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Abstract

In this work, we develop a theoretical and experimen-

tal framework to study the effect of margin penalties on

angular softmax losses, which have led to state-of-the-art

performance in face recognition. We also introduce a new

multiplicative margin which performs comparably to previ-

ously proposed additive margins when the model is trained

to convergence. A regime of the margin parameters can lead

to degenerate minima, but these can be reliably avoided

through the use of two regularization techniques that we

propose. Our theory predicts the minimal angular distance

between sample embeddings and the correct and wrong

class prototype vectors learned during training, and it sug-

gests a new method to identify optimal margin parameters

without expensive tuning. Finally, we conduct a thorough

ablation study of the margin parameters in our proposed

framework, and we characterize the sensitivity of general-

ization to each parameter both theoretically and through

experiments on standard face recognition benchmarks.

1. Introduction
Deep learning models trained with margin softmax

losses achieve state-of-the-art performance on standard
metric learning benchmarks such as face verification and
identification [8, 10, 15, 27, 3, 31] and fine-grained classi-
fication [20]. However, the existing literature fails to ex-
plain why different proposed margin penalties result in bet-
ter generalization. Claims have been made that reducing
intra-class distance helps generalization [27], or that enforc-
ing class separation in angle space is more effective than in
cosine space [3], but such claims have not been proven or
empirically verified. Furthermore, works reporting compet-
itive performance use different model architectures, train-
ing schedules, learning rate schedules, batch sizes, and/or
data augmentation paradigms, as well as different test time
augmentation strategies and test set preprocessing. These
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differences obscure the effects of the primary contributions
of these works on the quality of their models as measured
by benchmark performance. Indeed it has been shown that
the improvement of new metric learning loss functions over
previous work is often smaller than stated when holding
fixed these confounding factors [20].

This work serves as a first attempt to characterize how
different margin penalties affect the training optimization
as well as the resulting model generalization. Through a
comprehensive fair comparison on face recognition bench-
marks, we demonstrate that all primary margin parameters
on the softmax loss—including CosFace [27], ArcFace [3]
and a natural new multiplicative margin which has not been
studied before—are fundamentally alike, though they differ
in optimization difficulty. We argue that prevailing explana-
tions for margin effectiveness are insufficient and develop a
new theoretical framework to better understand the mech-
anisms underlying the success of margin softmax losses.
Specific contributions of our work include:

• A mathematical model of prototypes and samples that
enables us to study training dynamics and optimization
stopping points as a function of margin values. This al-
lows us to approximate the influence of margin settings
on intra-class and inter-class distances.

• A formal characterization of a collapse mode that oc-
curs in some margin parameter regimes. We propose
two effective regularization techniques to avoid these
degenerate minima without harming performance.

• A natural new margin parameter to complete the fam-
ily of margin-based softmax losses. Our experiments
show that all margin formulations yield similar perfor-
mance when models are trained to convergence.

• A new observation that optimal values for different
margins produce loss functions that appear to coincide
at a specific angle which can be analytically derived for
any dataset. This leads to a conjecture on how to se-
lect optimal margin parameters without computation-
ally expensive tuning experiments.
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2. Related Work
Face recognition, one of the oldest problems in com-

puter vision, has matured significantly with the advent of
large databases and deep feature learning. Facenet [22],
an early example of the leverage gained with these tac-
tics, utilizes a metric learning approach based on pairs
of similar and dissimilar images. Since the emergence
of equivalences between pairwise and proxy-based metric
learning [19, 24], advancements in face verification have
mainly utilized multi-class classification losses for training
[21, 26, 15, 34, 27, 3, 12, 31, 10, 8, 6, 1] which have higher
memory requirements but are less reliant upon complex and
computationally expensive hard (negative) example mining.

