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Abstract

Self-supervised sound source localization in uncon-
strained visual scenes is an important task of audio-visual
learning. In this paper, we propose a visual reasoning mod-
ule to explicitly exploit the rich visual context semantics,
which alleviates the issue of insufficient utilization of vi-
sual information in previous works. The learning objectives
are carefully designed to provide stronger supervision sig-
nals for the extracted visual semantics while enhancing the
audio-visual interactions, which lead to more robust fea-
ture representations. Extensive experimental results demon-
strate that our approach significantly boosts the localization
performances on various datasets, even without initializa-
tions pretrained on ImageNet. Moreover, with the visual
context exploitation, our framework can accomplish both
the audio-visual and purely visual inference, which expands
the application scope of the sound source localization task
and further raises the competitiveness of our approach.

1. Introduction
We live in a world surrounded by visual and auditory

messages and perceiving such multi-modal data can help
us better understand our environment [20, 41, 11, 36]. Hu-
mans can spontaneously capture the correlations between
the sound and appearance of an object. For example, we
can associate the chatting and laughing sounds with a group
of people passing by. To simulate the human perception
ability, audio-visual intelligent systems have been widely
explored in recent years and achieved significant improve-
ments.

Sound source localization is an important task in the
audio-visual learning field, which aims at locating the
sounding objects with the guidance of audio signals. How-
ever, obtaining the delicate annotations of object locations,
i.e., segmentation masks and bounding boxes, can be rather
expensive, especially for large-scale datasets. To overcome
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this limitation, many works [5, 33, 29, 22, 8] tackle the lo-
calization problem in a self-supervised manner, which uti-
lize the audio-visual correspondences as supervision sig-
nals. Therefore, the models can generate decent sound
source localization results even without precise location an-
notations. Despite the success, there still exist some is-
sues to be addressed in the current sound source localization
frameworks.

Visual context semantics are important for developing
a comprehensive scene understanding but have been ne-
glected in many sound source localization frameworks [5,
31, 33, 22]. We identify two advantages for fully exploit-
ing the rich visual context semantics. First, humans tend
to locate the sounding objects by visually searching the en-
vironment while an effective search normally stems from
analysis of the surroundings. For example, when hearing
the birds singing, we will subconsciously look for trees and
then find the birds. Thus, the visual context is important
for humans to accomplish object localization. Second, the
visual semantics are inherently discriminative, as shown in
previous works [19, 40], and exploiting the intrinsic dis-
criminative correlations within the visual domain is bene-
ficial for the learning process. By interacting with these
distinct visual semantics, the audio-visual collaboration is
strengthened and the deep model can develop more com-
prehensive scene perception.

Our key insight is that the internal visual discrimination
should be effectively coordinated with the audio informa-
tion to maximize the supervision utility. A visual reason-
ing module is introduced to the sound source localization
system to exploit the visual context semantics. The mod-
ule produces the reasoning maps indicating the distributions
of prominent context regions as well as the corresponding
visual features within these regions. We carefully design
the learning objectives to guide the visual semantics so that
the extracted context features develop better adaptation to
the localization target. Specifically, the visual semantics
are encouraged to exhibit higher similarity with the audio
features, making them focus more on the sounding objects.
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Furthermore, we adopt a consistency loss to minimize their
distribution differences between the audio-visual localiza-
tion map and the reasoning maps. In this way, the cross-
modal information flow is further facilitated, which leads
to more robust feature representations and eventually im-
proves the localization performances. We also emphasize
that our framework does not rely on pre-training on large-
scale datasets, e.g., ImageNet [25], but achieves competitive
results by training from scratch.

Additionally, since our visual reasoning module can gen-
erate several objectness maps, we can also obtain a localiza-
tion heatmap from the pure visual input by combining these
maps. Experimental results indicate that the pure visual
heatmaps still yield satisfactory localization results. There-
fore, the application scenario can be extended from multi-
modal (audio-visual) inference to single-modal (purely vi-
sual) inference, and the requirements of input data are also
reduced.

