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Abstract

Semantic segmentation on 360° images is a vital com-
ponent of scene understanding due to the rich surround-
ing information. Recently, horizontal representation-based
approaches outperform projection-based solutions, because
the distortions can be effectively removed by compressing
the spherical data in the vertical direction. However, these
methods ignore the distortion distribution prior and are lim-
ited to unbalanced receptive fields, e.g., the receptive fields
are sufficient in the vertical direction and insufficient in the
horizontal direction. Differently, a vertical representation
compressed in another direction can offer implicit distor-
tion prior and enlarge horizontal receptive fields. In this
paper, we combine the two different representations and
propose a novel 360° semantic segmentation solution from
a complementary perspective. Our network comprises three
modules: a feature extraction module, a bi-directional com-
pression module, and an ensemble decoding module. First,
we extract multi-scale features from a panorama. Then, a
bi-directional compression module is designed to compress
features into two complementary low-dimensional repre-
sentations, which provide content perception and distortion
prior. Furthermore, to facilitate the fusion of bi-directional
features, we design a unique self distillation strategy in the
ensemble decoding module to enhance the interaction of
different features and further improve the performance. Ex-
perimental results show that our approach outperforms the
state-of-the-art solutions on quantitative evaluations while
displaying the best performance on visual appearance.

1. Introduction
Panoramic images captured by omnidirectional cameras

can provide a wide field-of-view (FoV), making it more
practical in many crucial scene perception tasks [9], [24],
[30], [40]. As a fundamental topic in computer vision, se-
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Figure 1. The motivation of the proposed 360° semantic segmen-
tation approach: (a) The horizontal representation in each channel
shares the same distortion magnitude while the vertical can per-
ceive the distortion distribution. (b) The horizontal representation
is limited by local receptive fields.

mantic segmentation aims to assign each pixel in the im-
age a category label and is critical for various applica-
tions such as pose estimation [26], autonomous vehicles
[31], augmented reality [2]. Directly applying normal FoV
semantic segmentation methods [16], [22], [23], [44] to
360° images is not satisfactory due to the significant distor-
tions in panoramas (usually produced from equirectangu-
lar projection—ERP) and large mismatch of FoV between
panoramas and normal Fov images.

To overcome the above limitations, some researchers
propose to adopting different projection formats (e.g., cube-
map projection and icosahedron groups) [11], [41] or spher-
ical convolutions [8], [12], [17] to decrease the negative
effects of panoramic distortions. However, these methods
sacrifice either accuracy or efficiency and fail to perceive
precise panoramic structures.

Most recently, inspired by the geometric nature of
gravity-aligned panoramas, some horizontal representation-
driven methods [27], [33] are proposed to address the above
problems. They squeeze the ERP image into 1D vector
along the vertical direction, making it to be more content-
focused, as shown in Fig.1a (top). Such a manner can be re-
garded as a process of shrinking spherical data towards the
equator. Thus each element in the representation shares the
same distortion magnitude and removes the negative effects
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of panoramic distortions effectively. However, due to the
fixed compression direction, it is inherently limited to local
receptive fields which lack receptive capability in the hori-
zontal direction (Fig.1b). Additionally, if there is no extra
guidance during the decoding stage, it will lead to the lack
of distortion distribution information in panoramic segmen-
tation results, resulting in unsatisfactory performance.

Motivated by the horizontal features, we observe that
compressing spherical data in the horizontal or vertical di-
rection yields different data representations. Essentially, ex-
tracting the vertical feature along the horizontal direction
is to contract panoramic images towards a certain merid-
ian. Considering the data at the same latitude shares the
same magnitude of distortion, this operation gathers data
belonging to the same magnitude. Despite this representa-
tion may blur the image content, it makes feature distortions
more prominent which can provide implicit distortion dis-
tribution prior. Compared with existing works that devote
to eliminate the effects of distortions, we introduce implicit
distortion information to guide the panoramic segmentation.
Furthermore, the vertical representation also enhances the
receptive capability in the horizontal direction.

