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3Hainan University, China 4Hubei Chutian Expressway Digital Technology, China

dwardzheng@hust.edu.cn xzheng@student.ethz.ch ltyang@gmail.com

Abstract

Recent research about camouflaged object detec-

tion (COD) aims to segment highly concealed objects hid-

den in complex surroundings. The tiny, fuzzy camou-

flaged objects result in visually indistinguishable proper-

ties. However, current single-view COD detectors are

sensitive to background distractors. Therefore, blurred

boundaries and variable shapes of the camouflaged ob-

jects are challenging to be fully captured with a single-

view detector. To overcome these obstacles, we propose

a behavior-inspired framework, called Multi-view Feature

Fusion Network (MFFN), which mimics the human behav-

iors of finding indistinct objects in images, i.e., observing

from multiple angles, distances, perspectives. Specifically,

the key idea behind it is to generate multiple ways of obser-

vation (multi-view) by data augmentation and apply them

as inputs. MFFN captures critical boundary and semantic

information by comparing and fusing extracted multi-view

features. In addition, our MFFN exploits the dependence

and interaction between views and channels. Specifically,

our methods leverage the complementary information be-

tween different views through a two-stage attention module

called Co-attention of Multi-view (CAMV). And we design

a local-overall module called Channel Fusion Unit (CFU)

to explore the channel-wise contextual clues of diverse fea-

ture maps in an iterative manner. The experiment results

show that our method performs favorably against existing

state-of-the-art methods via training with the same data.

The code will be available at https://github.com/

dwardzheng/MFFN_COD.

1. Introduction

Camouflage is a mechanism [3] by which organisms

protect themselves in nature. Camouflaged object detec-

tion (COD) is a countermeasure against the camouflage

mechanism, aiming to capture the slight differences be-
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Figure 1: Visualization of camouflaged animal detection.

The state-of-the-art and classic single-view COD model

SINet [5] is confused by the background sharing highly sim-

ilarities with target objects and missed a lot of boundary and

region shape information (indicated by orange arrows). Our

multi-view scheme will eliminate these distractors and per-

form more efficiently and effectively.

tween the object and the background to obtain accurate de-

tection results. Unlike general object detection and salient

object detection, in which the objects and background can

be easily distinguished by human eyes or advanced deep

learning models, COD is more challenging because it re-

quires a sufficient amount of visual input and prior knowl-

edge [41] to address the complicated problem caused by the

highly intrinsic similarity between the target object and the

background. Thus, COD has a wide range of valuable appli-

cations in promoting the search and detection of biological

species [38], assisting the medical diagnosis with medical

images [36, 12], and improving the detection of pests and

diseases in agriculture [9].

Recently, many researches put emphasis on learning

from a fixed single view with either auxiliary tasks [17, 27,

29, 48, 55, 14], uncertainty discovery [19, 24], or vision

transformers [47, 33] and their proposed methods achieved

significant progress. Nevertheless, due to visual insignifi-

cance of camouflaged objects and contextual insufficiency

from single-view input, they are still striving to precisely
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recognize camouflaged objects and their performance needs

to be improved. We found that the current COD meth-

ods are easily distracted by negative factors from decep-

tive background/surroundings, as illustrated in Fig. 1. As

a result, it is hard to mine discriminative and fine-grained

semantic cues of camouflaged objects, making accurately

segment camouflaged objects from a confusing background

and predict some uncertain regions incapable. Meanwhile,

we learn that when people observe a concealed object in

images, they usually adjust the viewing distance, change

the viewing angle, and change the viewing position to find

the target object more accurately. Inspired by it, we aim

to design a simple yet efficient and effective strategy. The

aforementioned considerations motivate us to consider the

semantic and context exploration problem with multi-view.

We argue that corresponding clues, correlations, and mutual

constraints can be better obtained by utilizing information

from different viewpoint of the scene (e.g., changing ob-

servation distances and angles) as complementary. Further-

more, we argue that carefully designing the encoded feature

fusion modules can help the encoder learn accurate infor-

mation corresponding to boundary and semantics. Taking

these into mind, our research will focus on the following

three aspects: (1) how to exploit the effects of different types

of views on COD task, and the combination of multi-view

features to achieve the best detection effect; (2) how to bet-

ter fuse the features from multiple views based on correla-

tion awareness and how to enhance the semantic expression

ability of multi-view feature maps without increasing model

complexity; (3) how to incrementally explore the potential

context relationships of a multi-channel feature map.