Our contributions can be summarized as follows: (1) We
introduce a visual reasoning module to exploit the visual se-
mantics, which overcomes the defects of insufficient use of
visual information in many previous frameworks. (2) We
devise specific loss functions to guide the visual seman-
tics, which improve the localization performance of the en-
tire framework. Experimental results demonstrate that our
method surpasses baseline methods by a notable margin on
various datasets. (3) Our framework enables both multi-
modal and single-modal inference, which expands the ap-
plication scope of the sound source localization task. We
hope this preliminary exploration could provide a new per-
spective for the self-supervised visual localization field.

2. Related Work

Audio Visual Learning. Audio-visual learning [49, 43]
has attracted wide attention with the success of deep learn-
ing in recent years. Many sub-fields have achieved great
progress, such as audio-visual representation learning [4,
24, 5, 6, 29], audio-visual generation [14, 28, 48, 18], vi-
sual sound separation [13, 47, 46, 15, 12, 16, 7], and so
on. The correlations between audio and visual messages
in videos provide natural supervision for various audio-
visual tasks, which enables training with large-scale unla-
belled video data. Arandjelovic et al. [4] train audio and
visual networks with the correspondence guidance and find
that both networks learn feature representations effectively.
Owens et al. [29] jointly model the audio and visual com-
ponents to predict whether the two inputs are temporally
aligned. [21, 3] utilize feature clustering approaches to re-
alize the self-supervised learning of audio and video rep-
resentations. Our work also adopts the correspondence su-
pervision to train the sound source localization framework
while incorporating a visual reasoning module to capture
the intrinsic discrimination within the visual domain.

Sound Source Localization. Self-supervised sound
source localization approaches are fuelled by leverag-
ing the co-occurrence of audio and visual messages in
videos [5, 29, 33, 21, 31, 8, 22, 35, 34]. [5, 29] utilize
audio-visual correspondence or temporal synchronization
as supervision signals to learn the feature representations.
In [33], the authors adopt the predicted score maps to filter
the visual features and compute the cross-modal similar-
ities. Qian et al. [31] use CAMs to find the approximate
locations of objects in a weakly supervised manner. Zhao
et al. [47, 46] propose the ‘mix-and-separate’ paradigm to
simultaneously learn the separation and visual grounding.
Hu et al. [22] establish a dictionary to store the object fea-
tures from different categories and realize the class-aware
sounding object localization. [38] propose a negative-free
method to address the false negative sampling problem.
[37] consider the visual scene information by introducing
the external objectness confidence maps from the selective
search algorithm [39] as pseudo localization annotations.
Since the confidence maps are processed beforehand, they
cannot be updated during the training process, which may
raise the risk of over-fitting the noisy labels. Conversely,
our framework is optimized in an end-to-end manner. [44]
also devise a proposal-based paradigm to enhance the
audio-visual localization system. [8, 27] attempt to mine
intra-frame hard samples from the audio-visual localization
maps. However, their approaches do not directly inves-
tigate the visual domains but focus on the cross-modal
associations, which are relatively implicit. In contrast, our
method explicitly discovers the visual context semantics
and then utilizes the audio signals to provide guidance. In
this way, our approach can leverage both the discriminative
nature of visual scenes and the cross-modal supervisions,
which lead to better localization performances.