In this paper, we present a novel neural network for 360°
semantic segmentation consisting of three parts: a feature
extraction module, a bi-directional compression module,
and an ensemble decoding module. To be more specific, we
first extract multi-scale features from an ERP image. Then
our bi-directional compression module encodes the features
into two complementary 1D flattened sequences. To achieve
it, we design a Mix-MLP layer to yield a useful represen-
tation before we contract the dimensions. Subsequently,
we propose a pyramid pooling compression (PPC) layer to
perceive both distortion and content information by aggre-
gating different sub-regions with different receptive fields.
During the ensemble decoding process, we adopt A-Conv
[27] to stretch dimensions and rebuild two different 2D fea-
tures. Finally, the different features are fused for comple-
mentarity to predict the segmentation results.

However, considering the difference between two rep-
resentations, the feature domains diverge severely, mak-
ing them difficult to integrate harmoniously. Here, we ad-
dress it by designing a unique self distillation strategy [43].
Specifically, We divide self distillation into three paral-
lel ones: horizontal-driven branch (HDB), vertical-driven
branch (VDB), and ensembled branch (EB), of which EB is
the fusion result of two representations. HDB and VDB are
regarded as student models, while EB is the teacher model.
The knowledge in the fusion portion will be shared with the
separate portions. Finally, the retuned features in student
models will feedback to the teacher model, which enhances
the interaction of different features and further improves the
performance.

With abundant experiments, we verify that the proposed

solution can significantly outperform state-of-the-art algo-
rithms in panoramic semantic segmentation and achieve
great improvement on the quantitative evaluation. Besides,
the ablation studies also reveal the effectiveness of our bi-
directional representations and specially designed self dis-
tillation. In summary, our principle contributions are sum-
marized as follows:

• To enlarge the limited horizontal receptive fields and
offer implicit distortion prior, we combine horizontal
and vertical representations to establish a novel 360°
semantic segmentation network from a complementary
perspective.

• To facilitate the fusion of bi-directional representa-
tions, we design a unique self distillation strategy to
enhance the interaction of different feature and further
improve the performance.

• Experiments demonstrate that our method significantly
outperforms the current state-of-the-art approaches
with great improvement on all metrics.

2. Related Work
2.1. Semantic Segmentation of Panoramic Images

Early approaches [4], [36] were based on the synthe-
sized panoramic dataset or manually labeled samples. Mo-
tivated by the style transfer [46] and data distillation [28],
Yang et al. proposed a framework [37], [38], [39] for re-
using the models trained on perspective images by divid-
ing the ERP into multiple restricted FoV sections for pre-
dictions. Although quite accurate, their strategy relies on
labeled perspective image datasets with similar categories
and scenes. Recent works find their solutions on the real-
world datasets [1]. Tateno et al. [34] presented spherical
convolution filters to make the network aware of the dis-
tortion from ERP. Compared to solutions that operate di-
rectly on ERP, [41] projected spherical signals into subdi-
vided icosahedron mesh to mitigate distortion as well as
improve prediction accuracy. Eder et al. [11] introduced
tangent images, a novel representation that renders the im-
age onto narrow FoV images tangent to a subdivided icosa-
hedron. Sun et al. [33] used compressing method to encode
latent features and use discrete cosine transform (DCT) to
finish holistic scene modeling. Recently, driven by the self-
attention mechanism, many transformer-based methods[6],
[35], [45] emerge due to the powerful capability to aggre-
gate long-range dependencies. Zhang et al. [29] and Shen
et al. [42] use deformable components to eliminate image
distortions and achieve state-of-the-art performance.