To solve our concerned pain points of COD task, we pro-

pose a Multi-view Feature Fusion Network (MFFN) for the

COD task to make up for the semantic deficiency of fixed

view observation. First, we use the multi-view raw data,

which are generated by different data augmentation, as the

inputs of a backbone extractor with shared weights. We im-

plement a ResNet model as the backbone extractor integrat-

ing the feature pyramid network (FPN) [22] to focus on ob-

ject information of different scales. In addition, we design

a Co-attention of Multi-view (CAMV) module to integrate

multi-view features and to explore the correlation between

different view types. CAMV consists of two stages of at-

tention operation. In the first stage, the inherent correlation

and complementary analysis are mainly conducted for mul-

tiple viewing distances and angles to obtain the view fea-

tures with a unified scale. In the second stage, the external

constraint relations between viewing angles and distances

are further leveraged to enhance feature maps’ semantic ex-

pression. For the enhanced multi-view feature tensor, we

design a Channel Fusion Unit (CFU) to further exploit the

correlation between contexts. In the CFU module, we first

carry out up-down feature interaction between channel di-

mensions and then carry out progressive iteration on the

overall features. CAMV is applied to observe the multi-

view attention features of different size feature maps of FPN

architecture. The CFU module contains the previous layer’s

information as each size’s feature maps are eventually re-

stored to their original size. Finally, the final prediction

results are obtained by sigmoid operation. The prediction

further benefits from UAL design.

Our contribution can be summarized as follows: 1) We

propose MFFN model to solve the challenging problems

faced by single-view COD models. MFFN can capture

complementary information acquired by different viewing

angles and distances and discover the progressive connec-

tion between contexts.

2) We design the CAMV module to mine the comple-

mentary relationships within and between different types of

view features and enhance the semantic expression ability

of multi-view feature tensors, and use the CFU module to

conduct progressive context cue mining.

3) Our model is tested on three datasets of

CHAMELEON [37], COK10K [5] and NC4K [27],

and quantitative analysis is conducted on five general

evaluation indicators of Sm [6], Fw
β [28], MAE, Fβ [1]

and Em [7], all of which achieved superior results.

2. Related work

Salient Object Detection (SOD). SOD is a kind of seg-

mentation task in essence. It calculates saliency map first

and then merges and segmented saliency object. In previ-

ous studies, traditional methods based on manual features

pay more attention to color [2, 21], texture [46, 21], con-

trast [34, 15] and so on, but lack advantages in complex

scenes and structured description. With the development of

CNN, SOD algorithm has achieved leapfrog development.

Li et al. [20] combines local information with global in-

formation to overcome the problem of highlighting object

boundary but not the overall object in the model based on lo-

cal. The model structure design idea of multi-level features,

has been more widely applied in [23, 54, 13, 18]. Simi-

lar to COD, clear boundary information is crucial for SOD

task [35, 52, 39]. The development of attention mechanism

provides more schemes for exploring the correlation be-

tween channel dimension and spatial dimension [32, 8, 42].

The application of attention mechanism improves the per-

formance of SOD model [26, 51, 44]. SOD faces simpler

background surroundings. Although excellent performance

can be obtained by applying relevant models to COD task,

specific design is still needed to remove the interference

from the background surroundings.

Camouflaged Object Detection (COD). In recent years,

some researches applied multi-task learning to detect the

camouflaged objects. Le et al. [17] introduced the binary
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Figure 2: Overview of our model structure. We generate multiple views (Diagonally and Vertically flipped views, Close

looking views) of the data by different transformation methods. The shared pyramid feature encoder is applied to extract

hierarchical features of different scales corresponding to different view choices. The view combining layer concatenates fea-

tures of same level from different views (fD
i , fV

i , fO
i , fC1

i , fC2

i ) channel-wisely and output multi-view feature tensors (mv-

tensors). The model feeds mv-tensors into CAMVs and obtain multi-view enhanced feature tensor (en-tensor) fi. CAMV is

adopted to fuse features and aggregate vital clues between different views by a two-stage co-attention mechanism. The en-

tensors are further decoded and the contextual correlation are exploited by hierarchical channel fusion unit simultaneously.

In the end, a probability map of camouflaged object in the input image is computed by several convolutional blocks.

classification task as the second branch and auxiliary task of

camouflaged object segmentation. Zhu et al. [55] proposed

a new boundary-guided separated attention network (BSA-

NET), which uses two streams of separated attention mod-

ules to highlight the boundaries of camouflaged objects.