Visual Contexts in Multi-modal Learning. Visual con-
text semantics have been explored in many computer vision
tasks as the utilization can normally boost the performance
of deep models [42, 10, 45, 26]. In addition to the pure
vision field, visual context semantics also play an impor-
tant role in multi-modal learning as they can promote the
development of comprehensive scene perceptions. Chat-
terjee [7] et al. leverage the visual structures as a graph
to provide better guidance for visual sound separation. [32]
propose the TriBERT framework to accomplish the contex-
tual feature learning across three modalities. Shi et al. [37]
introduce visual attention maps from selective search [39]
as pseudo localization annotations to the sound source lo-
calization task but these external visual messages require
additional pre-processing and cannot be updated with the
network parameters during training. Our method employs a
visual reasoning module to explicitly exploit the visual con-
text semantics and adopts specific constrains to promote the
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audio-visual interactions, which effectively improve the lo-
calization performances. Moreover, apart from the regular
audio-visual localization inference, our reasoning module
enables pure visual inference, which expands the applica-
tion scopes and potentially provides new solutions for the
visual localization subject.

3. Methodology
3.1. Overall Framework

The objective of the sound source localization task is
spatially localizing the sounding objects with the guidance
of the corresponding audio cues. The overall framework is
presented in Fig. 1.

For a given audio-visual pair, we can obtain both the
audio-visual correspondence map Sav and the reasoning
maps Srea derived from the visual features. During the
training phase, we use Sav to compute the audio-visual cor-
respondence (AVC) loss, which requires the framework to
distinguish between the positive (correlated) and negative
(not correlated) audio-visual pairs. The reasoning maps
Srea are responsible for explicitly discovering the visual
context semantics under the supervision of the audio-visual
context loss. To further strengthen the audio-visual inter-
actions, we impose a cross-map consistency loss to mini-
mize the distribution differences between the visual reason-
ing map and the audio-visual correspondence map.

During the testing stage, if the audio messages are avail-
able, we can implement the regular sound source localiza-
tion inference, which utilizes the audio-visual correspon-
dence map to locate the sounding objects. However, the
audio cues are not always available. We argue that our ap-
proach also works with the situation when we only have
single images or the audio tracks are corrupted in videos.
Under this circumstance, we adopt the aggregated visual
reasoning maps to replace the original audio-visual corre-
spondence map. Experimental results indicate that purely
visual testing can achieve on-par performances compared
with audio-visual testing (please refer to Sec. 4.5). This ad-
vantage relaxes the requirements for the input data and thus
expands the application range of the sound source localiza-
tion task.

3.2. Audio-Visual Correspondence Learning
Given an arbitrary audio-visual pair {ai, vi} from the

video clip i, we aim to find which region in vi has the high-
est correlation score with ai. Thus, we feed vi into the vi-
sual network to extract the visual feature Vi ∈ RC×H×W ,
where C, H , W refer to channel, height, width, respec-
tively. Here we omit the batch index for simplicity. The
audio input ai is also fed into the audio network to ex-
tract the audio feature Ai ∈ RC . By multiplying the vi-
sual feature and the audio feature along the channel dimen-
sion, we can obtain the predicted correspondence heatmap

Sii
av ∈ RH×W , as shown in Eq. 1.

Sii
av(x, y) =

∑
c

V i(c, x, y)×Ai(c), (1)

where x, y denote the coordinate on the H × W plane.
Please note that both the audio and visual features are nor-
malized along the C dimension before computing the cor-
respondence heatmap.

The predicted heatmap Sii
av denotes the correspondence

score for each pixel of the visual feature. However, we need
to acquire the overall correspondence score that represents
the final decision (corresponding or not). Thus, we apply
the global max-pooling on the correspondence heatmap to
generate the correspondence score siiav .

Empirically, the global max-pooling will lead to bet-
ter performances compared with the global average-pooling
operation. One possible reason is that many pixels are
invalid or less informative and conducting the average-
pooling operation on the whole score map will inevitably in-
troduce these noisy pixels. Thus, the supervision signals are
weakened and ultimately cause sub-optimal results. Con-
versely, the max-pooling operation can suppress the noisy
pixels and only retain the values with the highest response,
which will benefit the training process.