Proxy-based metric learning has converged on the use of
a modified softmax loss where each logit is the cosine of the
angle between a feature vector and a weight matrix column.
A global scaling factor characterizing the “temperature” or
sparseness of the softmax then multiplies the cosine as a
fixed hyperparameter optimized by cross-validation or as a
learnable model parameter [26, 31]. Introducing margin pa-
rameters which multiply the angle [15], add to the angle [3],
or add to the cosine of the angle [27] have been shown to
improve generalization, and to simultaneously reduce intra-
class angles and increase inter-class angles. Gains are ob-
served when heavy-tailed class distributions in the training
data are addressed by per-class margins with larger margins
when classes have fewer training examples [12]. To model
variability in sample difficulty, margins can be formulated
as a function of the magnitude of the feature vector [17].

While some attention has been paid to their individual
effects, we are not aware of a comprehensive analysis of the
ways these modifications to the softmax loss affect training.
Several studies have characterized the effect of normaliza-
tion in the modified softmax loss. D-Softmax [6] identifies
the entanglement of the intra-class and inter-class optimiza-
tions and proposes a new loss to optimize intra-class varia-
tion and inter-class distance separately. CircleLoss [24] re-
veals the sub-optimal magnitude of the gradients throughout
the training and proposes a second order margin to correct
that. Similarly, we study the intra- and inter-class optimiza-
tion process both theoretically and empirically in this work.

3. Margins on the Hypersphere
3.1. Unified Angular Margin Softmax Losses

A standard metric learning approach to face recognition
is to learn an embedding function such that the embedding
xi 2 Rd of an example input i (i.e., a face image) is closer
to other examples of the same class (identity) than to exam-
ples from other classes, without knowing about the classes
in advance. Following prior work, we learn this function by
optimizing a modified classification objective on a training
set with C known classes represented by a learnable ma-

trix W 2 Rd⇥C where we refer to each column Wj as the
“prototype” of class j. Taking the dot product as our mea-
sure of similarity, the softmax cross-entropy loss for N ex-
amples can be written as an average of per-example losses
L1 . . . LN such that

Li = � log
eW

>
yi

xi

PC
j=1 e

W>
j xi

(1)

where yi is the class of the ith example.
For any given example i, we also have W>

j xi =
kWjkkxik cos ✓j , where ✓j is the angle between column
Wj and feature vector xi. By normalizing Wj and xi to
unit vectors and incorporating a global scaling parameter s
for all logits [15, 26], the loss in equation (1) becomes

Li = � log
es cos ✓yi

PC
j=1 e

s cos ✓j
(2)

where 0  ✓j  ⇡ for all angles ✓j .
Prior work introduced margin parameters in the correct-

class exponent which are multiplied with the angle [15],
added to the angle [3] or to its cosine [27]. Following
[3], incorporating these margins can be summarized as re-
placing cos ✓yi in the angular softmax loss (2) by zyi =
cos(m1✓yi +m2)�m3 so that the loss becomes

Li = � log
eszyi

eszyi +
P

j 6=yi
eszj

= log

✓
1 +

P
j 6=yi

eszj

eszyi

◆
(3)

where the wrong-class exponents zj = cos(✓j) do not have
the margins. Each margin can be used during training to en-
courage smaller correct-class angles than the ordinary soft-
max loss. The margins are typically fixed hyperparameters
but can also be learned [12].

Previously introduced margins m1,m2,m3 modulate re-
spectively the period, phase, and vertical shift of the func-
tion cos(✓yi). We complete the framework of angular mar-
gins with a novel margin parameter m0 that modulates the
amplitude of cos(✓yi) by redefining zyi as

zyi = m0 cos(m1✓yi +m2)�m3 , (4)

and use the name AmpFace for the family of models de-
fined by equation (4) with 0 < m0 < 1. Note that the effect
of this margin parameter cannot be subsumed by the scale
parameter s in the softmax loss as m0 affects only the pos-
itive logit while s appears in all terms, scaling positive and
negative logits alike.