Lv et al. [27] proposed a multi-task learning framework to

jointly localize and segment the camouflaged objects while

inferring their ranks. Zhai et al. [48] designed a mutual

graph learning model to detect the edge and region of the

objects simultaneously. There are some uncertainty-aware

methods. Li et al. [19] proposed an uncertainty-aware

framework containing a joint network for both salient and

camouflaged object detection. Yang et al. [47] introduced

Bayesian learning into the uncertainty-guided transformer

reasoning model. Liu et al. [24] designed an aleatoric

uncertainty estimation network to indicate the prediction

awareness. Sun et al. [40] placed emphasis on rich global

context information with the integration of cross-level fea-

tures. Pei et al. [33] applied a one-stage location-sensing

transformer and further fused the features from transformer

and CNN. Some bio-inspired methods are proposed. For ex-

ample, [30, 29, 5] use multi-scale information but from one

single view. Meanwhile, [30] shows single-view informa-

tion is not sufficient for accurately detecting camouflaged

objects. We hereby argue that view generation and selec-

tion might play an important role and we aim to develop our

model by mimicking the behavior of humans when under-

standing complicated concealed objects by altering the way

they observing an image. Our proposed method exploits the

visual perception knowledge and semantic cues by aggre-

gating complementary information from multi-view. Ac-

cordingly, our model is simple yet efficient and effective to

comprehensively understand scene and to accurately seg-

ment the camouflaged objects.

3. Method

Motivation. Motivated by the challenges of single-view

COD models, we attempt to capture boundary and regional

semantic information with rich viewing angles and flexible

viewing distances. In order to merge diverse context infor-

mation from features of multi-view inputs and FPN multi-

level outputs, we design a feature fusion module based on

two-stage attention mechanism to obtain enhanced feature

tensors. It also avoids redundant structural design. To

leverage the rich information contained in channel dimen-

sions, we design a local-overall context/cues mining struc-

ture based on channel-wise integration. Meanwhile, it also

enhances the information expression of the feature tensors.

3.1. Multiview Generation

As shown in Fig. 1, the single-view model misses nec-

essary boundary, region, and shape information. Inspired

by human behavior, taking complementary views of obser-

vation into account will overcome this defect and we de-

sign three different views: distance, angle, and perspective

view. We obtain different distance views through the re-

size operation with the proportional interval of the resize

operation larger than 0.5 to increase the distinction. We

get different angle views by mirror transformation, includ-

ing horizontal, vertical and diagonal mirror transformation.

We obtain different perspective views through affine trans-

formation. Specifically, three corresponding points on the
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original and the target image are selected as references to

calculate the transformation matrix. The above operations

are based on OpenCV and the implementation in OpenCV

is in Appendix B. The ablation study proves that the combi-

nation of two angle views obtained by mirror transformation

and two close distance views obtained by resize operation

is an effective selection scheme. As shown in the Appendix

A, our multi-view strategy can be easily transferred to the

SOD task and achieve excellent performance in salient ob-

ject detection (SOD) task.

3.2. Architecture Overview

The overview of our proposed MFFN is illustrated in

Fig. 2. MFFN adopts ResNet [11] as the backbone net-

work for feature extraction, and adopts the FPN [22] to

capture feature information of different levels from differ-

ent views. We design the CAMV module to merge diverse

context information and to capture complementary informa-

tion from encoded multi-view features. Furthermore, we

applied CFU module to fuse the channel-wise context in-

formation and clues in an iterative manner. As shown in

Fig. 2, given an input original image IO ∈ R
H×W×3, we

create flipped and close views by applying mirror and re-

size transformation. The multi-view inputs are defined as

{ID ∈ R
H×W×3, IV ∈ R

H×W×3, IO ∈ R
H×W×3,

IC1 ∈ R
H1×W1×3, IC2 ∈ R

H2×W2×3 }, where D,V in-

dicate diagonally and vertically flipped views, O indicates

original view, and C1, C2 represent two different scale close

views. We input each observed view into a backbone net-

work with shared weights, and obtain feature maps of dif-

ferent levels through FPN [22]. Then, we apply CAMV

module to fuse the multi-view feature tensors from a spe-

cific FPN stage by a two-stage attention mechanism. Fur-

thermore, we design the CFU module to mine the contex-

tual correlation and critical clues between the multi-view

enhanced feature maps f1, ..., f5. Finally, MFFN restores

the feature maps to its original size by gradual upsampling

structure, so as to obtain the final output results.