The correspondence loss requires the network to dis-
criminate the positive and negative pairs at the sample level.
If the audio and visual inputs come from the same video
clip, then they are labeled as positive pairs, otherwise neg-
ative. In practice, the negative pairs are constructed within
the entire mini-batch during training. In this way, the model
can get access to more diverse negative examples and re-
ceive stronger supervision signals. The learning objective
is defined as follows:

Lavc = − 1

B

B∑
i=1

log

[
exp (siiav)∑B
j=1 exp (s

ij
av)

]
, (2)

where B refers to the batch size during training, sijav refers
to the correspondence score between vi and aj inside the
mini-batch. The correspondence loss encourages the net-
work to increase the similarity between the positive pairs
while suppressing that between the negative pairs.

3.3. Exploiting Visual Context Semantics

Audio-visual correspondence learning mainly focuses on
the global correlations between audio and visual pairs. Al-
though the global max-pooling can effectively suppress the
less informative pixels, some useful pixels may also be re-
moved when computing the overall correspondence score.
Chen et al. [8] take this issue into account and firstly incor-
porate the hard negative regions into the sound source local-
ization problem. We argue that the intrinsic discriminative
property within the visual domain has still not been fully
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Figure 1. Overview of the whole sound source localization framework. Given an audio-visual pair, we can obtain both the audio-visual
correspondence map Sav and the reasoning maps Srea derived directly from the visual features. In addition to the regular audio-visual
correspondence (AVC) loss, we propose the audio-visual context loss and the cross-map consistency loss to guide the exploitation of visual
context semantics, which strengthen the audio-visual interactions and bring more robust feature representations. The video index is omitted
for simplicity.
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Figure 2. Illustration of the visual reasoning module and the av-
ranking strategy. The visual feature V passes through a 1×1 con-
volution layer to generate the reasoning maps Srea, which indicate
the distribution of possible object locations. The labels (pos/neg)
of the reasoning maps are determined by the similarity between
the region features O and the corresponding audio feature A. The
video index is omitted for simplicity.

exploited since the sample selection is based on the audio-
visual correlation map. Alternatively, we propose a visual
reasoning module to simultaneously leverage the natural vi-
sual structures and the cross-modal associations.

3.3.1 Visual Reasoning Module Structure

The structure of the reasoning module is illustrated in the
left part of Fig. 2. In our reasoning module, the first step
is to project the visual feature V into the visual discrimi-
native space, where the model learns to automatically find
the meaningful regions in the images. The feature projec-
tion is accomplished by a convolution layer with kernel size
N ×C × 1× 1 and the outputs are a set of reasoning maps
Srea ∈ RN×H×W , where N refers to the number of se-
lected regions. The convolution kernel can be regarded as a

group of learnable projection weights.
As the reasoning maps Srea indicate the distribution of

the possible object locations, we apply the reasoning maps
as weights to sum the visual feature V to obtain the features
of the selected regions, denoted as O ∈ RN×C :

O(n, c) =
∑
h,w

V (c, h, w)× Srea(n, h,w) (3)

Although the reasoning mechanism can help utilize the vi-
sual contexts, we argue that directly adding this module to
the existing framework does not work effectively. Instead,
it is necessary to employ specially designed losses to pro-
vide clear guidance for the discovered visual semantics and
further enhance the cross-modal interactions.

3.3.2 Learning Objectives of Visual Reasoning

The regions selected by the reasoning module may contain
both the foreground and background area, which will be dis-
criminated via an av-ranking strategy with the guidance of
audio cues, as shown in the right part of Fig. 2. If not spec-
ified, we omit the video index i and manipulate visual and
audio features from the same video. By conducting the dot-
product between the region features O and the correspond-
ing audio feature A, we can get a set of the similarity score
{hk|k = 1, 2, ...N}.