2.2. Horizontal Representation

Unlike the most existing methods that use pure 2D fea-
tures to perform prediction, exploiting 1D horizontal rep-
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Figure 2. The architecture of the proposed network. This network consists of a feature extraction module Me, a bi-directional compression
module Mc and a ensemble decoding module Md.

resentation can make the network learn the underlying ge-
ometric correlated knowledge. Su et al. [32] utilized dif-
ferent kernel sizes of the standard convolution to overcome
the distortions. Particularly, the weight can only be shared
along the horizontal. With the assumption that the horizon-
tal dimension contains rich contextual information, Yang et
al. [39] proposed a horizontal-driven attention method to
capture omni-range priors in 360° images. Sun et al. [33]
used 1D horizontal representation to design HorizonNet for
the task of estimating room layout. This trend prompts a va-
riety of works on scene understanding. For instance, Pintore
et al. [27] proposed SliceNet and adopt Long Short-Term
Memory (LSTM) to model the long-range dependencies for
360° depth estimation. However, these methods do not con-
sider the latitudinal distortion property and horizontal re-
spective capability, thus leading the accuracy degradation.
Our solution solves this issue by integrating horizontal and
vertical representations simultaneously which we believe is
the optimal manner to eliminate the influence of distortions
and preserve details. Moreover, adding extra tensors will
not increase the model complexity and computational cost
greatly, because our complexity is still O (N).

2.3. Knowledge Distillation

Knowledge distillation [15] is one of the most popular
compression approaches. It is inspired by knowledge trans-
fer from teachers to students. And it has shown its superi-
ority in other domains such as data argumentation [3], ad-
versarial attack [25], and model transfer [13]. However, it
requires substantial efforts and experiments to build teacher
models, and we will spend many datasets and long training
time to refine student models. To overcome the setbacks
of traditional distillation, Zhang et al.[43] proposed a novel
training technique named self distillation, which means stu-
dent and teacher models come from the same networks.
Therefore, to facilitate the fusion of bi-directional represen-
tations, we redesign this technique to adapt to our frame-

work. Specifically, we regard two 1D representations as
students, while their fusion results as teacher, and introduce
three loss functions for optimization. The well-designed
self distillation can enhance the interaction of different fea-
ture and further improve the performance.

3. Approach
In this section, we describe the details of the proposed

method for 360° semantic segmentation. We first show
the overview of our framework. Then, the bi-directional
compression module that reduces the dimensions of feature
maps along horizontal and vertical directions is discussed.
Finally, to foster the fusion of bi-directional representations
and narrow the feature domain gap, we design a special self
distillation strategy to adapt our network structure in the en-
semble decoding module.

3.1. Network Overview

The framework is depicted in Fig. 2. In our feature ex-
traction module, Me, an ERP format 360° image with the
size of H × W will be passed into a deep convolutional
neural network, such as ResNet [14], to progressively de-
crease the panorama resolution and produce hierarchical
feature maps at {1/4, 1/8, 1/16, 1/32} of the original image
resolution. Then we adopt feature pyramid network [19]
to form multi-scale features, denoted as {Fhi×wi

i }i=1,2,3,4.
In the next step, these feature maps are fed into the bi-
directional compression module Mc in parallel which con-
tains a lightweight Mix-MLP layer to yield useful represen-
tations and a PPC layer to contract the dimensions in the
horizontal and vertical directions. In particular, we use dif-
ferent pooling operations for different feature maps to ag-
gregate local and global context information. We detail this
module in Sec.3.2. Then we concatenate multi-level 1D ten-
sors in a single sequence and obtain two representations:
Seqh and Seqv .

During the decoding period, an ensemble decoding mod-
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Figure 3. Illustration of pyramid pooling compression (PPC).
Given a feature map F1 with the height of h1, to generate horizon-
tal representation, we first use global average pooling (GAP) to
harvest different sub-region representations, then a Conv2D layer
is applied to compress the height to 1, followed by concatenation
and convolutions layers to form the final 1D representation, which
carries both local and global context information. Note that the
sizes of sub-regions only vary in the vertical direction.

ule Md is employed to reconstruct 2D dense feature maps in
Sec.3.3. Finally, the fused features are fed into the segmen-
tation head to predict the final segmentation results. Be-
sides, for most padding operations, we use circular padding
for the left-right boundaries of the feature maps.