3.3. Coattention of Multiview

The COD methods proposed in recent years pay more at-

tention to feature mining from a fixed view and thus ignore

information complemented from different views. Inspired

by the biological mechanism, visual information from dif-

ferent ways of observing and watching can be correlated

and complemented. Based on the above discoveries, we im-

plement CAMV, consisting of a two-stage attention mech-

anism to complement boundary information with features

from different viewing angules and enhance semantic infor-

mation with different viewing distance. CAMV reduces re-

dundant network design through multi-view interaction and

fusion.

The framework of CAMV is shown in Fig. 3. Since

the scales of multiple viewing distances features fC1

i ∈

R
h1×w1×c, fC2

i ∈ R
h2×w2×c differs, we first align its

scale to be consistent resolution (dimension) with fO
i ∈

R
h×w×c through downsampling. Then we carry out post-

processing to fV
i , fD

i , fO
i , fC1

i , fC2

i and we only need to

post-process the features from different angles fV
i , fD

i , fO
i

while keeping the resolution unchanged. After post-

processing, we cross-concatenate encoded multi-view fea-

ture tensors fV
i , fD

i , fO
i , fC1

i , fC2

i from same level i (the

mv-tensor in Fig. 2) to compose one multi-view enhanced

feature tensor (the en-tensor in Fig. 2). We design a two-

stage attention module to enhance feature interaction and

correlational clues mining from different views.

The attention of the first stage aims to aggregate the cor-

relative clues of viewing distance and viewing angle re-

spectively. Taking the feature tensor {fD
i , fV

i , fO
i } from

three viewing angles as an example, we first compress chan-

nel feature through the convolution layer to obtain f
Ang
i ∈

R
h×w×c, and then input f

Ang
i into three parallel tensor mul-

tiple modulus multiplication modules to calculate attention.

The process is formulated as

f
Ang
i = ReLU(Conv(Cat(fD

i , fV
i , fO

i )))

uA = σ(fAng
i ×1 UA1

×2 UA2
×3 UA3

)

uB = σ(fAng
i ×1 UB1

×2 UB2
×3 UB3

)

uC = σ(fAng
i ×1 UC1

×2 UC2
×3 UC3

)

F
Ang
i = fD

i ⊙ uA + fV
i ⊙ uB + fO

i ⊙ uC

(1)

where {uA, uB , uC} are attention factors, {fD
i , fV

i , fO
i }

indicate feature tensors from three different viewing an-

gles, F
Ang
i represents en-tensor of the first stage atten-

tion, σ denotes sigmoid function scaling the weight value

into (0, 1). Cat() is the concatenation operation along

channel and ReLU() represents the activation function.

{UAi
, UBi

, UCi
} represent the parameter matrix of atten-

tion factor calculation modules based on tensor multiple

modulus multiplication operation, ×i represents modular

multiplication [16], ⊙ means element-by-element multipli-

cation. Similarly, we can process the feature tensor FDist
i

of distance-based views after fusion by the same operation.

Through such two parallel internal-attention (In-att) feature

fusion modules, we can enhance the semantic information

of the feature maps from different angles and distance.

In the second stage of the attention mechanism, we fur-

ther interact F
Ang
i and FDist

i . As shown in Fig. 3, the fea-

tures of discriminative viewing angles F
′Ang
i is obtained by

boundary separation based on self-attention, and F
′Ang
i will

be used as a complement to FDist
i . Furthermore, we con-

catenate F
′Ang
i and FDist

i together to obtain the multi-view

intermediate feature tensor FMV . Finally, we fuse FMV

to obtain the final output of CAMV module. The specific
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Figure 3: The architecture of our CAMV module. First, the two view types are processed by intra-class attention (In-att)

mechanism, and then the two view types are fused by the complementation of external classes (out-comp). In a nutshell,

CAMV consists of a two-stage attention mechanism.

process is defined by the following formula:

FA1
i = Conv(ReLU(Conv(AvgPool(FAng

i ))))

FA2
i = Conv(ReLU(Conv(MaxPool(FAng

i ))))

F
Ang
i = F

Ang
i ⊙ σ(FA1

i + FA2
i )

F
′A1
i = avg(FAng

i )

F
′A2
i = max(FAng

i )

F
′Ang
i = F

Ang
i ⊙ σ(Conv(Cat(F

′A1
i , F

′A2
i )))

(2)

where MaxPool() and and AvgPool() mean maximum

and average pooling respectively, mean() indicates taking

the mean of the elements and max() indicates taking the

maximum of the elements along the channel dimension.

Generally speaking, AvgPool() can preserve more back-

ground information, and MaxPool() can preserve more

texture information. Thus, abundant boundary information

will help to better capture the blurred differences in shape,

color, scale and so on between the object and the back-

ground.