The similarity scores are then sorted in descending order
to generate the reordered score set H and the corresponding
index set I:{

H = sorted({h1, h2, ..., hN}),
I = argsort({h1, h2, ..., hN}) (4)
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The first NP values in H are considered positive sub-
set while the last NQ values negative subset. The strat-
egy to distinguish the positive and negative regions pro-
vides higher flexibility during training since it encourages
the model to independently discover the cross-modal inter-
action patterns, which may lead to stronger feature repre-
sentations. The positive score P and negative score Q can
be computed by averaging the values in the positive subset
and negative subset, respectively. We can then define the
audio-visual context loss Lcontext in Eq. 5, which is of a
similar form as Eq. 2.

Lcontext = − 1

B

B∑
i=1

[
log

exp (Pi)

exp (Pi) + exp (Qi)

]
, (5)

where Pi and Qi refer to the average positive and negative
score, respectively, for the ith matched audio-visual pair in-
side the mini-batch.

Both the reasoning maps Srea and the AV-
correspondence map Sav indicate the potential locations
of target objects but they come from different feature
sources, i.e., Srea via visual context semantics and Sav

via audio-visual correlations. To promote the informa-
tion interactions between the two sources, we devise a
consistency constraint on these two types of localization
heatmaps. Before computing the loss value, the negative
fragments need to be filtered from the reasoning maps. We
take the first NP indexes from the index set I and utilize
these positive indexes to pick up the maps representing the
sounding objects. By taking the average value at each pixel
on the NP foreground maps, we acquire the aggregated
map S

′

rea ∈ RH×W , which is of the same shape as Sav.
We implement the consistency constraint by minimizing

the distribution differences between the aggregated reason-
ing map and the AV-correspondence map, as formulated be-
low:

Ldiv = DJS(S
′

rea ||Sav), (6)

where DJS refers to the Jensen-Shannon Divergence.

3.3.3 Final Objective

The final objective of the entire sound source localization
framework consists of all the losses for audio-visual corre-
spondence and visual context semantics exploitation.

L = Lavc + λ1Lcontext + λ2Ldiv, (7)

where λ1 and λ2 are loss weights for balancing the impor-
tance of the learning objectives.

4. Experiments
4.1. Implementation Details

The framework is trained using the Adam optimizer [23]
with a learning rate of 1e-4 and batch size of 128. The
weight decay is set to 1e-4. The loss weights λ1 and λ2 are
set to 0.1. All experiments are implemented with the Py-
Torch framework [30] on 4 NVIDIA 2080TI GPUs. Details
about model configuration and data processing are provided
in the supplementary.

4.2. Datasets and Evaluation Metrics

VGGSound. The VGGSound dataset [9] is a recently re-
leased audio-visual dataset, which consists of 10-second
video clips crawled from YouTube. We train our models
on the subset of 220 categories and evaluate the results on
the VGG-SS test set [8].
VGGSound-MI. We create another subset from the VG-
GSound dataset for training and evaluation, which contains
around 30k clips from 39 musical instruments. This sub-
set simulates the situation where the data amount is smaller
and the category distribution is more concentrated. The cat-
egory list will be provided in the supplementary.
Flickr SoundNet. This dataset was firstly proposed in [6],
containing over 2 million video clips from Flickr. Following
previous works [33, 31, 8], we adopt the human-annotated
subset for quantitatively evaluation. In our setting, we ran-
domly sample 10k video clips for training and evaluate on
250 annotated pairs.
AudioSet. AudioSet is another large-scale audio-visual
dataset proposed in [17]. We adopt the subset of around 50k
video clips spanning 15 musical instruments. The videos
from the ‘unbalanced’ split are used for training and those
from the ‘balanced’ split are used for testing. More details
are provided in the supplementary.
Evaluation Metrics. Following previous works [33, 8, 35],
we adopt the Consensus Intersection over Union (CIoU) and
Area Under Curve (AUC) as the evaluation metrics, which
are calculated with the predicted sounding object locations
and the Ground-Truth bounding boxes.