These four margin hyperparameters, together with the
scale parameter s, play important roles in generalization for
metric learning models. We study each margin penalty inde-
pendently by analyzing its impact on the training dynamics.
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Figure 1: (a): Illustration of polar collapse: prototypes (red
arrows) cluster together and feature vectors (green circles)
cluster in the opposite direction. (b): Training dynamics for
m0 = 0.35 demonstrating polar collapse when training with
(purple) and without (blue) regularization. Top: minibatch
mean of cos(✓i). Bottom: L2 norm of mean prototype.

3.2. Polar Collapse
Using the margin parameters described above can create

an undesirable minimum of the loss function, which we call
the polar collapse mode, since the model may collapse to-
wards this degenerate configuration rather than learning a
useful representation. Fig. 1a illustrates the polar collapse
configuration in d = 3. Blue curves in Fig. 1b log typical
training dynamics for m0 = 0.35. After around 100k opti-
mization steps (upper subplot, blue trace), the mean correct-
class angle ✓i increases rapidly towards ⇡. Polar collapse
drives the norm of the average prototype 1

C

P
j Wj towards

1, indicating that the prototypes are converging towards a
single point (lower subplot). In the limit of total collapse,
all angles equal ⇡ i.e. ✓yi = ✓j = ⇡, and the per-example
loss (3) reduces to:

Lcollapse
i = log

✓
1 +

C � 1

es(z0+1)

◆
(5)

where z0 = m0 cos(m1⇡+m2)�m3. With no margins ap-
plied (m0 = m1 = 1 and m2 = m3 = 0), we have z0 = �1
and so Li = logC, which is an appropriately large loss for
an undesirable model. However, using aggressive margins
can result in es(z

0+1) � C�1, which would decrease Li to
zero. In geometric terms, the optimizer could simply min-
imize the training loss by collapsing all feature vectors xi

to a single point and all prototypes Wj to the opposite pole
on the d-dimensional hypersphere. Figure 2 shows how the
loss Li varies with a constant distance to all prototypes and
with each margin parameter while keeping the other mar-
gins fixed; angles and margin settings that bring this loss to
near-zero are in danger of inducing the collapse mode. In

practice, polar collapse is regularly observed for multiplica-
tive margins, e.g., SphereFace with m1 � 1.8 or AmpFace
with m0  0.65.

Note that this collapse mode is different from the triplet
loss collapse observed in [22], in that the triplet loss always
has a bad local minimum where all feature vectors collapse,
and this problem can be mitigated by optimization and sam-
pling strategies. In contrast, the margin softmax polar col-
lapse described here may be a local or global minimum of
the loss, so reliably avoiding it requires modifications to the
loss function.

We propose two strategies to avoid this polar collapse
during model training:

1. Spherical Symmetry Regularization (Regss)
Add a regularization term to the total loss with weight
� that encourages prototypes Wj to be symmetrically
distributed on the hypersphere manifold by minimiz-
ing the L2-norm of the mean normalized prototype.

Regss =

������
1

C

X

j

Wj

kWjk2

������
2

(6)

2. Wrong-class Logit Rectification (WC-ReLU)
Rectify the values of zj in equation (3) using a ReLU
activation, denoted by [·]+.

Li = log

 
1 +

P
j 6=yi

es[zj ]+

eszyi

!
(7)

When ✓j > ⇡
2 , the gradient @Li/@✓j becomes 0 to

avoid driving xi and Wj to opposite poles. Figure 2
shows that no margin setting results in zero loss for
examples which are ⇡

2 away from prototypes.

To our knowledge, this is the first consideration in the liter-
ature of this common failure mode for softmax losses with
margin penalties. The ad-hoc easy-margin trick from the
original implementation of ArcFace [3] does not extend to
multiplicative margins because removing a fractional mul-
tiplicative factor on the correct-class logit (when the corre-
sponding cosine is negative) makes its value smaller and the
correct classification harder. Regss has been studied previ-
ously in the context of generalization through hyperspher-
ical uniformity [13]. UniformFace [4] was not originally
proposed as a regularization method but shares the same
high-level intuition as Regss. Both encourage the symmet-
ric distribution of prototypes Wj , although the calculation
of Regss is simpler and more efficient. We empirically com-
pare our two proposed strategies with UniformFace in Sec-
tion 4.4 and show that either Regss or WC-ReLU allows a
significantly larger hyperparameter search space where reg-
ular training would normally fail due to polar collapse.
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Figure 2: Loss for an example i which has an angular distance ✓ to all prototypes as a function of each margin parameter.
As loss approaches zero, further training on such an example cannot draw xi closer to its prototype Wyi . This scenario can
occur with even small multiplicative margins (m0 and m1) but cannot be caused by increasing m3. Best viewed in color.