Through the two-stage attention blocks in CAMV, we

carry out implicit interaction and semantic correlation min-

ing for features from different views. The viewing angle and

distance well complement the differences between them.

The boosted feature expression makes the camouflaged ob-

ject more clearly separate from the background surround-

ings. To sum up, CAMV aggregates feature maps from dif-

ferent views, and integrates the auxiliary boundary infor-

mation into the main branch that incorporates the distance

views. Thus, we will transmit a semantically enhanced and

more compact feature map into the next processing unit.

3.4. Channel Fusion Unit

The input of CFU module is the integrated feature map

fi from CAMV, which is an embedding obtained by fusing

features from different views. CFU splits the feature map fi
from CAMV module into j chunks {f1

i , f
2
i , ..., f

k
i , ..., f

j
i }

along the channel dimension, where k indicates the index of

different chunks. All chunks {f1
i , f

2
i , ..., f

k
i , ..., f

j
i } have a

consistent number of channels. CFU executes channel-wise

local interaction process (CLIP) between adjacent chunks

fk−1

i and fk
i to connect all channels of fk−1

i and fk
i . The

output of CLIP is further interacted with the next chunk

fk+1

i . In this way, all channels of fi interact with each other.

Then, the outputs of all CLIP will be reassembled into one

feature map, which will be used as the input of the overall

iteration, giving full consideration to the idea of consistency

between the overall and the local. The CLIP is described as

follows:

CLIP(fk+1

i , fk
i ) = Tucker(Cat(fk+1

i ,Conv(fk
i )))

(3)

where Tucker() represents the interaction fusion opera-

tion based on tensor multiple modulus multiplication, which

can filter out the redundant features by splicing and make its

semantic expression more compact.

The overall progressive iteration (OPI), which aims to

explore the potential semantic relevance of context, con-

ducts progressive iterations from the overall. This iterative

hybrid strategy helps to obtain a more powerful feature rep-

resentation. The output zi of the final CLIP is the input of

OPI. We define the initial value of zi as z0i . For each OPI,

z0i = CBR(zi)

zs+1

i = CBR(zsi + z0i )
(4)

where CBR() represents a block unit mainly based on con-

volution layer, including the combination of multiple con-

volutional layers, batch normalization, and activation lay-

ers. We adopt FPN [22] architecture as the feature extractor,

which results in multi-level feature maps of different scales.

We adopt a progressive upsampling method to gradually re-

store the feature maps of different levels to be consistent

resolution. Finally, a fusion unit and sigmoid function are

used to obtain the predicted results.
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Table 1: Comparison of evaluation results of different models on CHAMELEON,COD10K and NC4K. The best model

results will be highlighted in green.

Accepted by Model
CHAMELEON COD10K NC4K

Sm ↑ F
ω
β ↑ MAE ↓ Fβ ↑ Em ↑ Sm ↑ F

ω
β ↑ MAE ↓ Fβ ↑ Em ↑ Sm ↑ F

ω
β ↑ MAE ↓ Fβ ↑ Em ↑

Salient Object Detection / Medical Image Segmentation

CVPR2018 PiCANet [26] 0.765 0.552 0.085 0.618 0.846 0.696 0.415 0.081 0.489 0.788 0.758 0.57 0.088 0.64 0.835

CVPR2019 BASNet [35] 0.847 0.771 0.044 0.795 0.894 0.661 0.432 0.071 0.486 0.749 0.695 0.546 0.095 0.61 0.785

CVPR2019 CPD [44] 0.857 0.731 0.048 0.771 0.923 0.75 0.531 0.053 0.595 0.853 0.787 0.645 0.072 0.705 0.866

CVPR2019 PoolNet [25] 0.845 0.69 0.054 0.749 0.933 0.74 0.506 0.056 0.575 0.844 0.785 0.635 0.073 0.699 0.865

ICCV2019 EGNet [52] 0.797 0.649 0.065 0.702 0.884 0.736 0.517 0.061 0.582 0.854 0.777 0.639 0.075 0.696 0.864

AAAI2020 F3Net [43] 0.848 0.744 0.047 0.77 0.917 0.739 0.544 0.051 0.593 0.819 0.78 0.656 0.07 0.705 0.848

ICCV2019 SCRN [45] 0.876 0.741 0.042 0.787 0.939 0.789 0.575 0.047 0.651 0.88 0.83 0.698 0.059 0.757 0.897

CVPR2020 CSNet [10] 0.856 0.718 0.047 0.766 0.928 0.778 0.569 0.047 0.634 0.871 0.75 0.603 0.088 0.655 0.793