3.2. Bi-directional Compression Module

To obtain the bi-directional spherical representations in
a more effective and efficient way, we introduce a bi-
directional compression module. This module compresses
features into two complementary low-dimensional repre-
sentations which provide content perception and distortion
perception separately.

3.2.1 Mix-MLP Layer.

Considering the unique structure of ERP, we argue that lo-
cation information is necessary for our 360° semantic seg-
mentation. However, due to the consistent resolution re-
quirements during training and testing, the positional en-
coding [10] suffers from the inflexible extension problem.
To enable our network the capability of size-free positional
encoding, we design a lightweight Mix-MLP layer. Inspired
by [7], [35], we mixe a 3×3 convolution with zero padding
and two MLP into a unified framework to introduce implicit
location information. It can be formulated as:

Fout = Linear (δ (DWC (Linear (Fin)))) + Fin (1)

where Fin is the feature maps from the backbone, and δ is
activation function, we use GELU in our experiments. The
number of channels in Linear is four times as input. We
exploit depth-wise convolutions (DWC) for improving effi-
ciency and reducing the number of parameters. As a result,
our backbone-extracted features with location information
are useful for bi-directional feature compression.

3.2.2 Pyramid Pooling Compression.

To squeeze the height (h) and width (w), the most straight-
forward operation is to conduct two Conv2D layers with the
kernel sizes of h× 1 and 1× w. However, although the re-
ceptive field of ResNet is already enough for the works that
utilize the 2D feature, it is shown that it is still small for our
method that only uses the 1D representations.

Having observed that the global average pooling is a
helpful method as the global contextual prior [21], we de-
sign an efficient compression method to overcome the above
problems. Moreover, it is more reasonable to introduce a
more powerful representation using sub-regions with dif-
ferent sizes instead of the same size [44]. Hence, our PPC
layer fuses feature under several different pyramid scales,
Fig.3 gives an example. Note that the number of pyra-
mid levels and size of each level can be modified manu-
ally. They are related to the size of the feature maps that
are fed into the pooling layer. Therefore, combined with
our hierarchical structure, the number of pyramid levels de-
creases with the increase of the network stage. Concretely,
given the feature maps {Fhi×wi

i }i=1,2,3,4, the pooling size
is {hi

2j × wi}i=1,2,3,4;j=0,...,4−i for horizontal features, and
{hi × wi

2j }i=1,2,3,4;j=0,...,5−i for vertical features, respec-
tively.

Besides, because the feature maps in different stages
have different sizes, extra upsampling layers (see Fig.2)
should be added to align them. For example, we only up-
sample the feature maps along the horizontal direction to
align the horizontal feature. By compressing the features in
different directions, our model can implicitly perceive con-
tent information and distortion distribution in a panorama
from two perspectives.

3.3. Ensemble Decoding Module

To produce per-pixel predictions from 1D representa-
tions, Sun et al. [33] exploited interpolation operations and
inverse discrete cosine transform (IDCT), leading to reduc-
tion of the model learnability. Different from the strategy
of reshaping the size directly, we utilize n A-Conv layers
[27], each of which includes an upsampling layer, a Conv2D
layer, a BN layer, and a PReLU, to progressively stretch
dimensions. Note that we replace the PReLU with ReLU
for our segmentation modalities, and the final resolution is
H
4 × W

4 . In this way, we can obtain two distinct recon-
structed tensors, denoted as Dh and Dv .

3.3.1 Self Distillation.

Despite we can directly ensemble these features to capture
complementary semantic information in horizontal and ver-
tical directions, the direction-dominated characteristics are
still underutilized. This is because bi-directional features
represent different panoramic characteristics, the apparent
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Figure 4. Illustration of our self distillation strategy. During the
network’s training process, we principally divide our self distilla-
tion structure into three sections according to their sources. The
De is the summation of Dh, Dv , and F1. In the test stage, these
structures in rectangle boxes which only be introduced in training
processes will be removed.

feature domain gap will hinder the fusion process. Further-
more, if we directly fuse them, the decoder will undertake a
huge burden (responsible for fusion and ultimate classifica-
tion), making the performance not satisfied.