3.3. The Hypersphere Manifold
In this section, we make theoretical predictions for the

average smallest wrong-class angle Mwrong = Ei[minj ✓j ]
and the average correct-class angle Mcorrect = Ei✓yi for an
example i using properties of high-dimensional spaces. In
Appendix A, we provide numerical simulations for our ex-
perimental setting that verify these expressions obtained in
the limit of large C and d.

The class prototypes Wj represent points on the hyper-
sphere of dimension d � 1. Since we initialize the entries
of W to i.i.d. samples from a normal distribution (before
normalizing), the initial prototypes are approximately uni-
formly distributed on the surface of the hypersphere after
normalization. We theoretically model optimization and
generalization as a function of the different margin param-
eters, under the assumption of a spherical uniform distribu-
tion of the prototypes throughout training.

Our assumption of prototypes distributed uniformly on
the hypersphere predicts an approximate value for the angle
from a prototype to the nearest prototype for large d [2, 3].

Proposition 1 Let Wi 2 Rd
for i = 1, . . . , C be i.i.d.

from the uniform distribution on the unit sphere. Then the

expected angle from a vector Wi to its nearest neighbor,

✓min(Wi) = minj 6=yi arccos(W
>
i Wj), converges to

E [✓min(Wi)]����!
C!1

C
�2
d�1 �

✓
d

d�1

◆ 
�
�
d
2

�

2
p
⇡(d�1)�

�
d�1
2

�
! �1

d�1

(8)

For large d and C, this expression also approximates the
angle between a random vector (which need not be a pro-
totype) and the nearest prototype. If we assume each fea-
ture vector has either a random direction (as is likely at ini-
tialization) or is only much closer to the correct prototype,
equation (8) gives an estimate of Mwrong.

To predict the average correct-class distance Mcorrect, we
note that the gradient of the margin softmax loss for an ex-
ample with respect to the correct prototype nearly vanishes

at a certain angle value. This value is dependent on the
margins and the expected wrong-class angles, as discussed
in [6] and examined in Section 3.4. While correct-class dis-
tances could be smaller than this angle value after optimiza-
tion, they will with high probability lie very close to the
value due to the concentration-of-measure phenomenon in
high-dimensional hyperspheres.

Proposition 2 Fix 0 < ✏ ⌧ 1 and define ⌧✏ = max{0 <
✓ < ⇡/2 : @Li

@✓yi
< ✏} as the angle for which optimization

gradients w.r.t. the positive prototype “vanish.” Then

Mcorrect ⇡ Ex2cap(Wi,⌧✏)[✓yi ] ���!
d!1

⌧✏ (9)

where cap(Wi, ⌧✏) denotes the spherical cap centered on

prototype Wi with radius subtended at the origin by ⌧✏.

In the following section, we analyse the effect of differ-
ent margins on the loss curves and attend to the angle values
for which the corresponding gradients vanish. To do so we
make use of the following estimate of the sum of wrong-
class logits in the denominator of the softmax loss.