CVPR2020 SSAL [50] 0.757 0.639 0.071 0.702 0.856 0.668 0.454 0.066 0.527 0.7789 0.699 0.561 0.093 0.644 0.812

CVPR2020 UCNet [49] 0.88 0.817 0.036 0.836 0.941 0.776 0.633 0.042 0.681 0.867 0.811 0.729 0.055 0.775 0.886

CVPR2020 MINet [31] 0.855 0.771 0.036 0.802 0.937 0.77 0.608 0.042 0.657 0.859 0.812 0.72 0.056 0.764 0.887

CVPR2020 ITSD [53] 0.814 0.662 0.057 0.705 0.901 0.767 0.557 0.051 0.615 0.861 0.811 0.679 0.064 0.729 0.883

MICCAI2020 PraNet [4] 0.86 0.763 0.044 0.789 0.935 0.789 0.629 0.045 0.671 0.879 0.822 0.724 0.059 0.763 0.888

Camouflaged Object Detection

CVPR2020 SINet [5] 0.872 0.806 0.034 0.827 0.946 0.776 0.631 0.043 0.679 0.874 0.808 0.723 0.058 0.769 0.883

CVPR2021 SLSR [27] 0.89 0.822 0.03 0.841 0.948 0.804 0.673 0.037 0.715 0.892 0.84 0.766 0.048 0.804 0.907

CVPR2021 MGL-R [48] 0.893 0.812 0.031 0.833 0.941 0.814 0.666 0.035 0.71 0.89 0.833 0.739 0.053 0.782 0.893

CVPR2021 PFNet [29] 0.882 0.81 0.033 0.828 0.945 0.8 0.66 0.04 0.701 0.89 0.829 0.745 0.053 0.784 0.898

CVPR2021 UJSC* [19] 0.891 0.833 .0.030 0.847 0.955 0.809 0.684 0.035 0.721 0.891 0.842 0.771 0.047 0.806 0.907

IJCAI2021 C2FNet [40] 0.888 0.828 0.032 0.844 0.946 0.813 0.686 0.036 0.723 0.9 0.838 0.762 0.049 0.795 0.904

ICCV2021 UGTR [47] 0.888 0.794 0.031 0.819 0.94 0.817 0.666 0.036 0.711 0.89 0.839 0.746 0.052 0.787 0.899

CVPR2022 ZoomNet [30] 0.902 0.845 0.023 0.864 0.958 0.838 0.729 0.029 0.766 0.911 0.853 0.784 0.043 0.818 0.912

OURS MFFN 0.905 0.852 0.021 0.871 0.963 0.846 0.745 0.028 0.782 0.917 0.856 0.791 0.042 0.827 0.915
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Figure 4: The architecture of the CFU module. CFU first

performs feature interaction based on Tucker layer and con-

volution layer through channel expansion and split, and then

obtains the final output through up-down correlation cue

mining.

3.5. Loss Functions

Binary cross entropy loss (BECL) is often used in vari-

ous image segmentation tasks, and its mathematical form is

as follows:

l
i,j
BCEL = −gi,j log pi,j − (1− gi,j) log(1− pi,j) (5)

where gi,j ∈ {0, 1} and pi,j ∈ [0, 1] denote the ground

truth and the predicted value at position(i,j), respectively.

Because the camouflage object is often seriously disturbed

by the background surroundings. As a result, the model

produces serious fuzziness and uncertainty in prediction.

For this reason, we design uncertainty perceived loss

(UAL) [30] as an auxiliary of BCEL to improve the pre-

diction ability of the model for camouflaged objects. And

its mathematical form is as follows:

l
i,j
UAL = 1− |2pi,j − 1|2 (6)

finally,the total loss function can be written as:

L = LDCEL + λLUAL (7)

We use the UAL form of the quadratic power because the

quadratic curve has a gentle gradient around 0 and 1 while

maintaining a reasonable penalty interval around 0.5. The

cosine strategy is used to dynamically adjust the λ.

4. Experiments

4.1. Experiment Setup

Datasets. We use four COD datasets, CAMO [17],

CHAMELEON [37], COD10K [5] and NC4K [27]. CAMO

consists of 1,250 camouflaged and 1,250 non-camouflaged

images. CHAMELEON contains 76 hand-annotated im-

ages. COD10K includes 5,066 camouflaged, 3,000 back-

ground. NC4K is another COD testing dataset including
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4,121 images. In this work, we use CAMO and COD10K

to construct a training set containing 4,040 camouflage

images. To fully verify the generalization ability of the

model, we conducted tests on CHAMELEON and NC4K

that did not participate in the training, as well as the rest of

COD10K. The train, validation, and test sets have been split

by default in their original corresponding datasets.