4.3. Quantitative Results

In this section, we compare our method with recent
sound source localization methods on different datasets.
The results on the VGGSound and VGGSound-MI are sum-
marized in Table. 1. From the results, we can see that
our method consistently surpasses all the competing frame-
works by a notable margin on different metrics, which
demonstrate the effectiveness of explicitly exploiting the
richer visual context semantics. Specifically, for the VG-
GSound dataset, the AUC increases from 0.366 to 0.376
(+1.0%) and the CIoU@0.5 increases from 0.322 to 0.350
(+2.8%); for the VGGSound-MI subset, the AUC increases
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VGGSound VGGSound-MI
Method CIoU@0.5 AUC CIoU@0.5 AUC
Attention [33] 0.185 0.302 0.243 0.335
DMC [21] 0.193 0.286 0.270 0.362
AVobject [2] 0.297 0.357 0.339 0.382
LCBM [35] 0.322 0.366 0.347 0.392
LVS [8] 0.303 0.364 0.333 0.389
Ours 0.350 0.376 0.365 0.402

Table 1. Quantitative results on the VGGSound and the
VGGSound-MI datasets. CIoU@0.5 means that the IoU thresh-
old for the CIoU metric is 0.5. LCBM [35] is a weakly-supervised
framework as it uses category labels during training while other
methods are trained in a self-supervised manner.

from 0.392 to 0.402 (+1.0%) and the CIoU@0.5 increases
from 0.347 to 0.365 (+1.8%). The results also verify that
the improvements are robust with different data amount and
category distributions. Moreover, our framework is trained
from scratch without using any category labels, further in-
dicating the benefits of our method.

Among all the competing methods, the work most sim-
ilar to us is LVS [8] as the background regions are explic-
itly considered in the supervision. However, the results in-
dicate that our method with the visual reasoning module
exhibits better localization performances. We suspect that
the possible reasons are as follows. First, LVS only relies
on the audio-visual contrastive modes while our method si-
multaneously utilizes the intrinsic discriminative attributes
within the visual domain and the cross-modal associations.
These two sources can serve as complements for each other
and provide more diverse supervision signals. Second, the
cross-modal synergy is enhanced with the employment of
the visual reasoning module and the relevant losses. By
capturing the audio-visual interactions more reasonably, the
model can learn stronger feature representations from the
multi-modal semantics and raise the overall localization
performance.

We also conduct experiments on the Flickr-SoundNet
and AudioSet subset to examine the adaptability of the
model on different datasets. The results on the Flickr
SoundNet are summarized in Table. 2. We can see that our
model outperforms the competitive LVS [8] method when
training on the VGGSound or Flickr SoundNet dataset. For
the AudioSet subset, compared with the baseline method,
our approach achieves +2.1% and +3.0% gains on AUC and
CIoU@0.5, respectively. The results further demonstrate
the versatility of our model on different datasets.

4.4. Ablation Study

In this part, we perform ablation experiments to investi-
gate the effects of various factors proposed in our approach.

Model Training Set Testing Set CIoU@0.5 AUC
LVS [8] VGGSound Flickr 0.651 0.551
Ours 0.775 0.596
LVS [8] Flickr10k Flickr 0.582 0.525
Ours 0.631 0.551

Table 2. Experimental results on Flickr-SoundNet dataset. We
conduct training on both VGGSound and Flickr-SoundNet (with
10k samples) dataset.

Lcontext Ra Ldiv CIoU@0.5 AUC
% % % 0.307 0.354
" % % 0.329 0.362
" " % 0.340 0.370
" " " 0.350 0.376

Table 3. Ablation study. All the models are trained on the VG-
GSound dataset and evaluated on the VGG-SS test set. We explore
the influences of different learning objectives and the av-ranking
strategy (denoted as Ra). The results indicate that each proposed
module contributes to the performance gains.