Proposition 3 Assume the prototypes Wj are uniformly

distributed on the hypersphere, and denote by zj =
W>

j xi = cos(✓j), 8j 6= yi, the wrong-class logits for

the ith example. Then for sufficiently large C and d
(es

2/d/C ⌧ 1)

X

j 6=yi

eszj ⇡ (C � 1) ⇤ es
2/(2d) (10)

For large dimension d, the inner product between a fixed
unit vector xi and a random unit vector is approximately a
sample from N (0, 1/

p
d). Thus eszj is approximately log-

normally distributed with mean es
2/(2d). By the law of large

numbers, assuming C sufficiently large, the sum converges
to the expectation and we have
X

j 6=yi

eszj ! (C � 1) ⇤ E[eszj ] ⇡ (C � 1)es
2/(2d) (11)

See Appendix A for a proof of the approximation.
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Figure 3: Gradient of the loss Li with respect to the correct-class angle ✓yi when varying each margin parameter. Margins
that modify the angle (m1 and m2) introduce negative gradients for large ✓yi which further separates features from their
prototypes and can lead to the collapse mode. Best viewed in color. See Appendix C for additional gradient and loss plots.

3.4. Gradients and Training Dynamics
The gradient of the per-example loss from equation (3)

Li = � logP(yi|xi) with respect to the distance ✓yi to the
correct class is

@Li

@✓yi

= �(1� P(yi|xi)) · s ·
@zyi

@✓yi

= (1� P(yi|xi)) · s ·m0 ·m1 · sin(m1✓yi +m2)
(12)

Using the approximation of wrong-class logits from equa-
tion (10), Figure 3 illustrates the gradient @Li/@✓yi as
a function of ✓yi and shows how it varies as each mar-
gin parameter is adjusted individually. The magnitude of
@Li/@✓yi for some ✓yi depends on 1 � P(yi|xi) regard-
less of the margin, but also has a factor that grows linearly
with the introduced margin m0, approximately quadrati-
cally with m1 as m1✓yi/2  sin(m1✓yi)  m1✓yi when
m1✓yi 2 [0, ⇡

2 ], and non-linearly with m2. The dependence
of the gradient magnitude on the margin implies that mod-
els with different margins will converge at different rates
when training hyperparameters are held fixed. Therefore,
there are two fair training schedules for comparing models.
The first is long enough to make sure models are close to
convergence and will likely produce the best performance
but may be expensive or time consuming. The second is a
shorter schedule with a limited computation budget.

Inspired by [26, 6], we are interested in when @Li/@✓yi

becomes zero as ✓yi decreases during training as this is the
termination point for intra-class optimization. This angle is
also our theoretical estimate of the average correct-class dis-
tance Mcorrect, defining the edge of the spherical cap around
prototypes Wyi where examples xi accumulate as shown by
Proposition 2. Figure 3 shows that this angle decreases lin-
early with m2 and non-linearly with the other margins. In
Section 4.3, we compare these estimates Mcorrect with em-
pirical correct-class angles under varying margins.

4. Experiments
4.1. Implementation Details

The architecture of our feature embedding network is
identical to the ArcFace [3] network: it is their ResNet-
100 [5] backbone acting on input images of resolution
112x112, and outputting a feature vector of dimension 512.

Training The feature embedding network is trained
on a cleaned version of the MS-Celeb-1M (C-MS1M) as
provided by the authors of [3]. This database contains
5,822,653 images of 85,742 identities, and each image has
already been aligned and cropped to 112 ⇥ 112 follow-
ing standard procedures [3, 27, 15]. We train our model
from random initialization with 8 NVIDIA V100 GPUs us-
ing synchronous stochastic gradient descent (SGD) and mo-
mentum 0.9. We use batch size 512 and weight decay 5e�4.
Our training schedule starts the learning rate at 0.1 and runs
100K steps, then runs 60K steps at 0.01, and then finally
runs 20K steps at 0.001 – 180K steps in total.

Testing We evaluate on the following benchmarks:1

• LFW [7] which contains 13,233 images of 5,749 in-
dividuals. We follow the ‘unrestricted, with labelled
outside data’ protocol, and evaluate our model with the
dataset as is, without mislabel correction.

• CFP-FP [23] which contains 10 frontal images and 4
profiles images of 500 identities.

• AgeDB-30 [18] which is composed of 16,488 images
of 568 unique subjects.

• CALFW [33] and CPLFW [32], reconstructed from
LFW with additional age and pose variations.