To facilitate the fusion of different features, we do not
design a more complex fusion network that can significantly
enlarge the model size. On the contrary, we design a unique
self distillation strategy in the decoding stage to narrow the
domain gap between different features. As illustrated in
Fig. 4, our self distillation structure can be divided into three
parts: HDB, VDB, and EB. The EB comprises HDB, VDB,
and the backbone feature Fh1×w1

1 .
During the training process, HDB and VDB are regarded

as student models while EB is the teacher model. The stu-
dents can learn beneficial knowledge from the teacher, and
the teacher can obtain good feedback from the students. In
this manner, both students and teacher can benefit from each
other. We set several convolution layers (bottleneck) and a
SegHead as the segmentation part, and both students and
teacher share the same network structure. The bottleneck
contains three Conv2D layers with kernel sizes of 1 × 1,
3× 3, and 1× 1. The SegHead comprises two upsampling
layers to reach the original resolution, and two Conv2D lay-
ers to predict the segmentation mask at a H × W × Ncls

resolution, where Ncls is the number of categories. Due to
page limitations, we exhibit a complete example in the sup-
plementary material.

After predicting the segmentation map of a 360° im-
age, it is straightforward to adopt the segmentation labels
to supervise the HDB and VDB, which can produce better
Dh and Dv . Nevertheless, if we only use this supervision,
the knowledge will not interact between the students and
teacher. To this end, we introduce two extra supervisions
(supervisions from intermediate features and final softmax
outputs of the teacher model) to encourage the student mod-
els to learn from the teacher model. In brief, we use cross-
entropy loss, kullback-Leibler(KL) divergence loss, and L2
loss as the optimization functions in our self distillation
strategy.

3.4. Objective Function

Our objective function comprises three kinds of loss as
the objective functions for optimizing predictions.

Cross-Entropy Loss. The first supervision is the cross-
entropy loss. Almost all CNNs for this task exploit cross-
entropy loss. It is computed with the ground truth (GT)
from the training samples and the predictions of the softmax
layer. We deploy it not only to the teacher’s branch but also
to two student branches. Through cross-entropy loss, the
knowledge hidden in the training set is introduced directly
from GT to all the branches. It can be written as:

Lce = ⟨−g log(pi)⟩ (2)

where g, pi denote the GT and predicted values from soft-
max layer’s output, respectively; i ∈ {1, ..., N}, where N
denotes the number of SegHeads in the training period, and
N = 3 in our experiments (refer to Fig4). Moreover, class-
wise weighted [41] is utilized to balance different classes.

KL Divergence Loss. The second supervision is the KL
divergence loss. We use KL divergence to measure the
difference between two distributions. It can be obtained
through the computation of softmax outputs between stu-
dents and teachers. Under the teacher’s guidance, the
distributions of students’ SegHeads can approximate the
teacher’s, which indicates the supervision from distillation.
It can be obtained by:

Lkl = ⟨pN log(
pN

pi
)⟩ (3)

L2 Loss. The last supervision is L2 loss which works by
decreasing the distance between feature maps in the student
branches and the teacher branch. In this way, the knowledge
in feature maps is distilled to students bottleneck layers.

Ll2 = ∥f i − fN∥22 (4)

Note that the last two losses for the teacher are zero,
which means the supervision in the teacher model only
comes from GT. Most importantly, we denote it as base
loss Lb in our network without distillation. For students,
we collect all supervision to obtain self distillation loss Ls.
Meanwhile, to make the fusion process more interactive, we
adopt three hyper-parameters to balance them.

Ltotal = Lb + Ls,

=
∑
i=N

Lce +

N−1∑
i=1

(α ∗ Lce + β ∗ Lkl + γ ∗ Ll2).

