Work: Very low-bit represen-
tation remains an extremely challenging task for data-free
acceleration. In cases such as binary or ternary quantiza-
tion, the proposed method would greatly benefit from fine-
tuning. Generated data, obtained with similar methods as
[36, 34], may provide better insight on input distributions
and improve scale estimation for input quantization.
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