Evaluation Metrics. To facilitate comparison with pre-

vious methods, we adopt the following evaluation indica-

tors: Structure-measure (Sm) which is used as an assess-

ment of structural similarity, F-measure (Fβ) which is used

to balance estimates of accuracy and recall rates, weighted

F-measure (Fw
β ), mean absolute error (MAE), Enhanced-

alignment measure (Em), which considers both the global

average of image and local pixel matching.

Experiment environment. The entire mod code is imple-

mented based on PyTorch. In the feature extraction stage,

ResNet-50 model pretrained on ImageNet is adopted.

Hyperparameter setting. To verify the validity of the

model itself, we followed the same hyperparameter settings

as most of the comparison models. SGD with a momentum

of 0.9 and a weight decay of 0.0005 was chosen as the opti-

mizer. We initialize the learning rate to 0.01 and follow the

cosine preheat decay strategy. In addition, we set batch size

to 8, we trained our model in the training set, and evalu-

ated it in the independent validation set every three epochs.

When 60% results of the evaluation metrics of the model

on the validation set did not exceed the previous evaluation

results, the training was stopped. For more detailed infor-

mation, please see Appendix D.

4.2. Comparisons with StateoftheArts

Due to the wide application value of COD, researchers

have published a number of models with excellent perfor-

mance in top academic conferences and journals. We se-

lected models that have appeared in mainstream computer

vision conferences in recent years for comparison and ap-

plied the published results. In addition, during the training

process, we follow the same backbone and hyperparame-

ters’ settings (i.e. batch size, learning rate, and optimizer)

as most models.

As shown in Tab. 1, MFFN achieves the best perfor-

mance in all three test datasets without extra training data,

especially for the four indicators of Sm, Fβ , Fw
β , Em.

Compared with model MGL [48], which introduced bound-

ary detection as an auxiliary task with interactive learning

and graph neural network, it is obvious that our method

has superior performance by capturing boundary informa-

tion and separating background simultaneously. Compared
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(a) PR curves of the proposed MFFN and recent SOTA

algorithms over CHAMELEON, COD10K and NC4K.
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(b) Fβ curves of the proposed MFFN and recent SOTA

algorithms over CHAMELEON, COD10K and NC4K.

Figure 5: Results of PR and Fβ curves. Red line represents

our proposed MFFN.

with ZoomNet [30] which achieved the second best perfor-

mance, our model improves Sm by 0.8%, Fw
β by 1.6%, Fβ

by 1.6% and Em by 0.6% in the COD10K test set. Simi-

larly, in the NC4K dataset test results, Sm is improved by

0.3%, Fw
β is improved by 0.7%, Fβ is improved by 0.9%

and Em is improved by 0.3%. We draw precision-recall

(PR) curve and Fβ curve. As shown in Fig. 5a and Fig. 5b,

the PR curve of MFFN surrounds the previously proposed

model, and the Fβ curve also presents an almost horizon-

tal shape, which represents that MFFN has more accurate

detection results. The visualization results for the differ-

ent methods are shown in Fig. 6. We select 8 samples

with obvious differences in object size, background inter-

ference and color for analysis. The comparison results show

that our method can still obtain clear prediction boundaries

and region shapes under the circumstance of highly blurred

boundary and highly similar background. For model com-

plexity, although we increase the input images with the

multi-view design, our model still has the least number of

parameters compared with single-view models, as shown in

Tab. 2. This indicates that with multi-view design, we are

able to apply a simpler encoder (i.e. instead of ViT [47])

with less complex strategies (i.e. instead of joint SOD and

COD [19], or joint mutual graph learning [48]).

Table 2: Comparison of the number of parameters of our

proposed MFFN and other SOTA models.

Method MFFN(Ours) UGTR [47] UJSC [19] ZoomNet [30] PfNet [29] MGL-R [48] SLSR [27]

Parameters 36.554M 48.868M 217.982M 32.382M 46.498M 63.595M 50.935M

4.3. Ablation Studies

In this section, we conduct ablation studies on the com-

bination of different views, the mode to interact of multiple
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Figure 6: Visual comparisons of some latest research algo-

rithms and our proposed MFFN in some typical images. We

can find that the prediction results of MFFN have clearer

boundary and region shape.

views and the CFU. Considering the representativeness of

the dataset, different model design methods were used to

evaluate the two large datasets COD10K and NC4K.