(5)

4505



4. Experiments

We evaluate the effectiveness of our model in this section
by carrying out comprehensive experiments on a real-world
dataset. In the following subsections, we first introduce
the dataset and implementation details, then report quan-
titative and qualitative results compared with the state-of-
the-art approaches. Finally, we perform a series of ablation
experiments for the proposed components.

4.1. Dataset

We evaluate our method on the Stanford 2D-3D-S
dataset [1], which consists of 1413 real-world equirectangu-
lar RGB-D images over 13 categories. The dataset contains
six large-scale indoor areas and provides semantic labels
with the ERP format as annotations. Besides, the panora-
mas have a resolution of 2048 × 4096 and contain black
void regions at the top and bottom. Following the prior
works, we report averaged quantitative results from the 3-
fold cross-validation splits.

4.2. Implementation Details

We conduct our experiments on three resolutions: 64 ×
128, 256 × 512, and 1024 × 2048. We train our learning
model using Adam [18] optimizer on a GTX 3090 GPU,
and the batch sizes are set to 16, 8, and 2. For the low-
resolution (the first two) inputs, we use the residual UNet-
style architecture as backbone [8], [17], [41] and replace the
specialized kernels with planar one. For the high-resolution
(the last one) inputs, we adopt ResNet-101 pre-trained on
COCO [20] as backbone [11], [33] to capture the larger
receptive field. Inspired by [5], [16], we employ the poly
learning rate policy where the base learning rate is mul-
tiplied by (1 − iter

max iter )
power with power = 0.9. The

learning rate is set to 1 × 10−3 with max iter = 300 for
low-resolution and 1× 10−4 with max iter = 60 for high
resolution. To prevent overfitting, we adopt a strategy of
randomly cutting a patch of the input image and padding
this region with a black mask, where the sizes of the hole
are chosen from the set {20 × 40, 80 × 160, 320 × 640}. In
our loss function, we set α = 0.7, β = 0.3, and γ = 0.003.

4.3. Results and Analysis

4.3.1 Compared with State-of-the-arts

In this subsection, we compare our method with the state-
of-the-art methods on 360° semantic segmentation in both
quantitative and qualitative evaluations, for which the nu-
merical results or segmentation map on the same dataset is
available. Furthermore, we analyze the model complexity
to demonstrate that our method achieves a better efficiency
tradeoff between model complexity and performance.

Table 1. Quantitative evaluation on Stanford2D3D dataset. Note
that the results are averaged over the 3-folds. Reasons for different
high resolutions, refer to Sec.4.3.

H ×W Input Method Pub. & Year mIoU ↑ mAcc ↑
Low-resolution input

64 × 128

RGB-D Gauge Net [8] ICML’19 39.4 55.9
RGB-D UGSCNN [17] ICLR’19 38.3 54.7
RGB-D HexRUNet [41] ICCV’19 43.3 58.6
RGB-D SWSCNN [12] NeruIPS’20 43.4 58.7
RGB-D TangentImg [11] CVPR’20 37.5 50.2
RGB-D HoHoNet [33] CVPR’21 40.8 52.1
RGB-D Ours - 47.2 61.2

256 × 512

RGB-D TangentImg [11] CVPR’20 41.8 54.9
RGB-D HoHoNet [33] CVPR’21 43.3 53.9
RGB-D PanoFormer [29] ECCV’22 48.9 64.5
RGB-D Ours - 53.8 66.5

High-resolution input
512× 1024 RGB Trans4PASS [42] CVPR’22 52.1 -
1024× 2048 RGB HoHoNet [33] CVPR’21 52.0 65.0
2048× 4096 RGB TangentImg [11] CVPR’20 45.6 65.2
512× 1024 RGB Ours - 52.2 65.6
1024× 2048 RGB Ours - 52.4 65.9
2048× 4096 RGB-D TangentImg [11] CVPR’20 51.9 69.1
1024× 2048 RGB-D HoHoNet [33] CVPR’21 56.3 68.9
1024× 2048 RGB-D Ours - 57.1 69.9

Quantitative Evaluation: Table.1 shows the quantitative
comparison results with the current state-of-the-art methods
on different input resolutions. It is evident that our approach
substantially outperforms the compared approaches in all
metrics. From these evaluations on the lowest resolution,
we can conclude that:

(i) Compared with the spherical CNNs methods [8], [12]
[17] which aim to directly learn distortion-aware represen-
tation from the sphere, our approach avoids complex convo-
lutional design on the transfer between planar and sphere,
showing more promising generality and flexibility.