• YTF [29] which contains 3,425 videos from 1,595
identities. We calculate the mean of embedding fea-
tures from all frames of videos then evaluate pairs by
their feature centre.

1All datasets are publicly available and are only used to benchmark our
models for a fair comparison with prior work in the literature. Our work is
conducted for non-commercial research purposes only.
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Method Verification Results IJB MegaFace
LFW CALFW CPLFW AgeDB CFP-FP YTF IJB-B IJB-C Id Ver

GroupFace [10] 99.85 96.20 93.17 98.28 98.63 97.8 94.93 96.26 98.74 98.79
CurricularFace [8] 99.80 96.20 93.13 98.32 98.37 - 94.8 96.1 98.71 98.64
AmpFace (m0 = 0.375) 99.76±0.02 95.53±0.09 90.93±0.20 97.82±0.17 97.72±0.20 97.71±0.20 93.02±0.49 94.54±0.47 97.93±0.05 98.06±0.07

SphereFace (m1 = 1.35) 99.74±0.05 95.49±0.03 90.72±0.14 97.68±0.10 98.19±0.10 97.83±0.19 92.23±0.12 94.14±0.10 96.51±0.09 96.89±0.13

ArcFace (m2 = 0.5) 99.80±0.02 95.75±0.04 91.42±0.27 98.09±0.10 98.45±0.16 97.88±0.02 94.10±0.07 95.63±0.14 98.38±0.13 98.53±0.15

CosFace (m3 = 0.35) 99.79±0.01 95.75±0.05 91.60±0.09 98.06±0.13 98.31±0.13 97.85±0.09 94.22±0.28 95.75±0.12 98.16±0.10 98.39±0.06

AmpFace (m0 = 0.375) ⇤ 99.77±0.03 95.70±0.07 92.00±0.28 98.08±0.14 98.40±0.06 97.86±0.17 94.44±0.23 95.91±0.18 98.83±0.06 98.93±0.05

ArcFace (m2 = 0.5) ⇤ 99.82±0.01 95.82±0.04 92.05±0.11 98.21±0.14 98.67±0.06 97.88±0.13 94.91±0.06 96.18±0.02 98.80±0.07 98.98±0.04

CosFace (m3 = 0.5) ⇤ 99.76±0.05 95.72±0.08 92.07±0.11 98.19±0.05 98.52±0.16 97.85±0.17 94.51±0.33 95.93±0.19 98.91±0.06 99.02±0.04

Table 1: Common face identification and verification benchmark results in %. For IJB, TAR@FAR=1e-4 is reported. For
MegaFace, “Id” refers to the rank-1 identification accuracy against 1M distractors and “Ver” refers to the face verification
task where TAR@FPR=1e-6 is reported. For a fair comparison, the first group contains only recent models trained on the
cleaned version of MS-Celeb-1M [3]. The second and third groups contain averaged results over three identical runs. All
runs follow the protocol described in Section 4.1 with 180K steps and a batch size of 512, except runs indicated with ⇤ which
are trained to convergence using 300K steps and a batch size of 1536. AmpFace models are trained with Regss.

• MegaFace [9] which includes 1,027,060 images of
690,572 unique identities.

• IJB-B [28] which contains 1,845 subjects with 21,798
images, and 55,025 frames from 7,011 videos.

• IJB-C [16] which includes 31,334 images and 11,779
videos of 3,531 subjects, with more occlusion and di-
versity of subjects from IJB-B.

4.2. Model Baselines
Even though recent literature aims for a fair compari-

son with other work, we were unable to find consistently-
reported baselines. For example, on the Refined MegaFace
Identification task (R-MegaFace-Id) [3]: ArcFace [3] re-
ports 98.35% with a model trained on CASIA-WebFace
[30]. CosFace [27] makes use of a private dataset and re-
ported 82.72% without removing the noise. GroupFace [10]
reports 98.74%, despite the network architecture being sig-
nificantly different; they use pre-training, a batch size of
1024 and a different learning rate schedule. Curricular-
Face [8] employs a training schedule of 24 epochs, which
is equivalent to 270K steps when the batch size is 512, and
reports 98.71%. CircleLoss [24] reports 98.50% where tail
identities from C-MS1M are excluded. With the goal of
establishing more consistent baselines, we carefully eval-
uate SphereFace, CosFace and ArcFace in Table 1 under
the same training configuration as described in Section 4.1
(bs=512, 180K steps). We include models trained with the
new multiplicative margin m0 < 1 proposed in Section 3.1,
which we name AmpFace.