4.4.1 Effect of the av-ranking strategy

For the regions predicted by the reasoning module, we pro-
pose an av-ranking strategy to divide them into positive and
negative areas based on the similarities with the correspond-
ing audio vectors. To strip this factor, we replace the av-
ranking strategy by naively tagging the region features ac-
cording to the order, e.g., directly specifying the first several
maps as positive and the remaining ones negative. From
the results in Table. 3, we can observe that the av-ranking
strategy exhibits better performance, which may come from
flexibility during training. Specifically, the model can freely
find the most reasonable feature matching solution for each
audio-visual pair, instead of forcing the visual semantics to
follow a certain order. Thus, the visual network can per-
ceive the audio cues more effectively and hence boost the
localization accuracy.

4.4.2 Impacts of different learning objectives

We investigate the impacts of the learning objectives in our
approach, as illustrated in Table. 3. Training only with
the AV-correspondence loss serves as the naive baseline
method. We notice that using Lcontext still outperforms
the baseline method even without the av-ranking strategy,
which demonstrates the advantages of explicitly incorpo-
rating the visual context semantics. Additionally, the av-
ranking strategy provides a more rational training mecha-
nism and hence amplifies this positive effect. By minimiz-
ing the distribution gaps between the audio-visual corre-
spondence map and the visual reasoning map via the diver-
gence loss Ldiv , we build a new bridge to connect the two
modalities. With more efficient audio-visual interactions,
the model can acquire more comprehensive information and
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Method CIoU@0.5 AUC
Baseline 0.307 0.354
Vanilla 0.301 0.350
Ours 0.350 0.376

Table 4. Comparison of the vanilla reasoning and our method on
the VGG-SS test set. Baseline represents the original network
while ‘Vanilla’ refers to simply adding the visual reasoning mod-
ule to the original network to augment the visual features. Both
methods are trained only with Lavc.

thus learn more robust feature representations, which may
explain the further gains when applying the divergence loss.
Overall, we can observe that all the proposed learning mod-
ules contribute to the performance improvements.

4.4.3 Compared with vanilla reasoning

Although the visual reasoning module can utilize the visual
context semantics, merely adding a reasoning structure to
the existing backbone is not enough and the specially de-
signed supervisions are necessary. Table. 4 shows the com-
parison between adopting the reasoning module with no ex-
plicit supervisions (denoted as ‘Vanilla’) and our approach.
We can see that vanilla reasoning performs even slightly
worse than the baseline approach, probably due to the in-
compatibility of the unconstrained features to the localiza-
tion task. Therefore, the improvements cannot be simply
realized by employing the reasoning module, but our spe-
cially designed learning objectives can effectively raise the
localization performance.

4.5. Image-only Inference

By explicitly utilizing the visual context semantics dur-
ing training, our framework enjoys an inherent advantage of
image-only inference. In other words, our model can also
work in the situation when the audio tracks are not available
in videos or the current data are in the format of individual
images, which expands the application scope of the sound
source localization task.

When conducting the image-only inference, we adopt
the aggregated reasoning maps to replace the original AV-
correspondence map to predict the object locations. Since
audio cues are not available currently, we apply the pool-
ing operation on all the reasoning maps to accomplish the
combination, instead of merging the foreground maps as in
Eq. 6. The rational for combining all the reasoning maps
is that the responses of the negative regions will gradually
decrease during training so that the positive semantics can
dominate the aggregated reasoning map.

The results of the image-only inference are shown in Ta-
ble. 5, where we can see the single-modality inference can
achieve on-par or even slightly better performances com-
pared with the audio-visual counterpart. To our knowledge,
this appealing property has not appeared in previous sound

VGGSound VGGSound-MI
Method CIoU@0.5 AUC CIoU@0.5 AUC
Baseline 0.307 0.354 0.326 0.381
Ours (audio-visual) 0.350 0.376 0.365 0.402
Ours (image-only) 0.352 0.378 0.372 0.404
AV-detector [1] - - 0.369 0.398

Table 5. Results under the image-only inference scenario on the
VGGSound and VGGSound-MI datasets. The image-only infer-
ence can achieve on-par or even better performances compared
with the audio-visual counterparts.

source localization works. The results further demonstrate
the reliability of the learned visual context semantics.