(ii) Compared with the distortion-tolerate approaches
[11], [41], which project 360° images into icosahedron
format, our approach only need ERP as input and omit
the process of transformation. For example, our approach
outperforms HexRUNet [41] which equip a specially non-
rectangular kernel by a significant margin, with approxi-
mately 9% improvement on mIoU and 4% on mAcc.

(iii) As benefits of introducing vertical representation
which provides guidance of distortion distribution and en-
larges receptive fields in horizontal direction during the
learning stage, our approach achieves a 17% improvement
on both mIoU and mAcc on the lowest resolution compared
with the [33] that only use horizontal representation.

To further demonstrate the generality of our method, we
conduct experiments on other resolutions. It can be ob-
served that our network has achieved satisfactory results on
the 256 × 512 resolution with at least 24% improvements
on mIoU and 23% on mAcc compared with CNN-based
methods. Besides, we achieve 10% improvements on mIoU
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Figure 5. Qualitative evaluations of the segmentation results on 64 × 128 (left) and 256 × 512 (right) resolutions. Black rectangles are
used to highlight difference.

Table 2. Number of parameters, FLOPs, and frame per second
(FPS).

Method FLOPs(G) FPS Params(M)
HoHoNet [33] 2.15 49 12.75

Ours 2.71 37 21.84

and 3% on mAcc compared with recent transformer-based
methods which are good at aggregating long-range infor-
mation. Unfortunately, due to the limitation of our device,
we failed to train our network on higher resolutions (2048
× 4096) as [11]. Similar to [33] and [42], we can only
train our network with ResNet-101 as the backbone on a
lower 1024 × 2048 and 512 × 1024 resolutions with a small
batch size and channel dimension. Empirically, these set-
tings could decrease our performance, but we still achieve
SOTA as reported in the table. Finally, we also argue that
with the increase of resolution, the performance improve-
ment decreases because we compress the image to 1D, mak-
ing it challenging to recover 2D information. But compared
with these methods, our architecture is more simpler and
more efficient without the embedding or projection process.

Qualitative Evaluation: Fig.5 shows qualitative results
on Stanford2D3DS dataset, compared to [33]. From the fig-
ure, we can observe that our approach performs well on all
indoor scenes, while the horizontal representation method
shows inferior segmentation results, especially in regions
with distortions or regions with complex contextual infor-
mation. With the complementary relationship between two
representations, our method has a larger receptive field and
sufficient distortion information. For example, the class
with a strong distribution along horizontal direction while
weaker along the vertical direction (see Fig.5 (left) first two
rows) has an inferior performance in HoHoNet. Because
these pixels occupy a small proportion in each column, they
will be omitted when compressing the height dimension
and are difficult to recover. In contrast, our vertical rep-
resentation perceives this distribution in another dimension

Table 3. Ablation study with the key components on our 360° se-
mantic segmentation approach. Experiment resolution: 64 × 128.

H V M P mIoU mAcc

! 41.50 53.27
! 40.63 52.65

! ! 42.76 55.00
! ! ! 43.35 55.84
! ! ! ! 44.71 57.03

and supplement it to the decoding module. In general, our
approach achieves a better performance from local details
(receptive fields) to global distribution (distortion shape),
which benefits from the designed modules. More qualita-
tive results are included in the supplementary material.

Model Complexity Analyses: We further show compar-
isons with [33] on three metrics to evaluate the model com-
plexity and efficiency. The comparisons are conducted
in one GTX 2080Ti GPU. As listed in the Table.2, our
method offers acceptable higher computational complexity
but achieves better performance.