As pointed out in Section 3.4, the margin parameters
affect the magnitude of @Li/@✓yi and hence some adjust-
ment to the training hyperparameters may be needed for the
model to fully converge. For comparison purposes, we also
train models with an increased batch size (1536) and num-

ber of steps (300K) in each leg of the training schedule, in
order to get closer to convergence; these models achieve
better performance. In group three of Table 1, AmpFace
has identical performance to previous state-of-the-art mar-
gins ArcFace and CosFace. And all three have comparable
performance to recent state-of-the-art models in group one.

4.3. Margin Comparison
We strive to clearly understand how different margins af-

fect the corresponding trained model optimization and gen-
eralization. In Fig. 4, we display final trained model per-
formance on R-MegaFace-Id (bottom row) for AmpFace,
SphereFace, ArcFace, and CosFace under a range of margin
values. Following a few recent works [31, 6, 24] we also
measure (top row) the corresponding empirical intra- and
inter-class angular distances averaging at batch level by:

• Mintra =
1
N

PN
i=1 ✓yi

• Minter =
1
N

PN
i=1 minj 6=yi ✓j

Lastly we compare these with their theoretical counter-
parts derived in Section 3.3 (middle row) under the assump-
tion of spherically equidistributed prototypes. Comparing
these predicted angle distances with the empirical values of
Mintra and Minter, we can observe that:

1. Inter-class distances do not seem to depend strongly on
the value of the margin hyperparameters.

2. The test set inter-class distances are lower than corre-
sponding training set inter-class distances, as predicted
by the greater size of the test set and Proposition 1.

3. The slopes of our theoretical intra-class angle curves
reflect approximately the empirical results where the
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Figure 4: Dependence on margin value of observed inter- and intra-class angles on train and test sets (top row), our predictions
of these quantities from Section 3.3 (middle row), and performance on the MegaFace Id benchmark (bottom row).

predictions are possible. For ArcFace, the predicted
linear relationship between intra-class distance and the
margin appears to hold until the point where the model
achieves peak performance.

The prevailing explanation in the literature for the value
of introducing a margin on the correct class logit has been
that doing so encourages smaller intra-class distances for

the corresponding trained model on the training set. This
explanation seems to imply that increasing the margin fur-
ther should always improve model performance, and that
improved training set intra-class distance implies improved
test set intra-class distance. However, we observe that the
SphereFace and AmpFace plots in Fig. 4 seem to refute that
observation. When we increase SphereFace’s margin past
the optimal model performance value of m1 = 1.35, the
intra-class angle keeps decreasing as before but model per-
formance drops significantly. More dramatically, decreas-
ing AmpFace to the optimal value m0 = 0.35 greatly im-
proves model performance without a significant change in
final intra-class distance. This indicates that though these
multiplicative margins correlate more or less with intra-

class distance, they contribute to generalization at least in
part for different reasons.