In [1], the authors extract pseudo bounding box annota-
tions from the AV-localization heatmaps and adopt the an-
notations to train an object detector. Thus, the framework
also accomplishes the transition from audio-visual localiza-
tion to uni-modal localization as the detector can directly
infer the images. Since the codes and models are not re-
leased currently, we re-implement their method and report
the results in Table. 5. We argue that the detector training re-
lies on carefully selecting hyper-parameters and consumes
additional computation resources. In this way, it may not be
appropriate to directly compare these two approaches since
our method can realize the image-only inference without the
subsequent training or additional framework. This inherent
advantage provides a new feasible solution to the localiza-
tion only in the visual domain. The advantage of [1] is that
the pre-trained detector can identify instances in images and
object categories, which cannot be achieved by our model.
We hope that this attribute can be combined with our frame-
work in the future.

4.6. Qualitative Results

We visualize the AV-localization maps on the VGG-SS
test set and compare them with the LVS [8] method, as
shown in Fig. 3. The results indicate that our approach en-
joys better localization ability. We can also see that our
method is still able to generate fair localization predictions
even under relatively difficult scenarios, such as the python
in camouflage (bottom right of Fig. 3), while LVS produces
wider results of the entire frame. The visualization results
further validate the effectiveness of the sufficient utilization
of visual context semantics. More visualization examples
are provided in the supplementary materials.

5. Discussion and Future Works

In addition to the performance improvements, we ob-
serve that explicitly exploiting the visual contexts also con-
tributes to the training process. Fig. 4 illustrates the AUC
values at different epochs during training, where we can
see that our approach consistently outperforms the base-
line through the entire process. We speculate that utilizing
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Figure 3. Qualitative results of sound source localization on VGG-SS test set compared with LVS [8].

the visual contexts can bring more diverse supervisions and
hence promote the model divergence. The stability of train-
ing also reflects the robustness of our method.
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Figure 4. AUCs at different epochs during training. We compare
the performances between our approach (with visual semantics ex-
ploitation) and the baseline approach.

The experiments have demonstrated the advantages of
harvesting the visual context semantics in the sound source
localization task. However, the simple visual reasoning
module employed in our framework is just one feasible so-
lution. In the future, we will investigate more diverse ar-
chitectures to accomplish the visual semantics extraction,
such as multi-level feature fusion, feature pyramid, etc. Fur-
thermore, the importance of proper learning objectives to
enhance the cross-modal interaction should also not be ne-
glected.

Our method proves that leveraging the abundant videos
of unconstrained scenes to realize the self-supervised purely
visual localization is a feasible way, as our model achieves
on-par or even better performance under the image-only in-
ference compared with the audio-visual counterpart. De-
spite this exciting discovery, there still exist many issues to
be addressed, such as object discrimination. Specifically,
the predicted heatmaps only indicate the object locations
and do not contain category information. [22] learn to dis-

criminatively localize sounding objects but the inference
still relies on the audio information. The reasonable way to
combine the category discrimination and purely visual in-
ference capabilities still needs exploration. Moreover, dis-
crimination at the instance level for multi-object scenes is
also a worth considering problem.

6. Conclusion
In this work, we delve into the exploitation of the vi-

sual context semantics in the sound source localization
task, which overcomes the problem of the insufficient use
of the visual context cues in many previous works. We
carefully design the learning objectives that can provide
stronger guidance for the extracted visual semantics while
strengthening the audio-visual interactions. Experimental
results indicate that our approach can effectively boost the
sound source localization performances on various datasets.
Moreover, since the model is instructed to explicitly mine
the visual semantics during training, our framework can re-
alize both the multi-modal (audio-visual) and the single-
modal (image-only) inference, where the two inference
types achieve similar performances. This unique advan-
tage expands the application field of sound source local-
ization and potentially brings a new direction for the self-
supervised visual localization subject.
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