4.3.2 Ablation Studies

To validate the effectiveness of different components in our
approach, we conduct ablation studies and as illustrated in
Table.3 and Table.4. Note that all the experiment results are
evaluated on the lowest resolution input.

Effectiveness of bi-directional representations: We re-
move the self distillation to explore the effectiveness of
combining two representations (horizontal (H), vertical
(V)). Concretely, we implement our model without other
key schemes (Mix-MLP (M), PPC (P)) and provide the
quantitative results of variants equipped with different rep-
resentations. From Table.3 (first three rows), we can ob-
serve that the joint representation performs better than only
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Figure 6. Visual ablation comparison on our 360° semantic segmentation approach. (a) panoramic image. (b) ground truth. (c) VDB w/o
self distillation. (d) VDB w/ self distillation. (e) HDB w/o self distillation. (f) HDB w/ self distillation. (g) EB w/o self distillation. (h) EB
w/ self distillation.

Table 4. Ablation study with the self distillation strategy. Resolution: 64 × 128.

Fold
w/o self distillation w/ self distillation

VDB HDB EB VDB HDB EB
mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

1 38.68 50.16 44.91 56.11 47.08 58.05 45.12 57.29 49.34 61.06 50.48 61.93
2 33.48 48.72 36.19 51.68 38.23 52.37 37.22 53.90 40.41 57.00 40.87 57.83
3 41.19 53.71 46.59 59.39 48.82 60.68 46.30 61.12 49.20 63.57 50.35 63.84

using one directional representation, which indicates that
our network gains information from two complementary
perspectives to facilitate the accuracy. In addition, we can
observe that the H performs well than the V , which proves
that the vertical representation contains implicit distortion
prior and blurs the content.

Effectiveness of components in Mc: Subsequently, we
gradually add the removed components to show the dif-
ferent segmentation performances. Note that we utilize a
Conv2D layer to compress without M. As seen from Ta-
ble.3 (last three rows), the mIoU is improved from 42.76
to 44.71 with a percentage gain of 4.6%, and the mAcc is
boosted from 55.00 to 57.03 with the percentage gain of
3.7%. It also can be found that our network with useful
position information derived from M achieves pleasing re-
sults. For the compression strategy, P provides large recep-
tive fields and sufficient contextual information, making our
model gains further improvements and outperforms a sin-
gle Conv2D layer with 3.1% on mIoU and 2.1% on mAcc.
Finally, the completed framework achieves the best results
proving the effectiveness of our proposed components.

Effectiveness of self distillation: Since the different rep-
resentations have a severe feature domain gap, it is difficult
to integrate them harmoniously. Thus the self distillation
plays the role of facilitating the fusion of bi-directional rep-
resentations in our method. Furthermore, different from
other knowledge distillation methods that pre-training a

large teacher model, we exploit self distillation by directly
dividing our network into student models (VDB and HDB)
and teacher model (EB). To validate the effects of this strat-
egy, we experiment with removing all supervision for stu-
dent models, which means the knowledge from the teacher
and dataset are obstructed. The quantitative results are
shown in Table.4, we report detailed semantic segmentation
results on three folds. From Table.4, we can conclude that
via self distillation, all branches gain a significant improve-
ment, which indicates that the well-designed training tech-
nique can foster the interaction of bi-directional represen-
tations and notably improve the segmentation performance.
We also present the qualitative comparison results in Fig.6.

5. Conclusions
In this paper, a novel panoramic semantic segmentation

network is presented from a complementary perspective by
combining horizontal and vertical representations, which is
capable of expanding the limited horizontal receptive fields
and offering implicit distortion prior. To integrate comple-
mentary bi-directional representations, we design a unique
self distillation strategy to enhance the interaction of dif-
ferent representations and make the predicted segmentation
map more accurate. As the benefit of the proposed comple-
mentary representation, our approach significantly outper-
forms state-of-the-art solutions on the real-world dataset.
Acknowledgments: This work was supported by the
National Natural Science Foundation of China (Nos.
62172032, 62120106009).
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