In Fig. 5, we display the curves theoretically derived in
Section 3.4 for the loss, as a function of the correct class
angle, for each of the empirically verified best margin val-
ues for m0, m2, and m3 (see Appendix B for details). We
also plot as a dashed blue line the inter-class expected angle
given by Proposition 1 (Minter = 78.64�), and as a dashed
red line the corresponding half-angle Minter/2 = 39.32�.
Notice that this half-angle coincides very closely with the
optimization termination point that defines our Mintra. The
same half-angle relationship holds approximately between
the observed train intra-class and inter-class distance for
the model checkpoints trained with optimal margin settings
m0 = 0.35, m2 = 0.6, m3 = 0.5 identified through a care-
ful linear margin sweep with step size 0.05. Our hypoth-
esis also indicates an optimal value of m1 = 1.85, which
lies out of the parameter range where our SphereFace train-
ing converges. Recent work [14] however enables model
convergence for larger values of m1 by flattening the loss
function when m1✓ > ⇡. This shows that SphereFace can
achieve maximum performance matching that of ArcFace
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Figure 5: Predicted loss, as a function of the correct class
angle, for the margins that achieve best model performance.
The dashed red vertical line marks half the predicted inter-
class distance (Minter/2 = 78.64�/2 = 39.32�) for C =
85, 742 in the (512 � 1)-unit sphere, which is very close
to the optimization termination point and predicted intra-
class distance for AmpFace, ArcFace, CosFace, as well as a
recent regularized formulation of SphereFace [14].

and CosFace for m1 = 1.9 (Table 8 of [14]), which is nearly
identical to the value predicted here.

We therefore conjecture that the optimal margin value
reliably produces a loss function with optimization termi-
nation point at half the mean inter-class angle. This angle
can be understood as the decision boundary between two
prototypes after which a higher margin would result in train
classification error. However, two spherical caps in high
dimensions have a small intersection area even for larger
angles [11]. A clear explanation thus defies our current un-
derstanding, but if true in general our conjecture is valuable
for two reasons. First, it predicts the optimal value for each
of the margin parameters, obviating the need for a labori-
ous and expensive grid search across multiple benchmarks.
Second, it may shed light on the reason that margins are
helpful for optimization and generalization.

4.4. Regss vs. WC-ReLU
Here, we empirically compare our two proposed regu-

larization strategies with UniformFace [4] on the MegaFace
Id benchmark with one million distractors. Table 2 shows
that models that perform well without these extra regular-
izers still perform equally well after the addition of either
strategy. When m0 is used as the margin, Fig. 6 shows that
both strategies are effective at avoiding collapse while Uni-
formFace is much less effective. For extreme m0 values,
WC-ReLU still performs well whereas Regss fails. Regss
may fail if prototypes collapse in low dimensions in a more
complicated symmetrical way rather than towards a single
point, though studying a more general degenerate solution
space is out of the scope of this work. We argue that in prac-
tice, either strategy—and especially WC-ReLU—allows a
larger search space for the optimal margin hyperparameter
and is beneficial for systematic studies.

Margin Plain WC-ReLU Regss
Softmax - 88.58 88.95 88.54

SphereFace m1 = 1.35 96.53 96.89 96.45
ArcFace m2 = 0.50 98.24 98.30 98.30
CosFace m3 = 0.35 98.11 98.10 98.06

Table 2: Comparison of MegaFace Id for two proposed
regularization strategies. When the original training works
well, adding either does not harm the performance.

Figure 6: Comparison of the two proposed regularization
strategies from Section 3.2 to avoid collapse during training.
WC-ReLU outperforms Regss for extreme margin values,
while UniformFace [4] is less effective than both.

5. Conclusion

Our analysis reveals several new important insights: a
training failure mode for certain margin ranges and two
regularization strategies to address it; a new multiplicative
margin with competitive results when regularized properly;
predictions of intra-class and inter-class distances; and clar-
ification of the generally held assumption of smaller intra-
class distance leading to better generalization.

Our work further suggests that there is a fixed inter-class
angle at which optimization should stop, and that it informs
the optimal value of the margins for AmpFace, ArcFace,
and CosFace. Namely, that angle seems to be given by the
point at which intra-class distance equals half the inter-class
distance. This seems to be true both in practice and in our
theoretical predictions, and represents a potential direction
for future research.

Although further work is needed to fully understand gen-
eralization in metric learning applications, the theoretical
framework presented here is a first step to a clearer picture
of margins in softmax losses and their effects on the spheri-
cal manifold during optimization. We also hope the evalua-
tion settings presented here will help researchers benchmark
quickly and fairly against prior work.
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