The effect of different views. The proposed model aims

to complement and fuse the multi-view information to ob-

tain precise and accurate boundary information and seman-

tic correlation. We expand on the distance view, perspective

view, angle view and the different combinations of them.

The experimental results shown in the Tab. 3 and Tab. 5 re-

veal the significance of different views for feature capture,

and we choose the best combination of views.

The effect of two-stage attention in CAMV. In our

method, we introduce CAMV to interact with multi-view

feature maps, enhancing the semantic expression of fore-

ground and background. In order to better analyze the effect

of two-stage attention on model performance improvement,

we analyze the two stages respectively.

The effect of CFU. Considering the deficiency in context

semantic association of feature maps after multi-view fu-

sion, we design the CFU to further potential mine clues

of the feature tensors obtained after CAMV. CFU module

mainly includes channel expansion and interaction and con-

text extraction modules. We perform an ablation analysis on

the two main parts of the two CFU. Based on the results in

the Tab. 4, it is discovered that obtaining potential context

clues through CFU is critical.

5. Conclusion

In this paper, we propose the MFFN model by imitating

the multi-view observation mechanism of biology, which

makes the features captured from different views comple-

ment and interact with each other. MFFN makes up for

Table 3: Comparisons of different views and their combi-

nations using different CAMV on COD10K. V-O: original

view; V-F: far view; V-C: close view; V-A: angle view; V-P:

perspective view.

View CAMV Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑

V-O – 0.797 0.649 0.063 0.704 0.875

V-F One-stage 0.808 0.678 0.033 0.721 0.884

V-C One-stage 0.841 0.736 0.029 0.772 0.909

V-A One-stage 0.812 0.686 0.034 0.729 0.892

V-F&C
One-stage 0.844 0.735 0.028 0.769 0.907

Two-stage 0.842 0.735 0.028 0.771 0.911

V-A&F
One-stage 0.807 0.675 0.034 0.717 0.886

Two-stage 0.805 0.673 0.035 0.717 0.882

V-C&P
One-stage 0.827 0.714 0.036 0.759 0.901

Two-stage 0.838 0.725 0.031 0.764 0.907

V-A&P
One-stage 0.796 0.649 0.042 0.689 0.881

Two-stage 0.802 0.660 0.037 0.707 0.886

V-A&C
One-stage 0.835 0.727 0.03 0.766 0.906

Two-stage 0.846 0.745 0.028 0.782 0.917

Table 4: Influence of CFU module on performance.

Dataset Method Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑

COD10K
no-CFU 0.844 0.73 0.03 0.771 0.917

CFU 0.846 0.745 0.028 0.782 0.917

NC4K
no-CFU 0.854 0.78 0.045 0.819 0.915

CFU 0.856 0.791 0.042 0.827 0.915

Table 5: Comparisons of different views and their combina-

tions using different CAMV on NC4K.

View CAMV Sm ↑ Fω
β ↑ MAE ↓ Fβ ↑ Em ↑

V-F One-stage 0.839 0.764 0.046 0.801 0.902

V-C One-stage 0.854 0.788 0.043 0.823 0.912

V-A One-stage 0.839 0.764 0.047 0.802 0.903

V-F&C
One-stage 0.86 0.793 0.042 0.824 0.914

Two-stage 0.857 0.79 0.042 0.823 0.913

V-A&F
One-stage 0.834 0.757 0.048 0.795 0.9

Two-stage 0.833 0.755 0.049 0.795 0.9

V-C&P
One-stage 0.843 0.774 0.049 0.806 0.897

Two-stage 0.852 0.782 0.046 0.817 0.909

V-A&P
One-stage 0.821 0.742 0.054 0.780 0.886

Two-stage 0.835 0.753 0.050 0.792 0.899

V-A&C
One-stage 0.845 0.774 0.047 0.812 0.906

Two-stage 0.856 0.791 0.042 0.827 0.915

the omission of features in fixed view observation. Firstly,

we obtain more compact features through multi-view at-

tentional interaction design, which enhances the semantic

representation ability of the feature maps to the object re-

gion and boundary, and well integrates the multi-view se-

mantic information. In addition, the context association in-

formation of feature tensor, which is implied in the chan-

nel dimension, is further mined by the CFU. A large num-

ber of experimental results verify the high performance of

this method in COD task, which is superior to the previous

method. MFFN shows SOTA results in the COD task and

is equally good in the SOD task, but our multi-view design

concept still needs further development to achieve accurate

detection performance in general object detection tasks.
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